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Abstract 
 
The present research simulates time-periodic unsteady transonic flow around pitching airfoils via the solution of unsteady Euler and 

Navier-Stokes equations, using time spectral method (TSM) and compares it with the traditional methods like BDF and explicit struc-
tured adaptive grid method. The TSM uses a Fourier representation in time and hence solves for the periodic state directly without resolv-
ing transients (which consume most of the resources in a time-accurate scheme). Mathematical tools used here are discrete Fourier trans-
formations. The TSM has been validated with 2D external aerodynamics test cases. These test cases are NACA 64A010 (CT6) and 
NACA 0012 (CT1 and CT5) pitching airfoils. Because of turbulent nature of flow, Baldwin-Lomax turbulence model has been used in 
viscous flow analysis with large oscillation amplitude (CT5 type). The results presented by the TSM are compared with experimental 
data and the two other methods. By enforcing periodicity and using Fourier representation in time that has a spectral accuracy, tremen-
dous reduction of computational cost has been obtained compared to the conventional time-accurate methods. Results verify the small 
number of time intervals per pitching cycle (just four time intervals) required to capture the flow physics with small oscillation amplitude 
(CT6) and large oscillation amplitude (CT5) as compared to the other two methods.  
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1. Introduction 

Unsteady flow calculations have been used extensively, in-
cluding in flutter analysis, analysis of flow around helicopter 
blades etc. In these matters, flow behavior is often unsteady 
but periodic. 

The investigation and solution of periodic unsteady flows 
past oscillating airfoils is useful and widely used in aeronauti-
cal applications. One of the pioneering and comprehensive 
studies in this field is by McCroskey [1, 2], who performed 
comprehensive study on the behavior of unsteady airfoil. Fur-
ther researches involving various numerical methods to simu-
late periodic unsteady flow have been performed such as by 
Rausch et al. [3], Anderson et al. [4], Mittal [5], Yang et al. [6], 
Zhao et al. [7], and Yang et al. [8]. 

In analyzing these problems, algorithms that can use the pe-
riodic property of flow can be useful. Traditional time step-
ping methods do not consider this property. Explicit schemes 
for stability use small time steps but this is time-consuming. 
Implicit schemes, use a larger range of time steps, but because 
of the long repeat process to achieve solution convergence, 
these schemes are expensive, especially for three-dimensional 

problems. Time accurate solvers like the implicit second-order 
backward difference formula (BDF) require integration on 
several periods with small time steps to achieve periodic 
steady state. It takes a long time. Many searches have been 
done in this area, inclusive of recent works of Hsu and 
Jameson [9] and Nadarajah and Jameson [10], Hsu [11], 
Zhang et al. [12]. 

The significant issue concerning numerical solution is the 
balance between computation time and solution accuracy. In 
traditional schemes, because of limited use of small time steps 
(and consequently, a multitude of number of time steps) some 
procedures such as explicit structured adaptive grid method 
(Pasandideh Fard et al., [13]) are inherently time-consuming. 
Moreover, on other schemes like BDF, if broad time steps are 
chosen, the accuracy of solution wanes, and when time steps 
are small-scale, solving time tends to increase. Therefore, a 
suitable algorithm is the one that, apart from reducing solving 
time, keeps up the proper accuracy. 

In recent years, researchers have turned to using Fourier- 
based algorithms to significantly reduce the computational 
expense for analyzing unsteady periodic problems. Hall et 
al. [14] did the first study in this field. They proposed the 
harmonic balanced method for solving nonlinear equations 
in frequency space. Also, one can refer to some other re-
searches using harmonic balance technique such as Thomas 
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[15-17], Spiker at al. [18], Liu et al. [19, 20], and Ronch et 
al. [21]. 

Subsequently, McMullen et al., [22-24] introduced the non-
linear frequency domain (NLFD) method. In this method, 
equations are first converted to frequency space and then 
solved in frequency space, while the flow variables are re-
turned into the physical space. So, to use this method, substan-
tial changes in existent flow solvers are required, since the 
method needs to use fast Fourier transform (FFT) and inverse 
fast Fourier transform (IFFT). Nadarajah et al. [25, 26] used 
NLFD method for optimum shape design of unsteady three-
dimensional viscous flows. Subsequently, Cagnone and Nada-
rajah [27] investigated an implicit non-linear frequency do-
main-spectral difference scheme for periodic Euler flow. And 
recently Mosahebi and et al. [28] studied dynamic mesh de-
formation for implicit adaptive NLFD method. 

Since the use of NLFD method requires the application of 
FFT and IFFT, great changes must be utilized for a time accu-
rate unsteady flow solver. Gopinath and Jameson [29] pro-
posed using a Fourier collocation matrix for the temporal de-
rivative term and time integration to prevent FFT, IFFT and 
the use of minimal changes in the time accurate flow solver. 
This scheme is called time spectral method (TSM). Subse-
quently, Butsuntorn and Jameson [30, 31] used TSM for ro-
torcraft flow. Then Sicot et al. [32] presented the Block-Jacobi 
approach to solve stationary problems with an implicit algo-
rithm for TSM. Su, and Yuan [33] applied implicit solution of 
time spectral method for periodic unsteady flows. Yang and 
Mavriplis [34, 35] used TSM for periodic and quasi-periodic 
unsteady computations on unstructured meshes. Antheaume 
and Corre [36] simulated periodic incompressible flows using 
implicit TSM. 

In TSM, the time derivative term couples all the time levels 
of solution in each period through Fourier collocation matrix. 
Unlike finite difference methods that use only several solution 
variables related to preceding (explicit) times or succeeding 
(implicit) ones to calculate the derivative term in an individual 
time level, TSM uses all the time levels in a period (as a high-
order method) in calculating the derivative term, and therefore 
it shows very high accuracy. Unlike time marching methods, 
the flow variables have been solved simultaneously at all in-
stances and this process repeats until it reaches a periodic 
steady state. The detailed algorithm of this technique will be 
presented in next section. 

Because of the flow turbulence nature of the physical prob-
lem in this research, a turbulence model should be applied at 
viscous flow analysis. This paper tries using reliable models 
while being very simple to implement. Turbulence modelling 
is applied with an algebraic model by Baldwin and Lomax 
[37] which has the advantage of being simple to implement 
compared to the kε and kω models. 

Most of the earliest turbulence models were based on 
Prandtl’s mixing length theory. Prandtl [38] suggested a mix-
ing length that relates the eddy viscosity to the local mean 
velocity gradient. The reason for successful applications of the 

mixing length theory is to find some general method using the 
definition of the mixing length. Most algebraic models divide 
the boundary layer into two regions, an inner and an outer 
region. The inner layer is composed of the viscous sublayer, 
the buffer layer, and part of the fully turbulent log region. The 
outer layer includes the remaining part of the log layer and the 
wake region. 

Cebeci-Smith [39] suggested a model that is fairly simple, 
but it requires knowledge of the conditions at the edge of the 
boundary layer and the boundary layer thickness. These quan-
tities are not always easy to calculate in complicated flows 
with a Navier-Stokes code since it is often difficult to define 
where the boundary layer edge actually occurs 

Baldwin-Lomax extended a model of the outer eddy viscos-
ity that did not require knowledge of the conditions at the edge 
of the boundary layer. This model has become quite popular 
for CFD applications. 

We used TSM with Baldwin-Lomax turbulence model for 
simulation of 2D external aerodynamics test cases as pitching 
airfoils. These test cases are NACA 64A010 test case 6 (CT6) 
with small oscillation amplitude, weak shock waves and re-
duced frequency higher than NACA 0012 test cases and 
NACA 0012 test cases 1 and 5 (CT1 and CT5) with large 
oscillation amplitude, strong shock waves and reduced fre-
quency lower proportion. The numerical results are compared 
with experimental data. Two different airfoils, the NACA 
64A010 and the NACA 0012, were tested by Davis [40] and 
Landon [41], respectively. The experimental data was pub-
lished as part of AGARD report 702. A factor contributing to 
its selection was its popularity in the numerical-analysis 
community. These airfoils are famous for testing of numerical 
methods and so those are used in researches of others repeat-
edly. 

Due to the 64A010 airfoil properties (according to Table 1) 
this airfoil is for a transonic symmetric airfoil oscillating over 
a limited range in angle of attack. Because of this fairly small 
variation in angle of attack, the numerical results are consid-
ered to be less sensitive to the choice of turbulence model than 
the data for the 0012 airfoil that has fairly big variation in 
angle of attack. So, Navier-Stokes simulation with turbulent 
model is used for 0012 airfoil (CT5). 

In the following sections, we first verify the accuracy of the 
spatial discretization of the TSM by running it for CT1 in an 
inviscid flow and compare its results to experimental data. 
These comparisons confirm the size of grids used for the un-
steady cases. Then we used CT6 for Euler equations simula-
tion and CT5 for Navier- Stokes equations simulation with 
Baldwin-Lomax turbulence model. 

Finally, numerical results of TSM have been compared with 
the BDF and explicit structured adaptive grid methods for 
surveying efficiency TSM in time periodic problems simula-
tion. To our knowledge, such extensive comparative analysis 
was not available when work on this paper started. In this 
research, the efficiency of TSM has been shown by these 
comparisons.  
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2. Governing equations 

Because of the flow turbulent nature of the physical prob-
lem studied in this research, a turbulence model should be 
applied to viscous flow analysis. 

 
2.1 Conservative form of the field equations 

The two-dimensional conservative form of the Navier-
Stokes equation in Cartesian coordinates is: 
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where the state vector w, inviscid flux vectors f and g and 
viscous flux vector vf and vg  are described respectively by 
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where ρ is the density, u and v are velocity components at x 
and y directions, respectively, tx and ty are velocity compo-
nents of grid, p is pressure and e is the total energy per unit 
mass. As, temperature T and total energy e per unit mass are 
determined by the ideal gas equation of state: 
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where R is the gas constant. 

A second-order central difference scheme is used for spatial 
discretization of convective flux vectors with an artificial dis-
sipation scheme. In fact, the combination of the artificial dis-
sipation term with central difference scheme makes a scheme 
similar to upwind schemes, so it can capture shock waves 
appropriately and well. In the present work, the Jameson-
Schmidt-Turkel (JST) [42] scheme is used as the artificial 
dissipation scheme where mixed first- and third-order dissipa-
tion terms are presented to suppress spurious modes and en-
sure stability. 

2.2 The time spectral method 

The core of this method is based on discrete Fourier trans-
formation for solving periodic unsteady partial differential 
equations. The discrete Fourier transform of w, for a time 
period of T, is given by: 
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and its inverse transform, 
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where the time period T is divided into N time intervals, 

/t T ND = . 
The Fourier transform of the derivative approximations at 

nth time interval is computed by [43]: 
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Since here flow is periodic in time, flow variables (the state 

vector w) vary periodically by time, too. Therefore, its deriva-
tive can be expressed using Eq. (9). Suppose that the cell vol-
ume " does not vary in time, so the semi-discrete form of the 
governing Eq. (1) is: 

 
( ) 0n n

tD w R w" + = ,  (11) 
 

where ( ) i

i i

i vR W
f f
x x

= +
¶ ¶
¶ ¶

 includes the summation of inviscid 



4112 M. R. Mohaghegh and M. Malek-Jafarian / Journal of Mechanical Science and Technology 28 (10) (2014) 4109~4119 
 

 

flux and viscous vectors. Introducing pseudo time, τ, to Eq. 
(12) in the same manner as the explicit dual time stepping 
scheme, 
 

( ) 0
n

n n
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The spatial discretization scheme used for this purpose is a 

conservative cell-centered finite volume scheme. A local time 
stepping is used for accelerating convergence, in which a 
pseudo-time step with a five-stage Runge-Kutta time stepping 
scheme is performed at each level. The Runge-Kutta time 
stepping scheme can be written as: 
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where m is the number of iterations in pseudo-time and M is 
the total number of stages. In this work, a modified five stage 
Runge-Kutta scheme (Jameson [44]) is used with coefficients 
Eq. (15) to maximize the stability: 
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2.3 Boundary conditions 

Solid surface boundary conditions 
For inviscid flow, the velocity at the wall must be tangent to 

the slope of the wall. This corresponds to a zero flux through 
the wall and thus: 

 
ˆ ˆ( . ) 0surfacev n = , 

 
where n̂  is the wall surface unit normal vector. For viscous 
flow, the no-injection and no-slip conditions are imposed and 
requires an additional boundary condition to the one above 

 
ˆˆ( . ) 0surfacev t = , 

 
where t̂  is the wall unit tangent vector. This effectively 
means that the velocity at the wall is zero. The above bound-
ary conditions satisfy the momentum equation. For the case of 
the energy equation, an adiabatic boundary condition is em-
ployed and defined as: 

 
ˆ ˆ( . ) 0surfaceq n = . 

 
This translates to a zero heat flux through the normal of the 

wall. The density at the airfoil surface is extrapolated from the 
interior using the following expression: 
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Also the pressure gradient at the surface is zero. That is: 
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Far-field conditions 

The outer boundary is usually placed far from the airfoil 
surface, at least three to five chords away. In this work, 
boundary conditions are used at the inner and outer boundary 
as shown in Fig. 1. 

According to the transonic flow in this study, flow quanti-
ties (ρ,u, v, and P) in inflow boundary (upstream) are fixed to 
the free-stream values: 
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and, at the outflow boundary (downstream), these quantities 
are extrapolated from the interior: 
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2.4 Baldwin-Lomax turbulence model 

The Baldwin and Lomax [37] turbulence model is an alge-
braic model for the determination of the eddy viscosity. 

turbm as a function of the local boundary layer velocity profile. 
The model is suitable for high-speed flows with thin attached 
boundary-layers, typically present in aerospace and turbo-
machinery applications. It is commonly used in quick design 
iterations where robustness is more important than capturing 
all details of the flow physics. The dual layered eddy viscosity 
formulation is sufficient to complete the Reynolds averaged 
Navier-Stokes (RANS) equation.  

The Baldwin-Lomax approach separates the turbulence in-
side the boundary layer into two distinct regions: the inner 

 
 
Fig. 1. The inner and outer boundary conditions for O- Grid mesh. 
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region and the outer region. Inside the inner region, typically 
very close to the wall 

The turbulent eddy viscosity coefficient can be calculated 
as: 

 
 ,   where y < y

 ,   where y > y
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where ycrossover  is the smallest value of the dimensionless 
normal distance to the wall, ycrossover , at which the inner and 
outer eddy viscosity formulations produce the same result. 
Finally, after turbm calculation (for more details on this turbu-
lence mode, the reader is advised to consult Baldwin and Lo-
max [37]), viscosity of flow will be defined as: 

 
lam turbm m m= + ,  (15) 

 
where lamm is laminar flow viscosity that is defined by Suth-
erland equation defined as: 
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3. Numerical results and discussion 

This section presents the results of simulations using both 
the Euler and the RANS equations with the Baldwin-Lomax 
turbulence model. Also, the numerical results are compared 
with experimental results. The parameters of each numerical 
simulation match the description of the experiments provided 
in Sec. 3.1. 

 
3.1 Test cases 

The pitching airfoils have an ample range of applications 
for validating numerical algorithms and their results are com-
pared with experimental and other established numerical re-
sults. This research uses two different test cases, NACA 0012 
airfoils (CT1 and CT5) and 64A010 airfoil (CT6). The impor-
tant parameters used in the description of these cases are 
summarized in Table 1.  

The sinusoidal pitching motion of the airfoils is given in 
terms of the variation of angle of attack as a function of time, 

 
0( ) sin( )mt ta a a w= + ,  (17) 

 
where ma  is the mean angle of attack, 0a is the maximum 
pitching amplitude with respect to the mean and ω the angular 
velocity. In here, ω is expressed in terms of a non-dimensional 
parameter, which is called the reduced frequency ( ck ). The 
reduced frequency is defined as: 
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Here cl , the characteristic length is the root chord length. 

 
3.2 Computational grid 

The first step in numerical discretization is to represent the 
continuous domain by a grid, where dependent variables of 
the governing equations are represented. Mesh generation has 
become an important field of study to enable solutions for 
more complex geometries. The choice of the type of mesh is 
usually based on the complexity of the geometry and the de-
sired level of accuracy and approximation of the continuous 
problem. 

In NACA 64A010 results section, where only the Euler 
equations are employed, large gradients close to the surface of 
the airfoil except for the shock wave do not exist and more 
uniform and regular meshes are sufficient to provide accurate 
numerical approximations (Figs. 2(a)-(c)). However, in 
NACA 0012 results section where the Navier-Stokes equa-
tions are used in the numerical simulation in a two-
dimensional viscous flow environment, a high mesh resolution 
close to the surface of the airfoil is required to resolve the 
boundary layer and its interaction with the shock wave (Fig. 
2(d)). 

 
3.3 Mesh study 

One of the important parts to confirm results of a numerical 
method is searching about independence of that method from 
a computational grid. In this context, mesh study has been 
done on the TSM results for one of the airfoils. Figs. 3 and 4  

Table 1. Characteristics of the pitching airfoil test cases. 
 

Description Variable Davis  
experiment 

Landon  
experiment 

Landon  
experiment 

AGARD case 
number  CT6 CT5 CT1 

Airfoil  NACA 
64A010 NACA 0012 NACA 0012 

Mean angle of 
attack ma  0.0°  0.016°  2.89°  

Angle of attack 
variation 0a  1.01± °  2.51± °  2.41± °  

Reynolds 
number Re¥  612.56 10´  65.5 10´  64.8 10´  

Mach number M¥  0.796 0.755 0.6 

Reduced  
frequency ck  0.202 0.0814 0.0808 

Frequency 
(Hz):(1/Period) f 50.32  62.5 34.4 

Pitching axis 
(%chord root) mx  24.8 25 27.3 
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show results of coefficient of pressure (Cp) and coefficient of 
lift (Cl) for NACA 0012 (CT1) airfoil with different computa-
tional grid. The lift coefficient results do not show more 
changes for different grids (coarse, medium, fine and very fine 
grids). Therefore, it is better to analyze the results of the pres-
sure coefficient in an angle in which shock waves occur. 

It can be seen in the Fig. 4 that the mesh of 99*29 dimen-
sions is not able to capture the shock wave produced in flow 
properly, but results for other grids are considerably alike and 
acceptable. The results presented in these figures show very 
little variation in the lift and pressure coefficients over the 
range of spatial resolutions. So the 179 * 81 grid point is used 
for the subsequent results to obtain accurate outcomes and 
save the computational time. 

 
3.4 Inviscid results for NACA 64A010 airfoil 

Coefficient of pressure results 
Figs. 5 and 6 show both the numerical (TSM) and experi-

mental Cp results along the NACA 64A010 airfoil at any 
quarter of a period (phase 0.0° , 90.0° , 180.0°  and 270.0° ) 
and NACA 0012 airfoil at an angle of attack that experimental 
data exist, respectively. Very good agreement between TSM 
and experimental results is evident. This shows the accuracy 
of TSM for the simulation of periodic transonic flows.  

Since the Mach number of inflow in this NACA series is 
greater than that of NACA 0012, a sharper shock is created in 
the site of the shock wave, but with regard to smaller oscilla-
tion amplitude of this airfoil than that of model 0012, the 
magnitude of this shock is less, too. It has been seen that TSM 
can be applied accurately for ample range of variations of 
frequency and variations in angle of attacks. 

Fig. 7 shows both the numerical and experimental Cl results 
as a function of the instantaneous angle of attack. A subfigure 
shows several ellipses each computed using a different num-
ber of time intervals. These plots show that the variation in 
time varying Cl as a function of the temporal resolution is 
negligible, and that results convergent to plotting accuracy can 
be obtained using only four time intervals. 

 
3.5 Inviscid and viscous results for NACA 0012 airfoil 

Coefficient of pressure results 
Figs. 8(a) and (b) show both the numerical and experimen-

tal Cp results along the NACA 0012 airfoil for inviscid and 
viscous flow at an angle of attack that experimental data were 
exist. With comparison of Figs. 8(a) and (b) has been ob-
served abrupt variation in Cp graphs that is produced due to 
shock wave, in viscous flow is smoother than inviscid flow 
because of boundary layer interaction with the shock wave. 

 
Coefficient of lift results 

Figs. 9(a) and (b) show both the numerical and experimen-
tal Cl results as a function of the instantaneous angle of attack 
for inviscid and viscous flow. In viscous results analysis has 
been used the Baldwin-Lomax turbulence model. 
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Fig. 2. Near field resolution of O-mesh grids: (a) 99x29 points used in 
the Euler calculations; (b) 149x51 points used in the Euler calculations 
for; (c) 179x81 points used in the Euler calculations for NACA 0012; 
(d) 149x51 points used in the unsteady Navier-Stokes calculations. 
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Fig. 3. Coefficient of lift as a function of angle of attack for various 
spatial resolutions-NACA 0012 (CT1). 
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Fig. 4. Coefficient of pressure as a function of chord-wise distance for 
various spatial resolutions (CT1). 
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Instantaneous pressure distribution 
Finally, Figs. 10(a) and (b) show instantaneous pressure dis-

tribution around pitching airfoil at maximum of pitch angle. 
So that has been alluded to previously, because of boundary 

layer interaction with the shock wave in viscous flow, the 
shock wave is weaker than inviscid flow. It has been deline-
ated by comparing Figs. 10(a) and (b). 

3.6 A comparative analysis of TSM results with traditional 
methods 

Three methods of solving the periodic aerodynamics prob-
lems are compared in Fig. 11. This figure shows Cl results of 
TSM, BDF and explicit structured adaptive grid methods for 
CT1 test case. All the computations were run on a Core™2 
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Fig. 5. Comparison of Cp numerical results with Davis’s 64A010 experimental data: (a) 0.0a = °  Upward, phase 0.0° ; (b) 1.01a = ° , 
phase 90.0° ; (c) 0.0a = °  Downward, phase180.0° ; (d) 1.01a = - ° , phase 270.0° . 
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Fig. 7. Comparison Cl data as a function of the instantaneous angle of 
attack with Davis’s 64A010 experiment results. 
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Fig. 6. Comparison of Cp numerical results with Landon’s 0012 ex-
perimental data. 
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Duo CPU, 2.66 MHz’s. Explicit structured adaptive grid 
method requires 150 minutes for suitable convergence. But 
this time is only 8 minutes for the TSM on the same processor 
and the same grid. Also, 200 time intervals are required using 

BDF method for convergence, while the TSM offers these 
results somewhat better in respect to accuracy and with only 
four time intervals, although the memory requirement for 
TSM is greater than other two methods. These differences are 
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Fig. 8. Comparison of Cp data with experimental results for NACA 0012 airfoil: (a) inviscid flow; (b) viscous flow. 
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Fig. 9. Comparison Cl data as a function of the instantaneous angle of attack with experimental results for the AGARD CASE: (a) inviscid flow; (b) 
viscous flow. 
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Fig. 10. Instantaneous pressure distribution around CT5: (a) 2.526a = ° , inviscid flow; (b) 2.526a = ° , viscous flow equally spaced time levels. 
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significant, especially for three-dimensional problems. This 
means that the TSM is a fast and efficient method for the un-
steady periodic problems. It is noteworthy that these compari-
sons are meaningful and acceptable since spatial discretization 
methods are identical among all the techniques and the only 
difference is in calculating temporal derivative and solution 
algorithm in various time steps in a period. 

Fig. 12 shows Cl results using BDF for different time inter-
vals. It should be noted that unlike TSM, increasing the num-
ber of intervals (reducing time steps) increases the accuracy of 
the outcomes. This means that the solution time increases. 

Comparing the results of Figs. 11 and 12 presents the ad-
vantage of TSM in numerical simulations of periodic un-
steady problems with the number of small time intervals, 
resulting in greater convergence rate while maintaining the 
desired accuracy. This advantage of TSM in analysis of 
three-dimensional problems is more specific, where due to 
prolonged calculation, it is very time consuming to choose 
too small time steps to reach to a convergent solution, and it 
is essential to accelerating solution time by fewer number of 
time steps (larger time steps). 

4. Conclusions 

The time spectral method is an intense method in time-
periodic unsteady flow analysis. So that presents a proper 
accuracy of the solution and a low time for convergence. Con-
forming to a time accurate existing solver is another prefer-
ence of this method. TSM performs all the calculations in the 
time domain, and hence requires minimal modifications to an 
existing solver. 

TSM algorithm is simpler to implement than the typical 
NLFD solver because it does not require the multiple opera-
tions of Fourier transforms and inverse Fourier transforms, 
while still achieving better convergence and reducing compu-
tational cost in comparison to the typical traditional schemes 
such as BDF and explicit structured adaptive grid. This work 
shows that time intervals are sufficient to successfully capture 
the unsteady periodic flow by TSM. This is much less than the 
number of time intervals required for traditional schemes. 

The TSM algorithm is able to numerically simulate and 
capture the flow physics around pitching airfoils at both cases 
including strong shock waves (NACA 64A010 (CT6) and 
weak shock waves (NACA 0012 (CT1 and CT5). 

The Baldwin-Lomax model is suitable for high-speed flows 
with thin attached boundary-layers, typically present in aero-
space and turbomachinery applications. The model is not suit-
able for cases with large separated regions and significant 
curvature/ rotation effects. But it is a reliable model very sim-
ple to implement and popular for CFD applications. 
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