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Abstract 
 
The lattice Boltzmann (LB) method has been used to simulate rarefied gas flows in micro-systems as an alternative tool, and shown its 

application possibility. For the rarefied gas flows, the surface roughness plays an important role for the slip phenomenon at the wall. If 
the wall surface is sufficiently rough, the reflection of the molecules will be diffuse and the tangential momentum accommodation coeffi-
cient (TMAC) is equal to unity. However, it has been known that the reflections are not always fully diffuse. In this study, rarefied gas 
flows are simulated in the slip and the transition flow regime including the effect of the TMAC. For the simulations, new non-fully dif-
fuse wall boundary treatments of the LB method are proposed. The results of 2D and 3D simulations are in excellent agreement with the 
analytical solutions for the slip flow regime. The solutions of the linearized Boltzmann equation and DSMC for the transition flow re-
gime are compared with those of high order LB method with present boundary conditions, and they are in excellent agreement. The tan-
gential momentum accommodation coefficient effect is also investigated.  
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1. Introduction 

The lattice Boltzmann (LB) method has been recently used 
to simulate some rarefied gas flows in microsystem [1-5]. The 
rarefaction effect can be characterized by the Knudsen number 
Kn, which is the ratio of the mean free path to the characteris-
tic length. Schaaf and Chambre [6] classified different flow 
regimes based on Kn. For Kn ≤ 0.01, the fluid can be consid-
ered as a continuum, while for Kn ≥ 10 it is considered a free-
molecular flow. Between the two limits with 0.01 < Kn < 10, 
which is typical of gas flows in microsystems, the flow is fur-
ther classified into slip flow for 0.01 < Kn < 0.1 and transition 
flow for 0.1 < Kn < 10. For Kn greater than 0.01, the slip at 
the solid wall becomes an important flow feature. As the rare-
faction effect becomes significant, the pressure drop, shear 
stress, heat flux, and mass flow rate cannot be properly pre-
dicted from the model based on the continuum hypothesis. 
Unlike conventional numerical schemes which solve the mac-
roscopic variables directly, such as velocity and pressure, the 
LB method is based on the microscopic kinetic equation for 
the particle distribution function. Because the LB method is a 
particle-based method, such as the direct simulation of Monte 
Carlo (DSMC) method [7], it is applicable to a slip flow. Most 

importantly, because the LB method deals with particle distri-
bution functions, it is more computationally efficient than the 
DSMC method.  

In the previous slip flow simulations using the LB method, 
various boundary treatments were applied to obtain the slip 
velocity at a wall. Among them, bounce-back and specular 
bounce-back schemes have been widely used. Nie et al. [1] 
used bounce-back boundary condition for a stationary wall. In 
the bounce-back scheme, the particle distribution function, 
which streams to a wall node, scatters back to the node it 
comes from. However, it is known that it gives less degree of 
slip at a given Kn [4]. To enhance the slip effect, Succi [2] 
introduced the specular bounce-back scheme. It is a mix of 
bounce-back and specular reflections. Lee and Lin [4] used 
the equilibrium distribution function as a boundary condition. 
The boundary schemes of those investigations were restricted 
to fully diffuse flat walls. If the wall surface is sufficiently 
rough, the reflection of the molecules will be diffuse and the 
tangential momentum accommodation coefficient (TMAC), s, 
is equal to unity, which can be defined for tangential momen-
tum exchange of gas molecules with surfaces, i.e. s = (ti-
tr)/(ti-tw), where ti and tr are the tangential momentum of 
incoming and reflected molecules, and tw is the tangential 
momentum of re-emitted molecules, corresponding to that of 
the surface. For most engineering surfaces, it is close to unity. 
Under controlled test conditions, however, lower accommoda-
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tion coefficients are possible due to the low surface roughness 
[8]. Sbragaglia and Succi [9] presented a mathematical formu-
lation of kinetic boundary conditions for LB schemes in terms 
of reflection, slip and accommodation coefficients. In their 
paper, however, detail investigation and validation using the 
formula with accommodation coefficient were omitted. Zhang 
et al. [10] implemented the TMAC to describe the gas-surface 
interactions in a LB (D2Q9) model. Their boundary condition 
works in a spirit similar to that of Succi [2]. However, their 
boundary treatment can only be applied for a stationary wall. 
Tang et al. [11] presented kinetic theory boundary condition 
which can be applied for non-fully diffuse wall, and it cannot 
be adopted only for a stationary wall but also a moving wall. 
However, it looks somewhat complicated, and it doesn’t seem 
to be easy to use it for a 3D simulation.  

The objective of this study is to propose new boundary con-
ditions for non-fully diffuse wall, and to examine the effect of 
non-unity accommodation on the slip and the transition flows 
including the compressible effect of gas flow, which has not 
been considered in the previous studies mentioned above. For 
the simulations, 2D/3D gas microchannel flows and oscilla-
tory Couette flow are investigated.  

 
2. Slip flow regime (0.01 < Kn < 0.1) 

2.1 Standard LB method 

For a flow without an external force, the following discrete 
Boltzmann equation is available. 
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,                         (1)     

 
where fa is the particle distribution function, eai is the micro-
scopic velocity, and l is the relaxation time. The subscript i 
corresponds to the respective x, y and z directions. The equi-
librium distribution function is given by 
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where ta is a weighting factor, r is the density of the system, 
ui   is the macroscopic velocity, and cs is the speed of sound. 
For lattice model, the square lattice (D2Q9) and the 3D 19-
velocity (D3Q19) LB models are used for the 2D and 3D sim-
ulations, respectively [12].  

The D2Q9 model has the following set of discrete veloci-
ties: 
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and the weighting factor ta  is 
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For the D3Q19 model, the discrete velocities ea  and the 

weighting factor ta  are given by  
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The sound speed sc  is 1 3  in both 2D and 3D simulations. 
By discretizing Eq. (1) along with the characteristic over the 

time step dt, the following equation can be obtained [9]. 
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where the non-dimensional relaxation time t = l/dt. 

In the above discretization, the trapezoidal rule is applied to 
obtain the second-order accuracy and unconditional stability. 
Using the following modified particle distribution function, 
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Eq. (7) can be recast in a simpler form as follows. 
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The macroscopic density, kinematic viscosity, and momen-

tum are recovered by 
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Hereafter, the overbar on top of the modified distribution 

function is omitted for simplicity. 
For rarefied gas simulations, t  in Eq. (9) needs to be re-

lated to Kn. From the kinetic theory, it can be assumed that the 
gas molecules, represented by the particle distribution func-
tions, travel the distance of the lattice mean-free path vl  with 
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the mean thermal speed defined as 8 /c kT mp= [13] while 
relaxing to their equilibrium state in the relaxation time l . 
The mean thermal speed c  can be represented with the lat-
tice velocity c which depends on the lattice model [12], e.g., 

3 /c kT m= for D2Q9 and D3Q19 models.  
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Therefore, the Knudsen number can be expressed as follows 

[10]:  
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where H is the characteristic length. Because mean free path is 
inversely dependent on the pressure, the local Kn shall be 
modified as  
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where Kno and Po are the Kn and pressure at the outlet, respec-
tively. The local non-dimensional relaxation time t  is then 
determined by the local Kn .  

 
2.2 Boundary treatments 

2.2.1 Previous boundary conditions  
The analytic solution in the Boltzmann equation, the distri-

bution function of the gas molecules leaving the wall surface 
can be related to the incident molecular distribution function 
by using a scattering kernel. The most widely used kernel is 
the diffusive scattering model: 
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where ui is the incident velocity, u the reflected velocity, Tw 
the surface temperature, and un the normal component of the 
incident velocity. Maxwell [14] expanded this diffusive kernel 
to a partially diffusive s  and partially specular (1-s) kernel. 
In the LB method, the gas molecule and surface interactions 
need to be approximated by a combination of the discrete 
velocities, because the degree of freedom in the momentum 
space is very limited in the LB method.  

In order to simulate gas microflows, Zhang et al. [10] and 
Tang et al. [11] used the Maxwellian approach to describe the 
gas-solid wall collision characteristics. For 2D channel flow, 
Zhang et al. [10] presented a boundary condition at the upper 
as follows: 
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where s is the TMAC. This boundary condition doesn’t in-
clude the wall velocity. Their boundary treatment, therefore, 
can only be applied for a stationary wall. 

Tang et al. [11] also suggested the Maxwellian kinetic 
boundary condition accounting for the TMAC. The unknown 
distribution function fa reflected on the wall can be determined 
by using the incident distribution function fa’ and the com-
pletely diffusive boundary condition derived by Ansumali and 
Karlin [15] as follows: 
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where wur  and wr  are the velocity and density at the wall. 

 
2.2.2 Present boundary conditions  

In this study, two different boundary conditions are sug-
gested to simulate rarefied gas flows with non-fully diffuse 
walls. The first one is a combination of the wall equilibrium 
and the free-slip boundary conditions. Using the equilibrium 
distribution function as a boundary condition of the LBE 
method is to assume that the reflection of molecules imping-
ing on the wall is fully diffuse (s = 1). On the other hand, 
free-slip boundary condition [16] applies to the case of smooth 
boundaries without friction, and it represents a specular reflec-
tion (s = 0), i.e. the incoming particles to the wall are reflected 
as light is reflected from a mirror after the collision. The non-
fully diffuse reflection may lie between these two limits, and 
the accommodation coefficient, s, weighs the fraction of dif-
fusive reflection and specular reflection. For 2D case, there-
fore, the boundary condition at the lower wall is as follows for 
a non-fully diffuse wall: 
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For a stationary wall, wur = 0, and the density is obtained by 

taking the zeroth moment of the particle distribution function 
at the wall after the streaming step. Wall boundaries are lo-
cated halfway between two grid points. 

The other boundary condition can be derived by using 
specular bounce-back scheme for diffusive reflection, which 
can be presented as follows: 
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where r is the specular factor. The sum of x-momentum for re-
emitted particles from the bottom wall after the collision is as 
follows: 
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If a stationary wall is considered, r should be 0.5, and Jx be-

comes 0, which means diffuse reflection, i.e. the particles 
reflected back diffusively from the wall without a certain an-
gle of reflection. Thus, non-fully diffuse reflection can be 
possibly achieved by following boundary condition: 
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Wall boundaries are also located halfway between two grid 

points. 

 
2.3 Numerical simulation 

2.3.1 2D microchannel flow  
The analytic solution of a microchannel flow between two 

parallel plates of length L, which are separated apart by a dis-
tance H, can be deduced from the Navier-Stokes equation 
using the slip boundary condition. When the second-order slip 
model is considered, the slip velocity is 
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where us and n are the slip velocity and wall normal coordi-
nate, and uwall denotes the wall velocity. For a flat wall, Hadji-
constantinou [17] has been proposed the slip coefficients a = 
1.11 and b = 0.61 from the accurate numerical solutions of the 
Boltzmann equation. Under the assumption of a long channel, 
i.e. L/H >> 1, the following analytical solutions can be de-
duced with Eq. (30) [18]. 
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where R is the gas constant; / oP P P=% , the normalized pres-
sure with the outlet pressure; /x x L=% , the coordinate nor-
malized with the channel length; and B a constant such that 

(0) /i oP P P=% . 
The unknown particle distribution functions at the inlet and 

outlet are calculated by second-order extrapolation of those 
adjacent to the boundary nodes. Following the extrapolation, 
the calculated densities at the inlet and outlet are rescaled to 
make the average density across the inlet and outlet boundary 
nodes the same as the prescribed density.   

Fig. 1 shows the results for Kno = 0.05, 0.1 and s = 0.9, 0.6 
compared with the analytical solutions of Eqs. (31) and (32). 
The grid size for H is restricted to 30dx (32 points), and L/H = 
80 is used in order to investigate the compressibility and rare-
faction effects on a sufficiently long micro-channel flow. For 
all calculations, Pi /Po is set to 2.0. The nonlinearity of pres-
sure, i.e. deviation of the pressure from the linear pressure 
distribution, (P – Pincomp.), is normalized by the outlet pressure, 
Po, and the stream direction, in an x coordinate, is normalized 
by the channel length. Slip velocities are normalized by the 
outlet centerline velocity Uo. The results are same for both 
boundary treatments, and they are also in excellent agreement 
with the analytical solutions. That shows that non-fully diffuse 
reflection can be successfully achieved by linear combination 
of fully diffuse and specular reflections, and the wall equilib-
rium boundary condition and the specular bounce-back 
scheme with r = 0.5 represent the diffuse reflection well. 

For the comparison with the previous boundary treatments, 
the results for Kno = 0.1 and s = 0.9 are presented in Fig. 2. 
The results of previous boundary treatments show lower val-
ues of the slip velocity and nonlinearity of pressure when 
compared with the analytical solutions.  

To evaluate the effect of grid size on the accuracy of the so-
lutions, the gas flows in an infinitely long microchannel are 
studied. 

In order to mimic the flow, a periodic microchannel flow 
driven by a constant external pressure gradient is considered. 
In the presence of a body force, the LB must be modified to 
account for the force by adding an additional term to Eq. (9). 
The simplest way with body force density F gr=

r r , where 
gr  is the acceleration, is as follows [19]: 
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Fig. 1. Nonlinearity of pressure and slip velocity distributions for Kno = 0.05, 0.1 and s = 0.9, 0.6 at Pi/Po = 2.0, H = 30dx, and L/H = 80. 
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Fig. 2. Nonlinearity of pressure and slip velocity distributions of previous boundary treatments for Kno = 0.1 and s = 0.9. 
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For the external pressure gradient, /xF P x= -¶ ¶  is applied.  
Fig. 3 shows the velocity profiles for the cases of H = 10dx, 

20dx, 40dx, and 80dx when Kn = 0.1 and s = 0.8. The results 
are non-dimensionalized by the mean velocity Um, 
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It is seen that the accuracy of the solutions is essentially in-

dependent of the grid size for both boundary conditions.  
 

2.3.2 Oscillatory shear-driven gas flow  
The schematic diagram of the oscillatory Couette flow is 

presented in Fig. 4. The lower plate at y = 0 is a stationary 
wall and the upper plate at y = H is a moving wall. At time t = 
0, the upper plate starts to oscillate in the x direction with ve-
locity u = uwsin(wt). w is the oscillation frequency and uw is 
the velocity amplitude.  

Oscillatory Couette flow is characterized by the Stokes 

number S, which represents balance between the unsteady and 
viscous effects, defined as 2 /S Hw n= . The reduced Na-
vier-Stokes equation for the Couette flow problem is 

2 2/ /u t u yn¶ ¶ = ¶ ¶ , and boundary conditions for oscillatory 
rarefied flow are as follows: 
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The solution is then given by [20] 
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and iSx = . 

The periodic boundary condition is applied in the x direc-
tion. The oscillation frequency can be related with non-
dimensional period Tp as w = 2p/(Tpdt). In Fig. 5, the com-
parison of the dynamic velocity profiles for s = 0.9; s = 0.5, 
and Kn = 0.05; Kn = 0.1 is shown. For all calculations, S is 
fixed to 4.0. It is seen that the present results are in excellent 
agreement with those of analytical solutions. In addition, the 
symbols which represent the results of two boundary treat-
ments are located on the same positions.  

 
2.3.3 3D microchannel flow  

In order to examine that the present boundary treatments are 
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(a) Combination of wall equilibrium and free-slip condition 
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Fig. 3. Non-dimensional velocity profiles for the cases of H = 10dx, 
20dx, 40dx, and 80dx when Kn = 0.1 and s = 0.8. 

 

 
 
Fig. 4. Schematic diagram of the oscillatory Couette flow. 
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also applicable in a 3D simulation, 3D gas microchannel flow 
is simulated. The length of the channel is L, its width is 2W, 
and its depth is 2H, so that {0, }z LÎ , { , }x W WÎ - , and 

{ , }y H HÎ - . The aspect ratio of the cross section is Ar = H/W, 
and it is assumed that H <= W. Under the assumption of a long 
channel, i.e. W, H << L, and a locally fully developed flow, i.e. 
the density r  and the pressure P are constant within a cross 
section, the steady compressible gas flow in a cross section is 
governed by the conservation and momentum equations: 

 

0u
z

¶
=

¶
                          (43)                       

2 2

2 2

1 .u u dP
y x dzm

¶ ¶
+ =

¶ ¶
        (44)                              

 
For the simulation of infinitely long channel, Eq. (33) and 

periodic boundary condition in z direction are applied.  

Fig. 6 shows the velocity profiles non-dimensionalized by 

the mean velocity, 1 ( , )m A
U u x y dA

A
= ò , for Kn = 0.1 and Ar 

= 0.5. Two cases of s = 0.9 and 0.6 are considered to see the 
non-unity accommodation effect. The results are compared 
with those of the analytical solution derived by Aubert and 
Colin [21]. They presented the solution based on a double 
Fourier series using the second-order slip model proposed by 
Deissler [22]. The results of present study are in very good 
agreement with the analytical solutions even for the case of 
quite smooth wall. The deviation between the results of two 
boundary conditions is negligible.  

The simulations for a long 3D microchannel, which has fi-
nite length, are also carried out. 400dx, 20dx, and 10dx are 
used for L, W and H, respectively. Figs. 7(a) and (b) show the 
velocity contours at the side wall and bottom wall when Kno = 
0.1, and s = 0.9; s = 0.6, respectively. The slip velocity at the 
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Fig. 5. Non-dimensional dynamic velocity profiles for s = 0.9; s = 0.5, and Kn = 0.05; Kn = 0.1. 
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Fig. 6. Non-dimensional velocity profile of 3D microchannel flow for Kn = 0.1 and Ar = 0.5. 
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side wall becomes larger than that of bottom wall. The differ-
ence comes from variation in the shear rate along the walls. 
Consequently, the slip velocity distribution in 3D gas micro-
channel flow is much more complicated than its 2D counter-
part, which assumes the velocity profile to be a simple combi-
nation of a parabolic velocity profile and a known slip velocity. 

 
3. Transition flow regime (0.1 < Kn < 1) 

3.1 High order LB method  

When the Knudsen number becomes larger than 0.1, the re-
al velocity profile distinctly deviates from the one predicted by 
the standard LB model because of the Knudsen layer effect 
near the wall. To capture the flow characteristics in the Knud-
sen layer, high order LB model should be adopted. Tang et al. 
[23] showed following D2Q13 model can predict flow in the 
transition regime.  

 
2 3

2 4 2 6 4

( ) ( ) 3( )( )1
2 2 2 2

eq i i i i i i i i i i i i

s s s s s

e u e u u u e u e u u uf t
c c c c c
a a a a

a a r
é ù

= + + - + -ê ú
ë û

  

 (45) 
 

where 2 2 / 2sc c=  and 2c RT= .  
The D2Q13 model has the following set of discrete veloci-

ties: 
 

0 0
(cos(( 1) / 4),  sin(( 1) / 4)) 1,  3,  5,  7

2,4,  6,  82( cos(( 1) / 4),  sin(( 1) / 4))
9,10,11,122(cos(( 1) / 4),  sin(( 1) / 4))

ea

a
a p a p a

aa p a p
aa p a p

ì =
ï - - =ï= í =- -ï
ï =- -î

 

 (46)   

and the weighting factor ta  is 
 

3 / 8 0
1 / 12 1,  3,  5,  7
1 / 16 2,  4,  6,  8
1 / 96 9,10,11,12

ta

a
a
a
a

=ì
ï =ï= í =ï
ï =î

 .                     (47)                         

 
To consider the Knudsen layer effect, the local relaxation 

time should be determined, and can be related with the local 
mean free path as follows [24]: 

 

8o s

l c HKn
l c x

pt
d

= ,                            (48)        

 
where lo and l are the macroscopic property based mean free 
path and the local mean free path. For the gas flow between 
two parallel plates at y = 0 and y = L, the local mean free path 
of the molecules can be calculated as follows: 

 

( ) ( ) ( )2 1( ) 1 1 exp expol y l t t dt
j

j j j
¥ -é ù= + - - - -ê úë ûò ,     (49)   

 
where f = y/lo for the molecules moving towards y = 0 and f = 
(L-y)/lo for moving towards y = L. The local mean free path of 
all molecules can be determined by averaging these two parts, 
because a molecule can move towards either side of the walls 
with equal probability. For y = 0 or y = L, f = L/lo can be used. 

 
3.2 Boundary treatments 

For the case of the combination of the wall equilibrium and 
the free-slip boundary conditions, only the information of the 
particle distribution function f10 needs to be added in the Eqs. 
(19)-(21). For high order LB method, therefore, the boundary 
condition at the lower wall is as follows: 

 
2 2 8( , , ) ( , , ) (1 ) ( , , )eq

w wf x y t t f u t f x x y x td s r s d d+ = + - - +
r ,  

 (50) 
3 3 7( , , ) ( , , ) (1 ) ( , , )eq

w wf x y t t f u t f x y x td s r s d+ = + - +
r ,  

   (51)   
4 4 6( , , ) ( , , ) (1 ) ( , , )eq

w wf x y t t f u t f x x y x td s r s d d+ = + - + +
r , 

 (52)  
10 10 12( , , ) ( , , ) (1 ) ( , 2 , )eq

w wf x y t t f u t f x y x td s r s d+ = + - +
r .  

  (53) 
 
The other boundary condition can be derived in similar way 

of the standard LB method except the specular factor. The 
specular factor, r, should be recalculated from the sum of x-
momentum for re-emitted particles from the bottom wall as 
follows: 

 

2 4 8 6(1 2 )( ) (1 )
4x w wJ f f r f f u ur

= - = - - = - ,    (54)      
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Fig. 7. Velocity contours at the side wall and bottom wall of a long 3D 
microchannel. 
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and 
 

8 6

1 (1 ) .
2 8

w wu ur
f f

r -
= -

-
     (55)                              

 
Thus, non-fully diffuse reflection can be possibly achieved 

by following boundary condition: 
 

2 6 8( , , ) ( , , ) (1 ) ( , , )f x y t r f x y t r f x y ts s= + - ,          (56)           

3 7( , , ) ( , , )f x y t f x y t= ,                          (57)        

4 8 6( , , ) ( , , ) (1 ) ( , , )f x y t r f x y t r f x y ts s= + - ,          (58)        

10 12( , , ) ( , , )f x y t f x y t= .                           (59)       

 
3.3 Numerical simulation 

For the comparison with the solution of the linearized 

Boltzmann equation obtained by Ohwada et al. [25], the simu-
lations of gas flows in an infinitely long microchannel are 
carried out. Fig. 8 shows the nondimensional velocity profiles 
for Poiseuille flow at Kn = 0.1128, 0.4514, and 0.9027. It is 
seen that the accurate results that are close to the direct solu-
tion of the Boltzmann equation can be obtained by high order 
LB method with the present boundary conditions. The results 
for s = 0.8 are also presented in the figure.  

To examine the Knudsen layer effect on the slip velocity, 
the long microchannel gas flows are simulated. The grid size 
for H is restricted to 30dx (32 points), and L/H = 80 is used as 
for the standard case. Pi /Po is set to 2.0. Fig. 9 shows the non-
linearity of the pressure and the slip velocity along the stream 
direction for Kno = 0.1 and s = 0.9. When compared with the 
solutions obtained by the standard LB method, it is observed 
that the nonlinearity of the pressure increases, and the slip 
velocity along the wall decreases when the Knudsen layer 
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Fig. 8. Non-dimensional velocity profiles for Poiseuille flow at Kn = 0.1128, 0.4514, and 0.9027. 
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Fig. 9. LB model comparison of nonlinearity of pressure and slip velocity distributions for Kno = 0.1 and s = 0.9. 
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effect is considered. In Fig. 10, the results of Kno = 0.4 and 
s = 0.9 are plotted. As the Knudsen number increases, the 
nonlinearity of the pressure decreases, and the slip velocity 
gets larger.  

Finally, oscillatory Couette flow is also calculated to find 
out whether the present boundary conditions are available for 
transitional flow with a moving wall. Fig. 11(a) compares the 
dynamic velocity profiles for Kn = 0.4 and S = 1.0 from the 
high order LB method with present boundary conditions 
against the DSMC data [20]. It is seen that the velocity pro-
files are in excellent agreement with DSMC results even in the 
Knudsen layer. In Fig. 11(b), the results for s = 0.9 are illus-
trated to see the tangential moment accommodation coeffi-
cient effect. 

4. Conclusions 

In this study, rarefied gas flows are simulated in the slip and 
the transition flow regime. In the simulations, the effect of the 
TMAC is considered. For the boundary treatment of non-fully 
diffuse wall, two new boundary conditions, which achieve the 
non-fully diffuse reflection by a linear combination of the 
diffuse and specular reflection, are proposed. For the specular 
reflection, free-slip boundary condition is used, and the wall 
equilibrium and specular bounce-back schemes are used for 
the diffuse reflection. The TMAC, s, weighs the fraction of 
diffusive reflection and specular reflection. For the slip flow 
simulations, 2D/3D microchannel flows and oscillatory shear-
driven gas flow are considered, and the results are in excellent 
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Fig. 10. Nonlinearity of pressure and slip velocity distributions for Kno = 0.4 and s = 0.9. 
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Fig. 11. Non-dimensional the dynamic velocity profiles for Kn = 0.4 and S = 1.0. 
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agreement with the analytic solutions. To investigate the 
Knudsen layer effect, high order LB method is applied, and 
the present boundary conditions are slightly modified. It is 
found out that present boundary treatments are also applicable 
for the simulations of transition flow.  

 
Nomenclature------------------------------------------------------------------------ 

Kn     : Knudsen number    
ea, eai  : Discrete velocity, microscopic velocity 
fa  : Particle distribution function 

eqf
a

 : Equilibrium particle distribution function 
ur  : Macroscopic velocity 
n : Kinematic viscosity 
t : Non-dimensional relaxation time 
lv : Viscosity-based mean free path 
l : Local mean free path 
s : Tangential momentum accommodation coefficient 
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