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Abstract 
 
Reliability-based multidisciplinary design optimization (RBMDO) has received increasing attention in engineering design for achiev-

ing high reliability and safety in complex and coupling systems (e.g., multidisciplinary systems). Mean-value first-order saddlepoint ap-
proximation (MVFOSA) is introduced in this paper and is combined with the collaborative optimization (CO) method for reliability 
analysis under aleatory uncertainty in RBMDO. Similar to the mean-value first-order second moment (MVFOSM) method, MVFOSA 
approximated the performance function with the first-order Taylor expansion at the mean values of random variables. MVFOSA uses 
saddlepoint approximation rather than the first two moments of the random variables to estimate the probability density and cumulative 
distribution functions. MVFOSA-based CO (MVFOSA-CO) is also formulated and proposed. Two examples are provided to show the 
accuracy and efficiency of the MVFOSA-CO method.  
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1. Introduction 

Multidisciplinary design optimization (MDO) is tradition-
ally formulated as a deterministic problem that assumes the 
nonexistence of uncertainty. However, the real design and 
manufacturing processes are often affected by unavoidable 
uncertainties that cause system performance and output varia-
tions [1]. These variations may cause design solutions to be 
infeasible or unreliable. For high reliability and safety in 
MDO problems, reliability-based multidisciplinary design 
optimization (RBMDO) is one research focus. Sues et al. [2] 
created response surface models at the system level to replace 
the computationally expensive simulation models and relieve 
RBMDO of its reliability analysis and computation burden. 
Sues and Cesare [3] proposed an RBMDO framework where 
reliability analysis was decoupled from the optimization loop. 
Reliability is initially computed before the first execution of 
the optimization loop and then updated iteratively after. Dur-
ing this process, approximate reliability constraints are used. 
In Ref [4], a multi-stage parallel implementation of probabilis-
tic design optimization integrated the existing reliability anal-
ysis method into MDO frameworks. The concurrent subsys-

tem optimization was widely used to search for the most prob-
able point (MPP) [5-7]; the collaborative reliability analysis 
method was also broadly used [8, 9]. In Ref. [10], a sequential 
optimization and reliability assessment (SORA) method for 
RBMDO was proposed. The deterministic formulation of 
MDO in SORA was constructed by using the MPP from the 
previous iteration. Following each optimization loop, reliabil-
ity analysis was conducted at the optimal solution of the de-
terministic MDO to check the probability constraint feasibil-
ities. Huang et al. [11] proposed an enhanced SORA 
(ESORA) method to further improve computational efficiency 
for reliability analysis. ESORA addresses the constant and 
varying variances of random design inputs. Zhang et al. [12] 
introduced probability and possibility analyses into RBMDO 
and proposed an RBMDO with discrete and continuous vari-
ables of various uncertainties to simultaneously analyze alea-
tory and epistemic uncertainties. Xiao et al. [13] used interval 
variables to consider epistemic uncertainty and proposed the 
unified uncertainty analysis method to estimate the failure 
probabilities of complex systems with both epistemic and 
aleatory uncertainties. 

A number of works have been conducted on RBMDO but 
some issues still require further exploration. In some cases, the 
performance function is expensive to evaluate but the mean-
value first-order Second Moment (MVFOSM) method is fea-
sible. MVFOSM is highly efficient and easy to use. However, 
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it has obvious accuracy deficiencies [14-16]. MVFOSM uses 
only the first two moments of random variables instead of the 
complete distribution information and assumes that the re-
sponse is normally distributed. The mean-value first-order 
saddlepoint approximation (MVFOSA) is used for aleatory 
uncertainty analysis in the mentioned situations to improve 
analysis accuracy while retaining high efficiency. Compared 
with MVFOSM, MVFOSA is relatively accurate because it 
utilizes complete distribution information [15]. Instead of 
simply using the first two moments of random variables, 
MVFOSA estimates the probability density function (PDF) 
and cumulative distribution function (CDF) of the perform-
ance function by saddlepoint approximation. The MVFOSA 
method is combined with the collaborative optimization (CO) 
method in the present paper to solve the RBMDO problem. 
CO is a bi-level MDO method for large scale and distributed-
analysis engineering design problems. CO contains optimiza-
tion problems at both system and discipline levels. The sys-
tem-level optimization problem optimizes the system objec-
tive and the coordinate consistency between the coupling dis-
ciplines, whereas the discipline-level optimization problem 
minimizes the discrepancy between the design variables and 
their targets [17]. 

The rest of the paper is organized as follows. Section 2 in-
troduces the RBMDO problem. Commonly used reliability 
analysis methods, including simulation and approximation, are 
also briefly reviewed. Sec. 3 provides the fundamental analy-
sis of MVFOSA is provided. Sec. 4 explains the proposed 
method, namely, the MVFOSA-based CO (MVFOSA-CO), 
including the strategy, procedure, and formulas. Sec. 5 por-
trays two examples to demonstrate the accuracy and efficiency 
of the proposed method. Finally, Sec. 6 concludes. 

 
2. RBMDO problems and simulation or approxima-

tion methods for reliability analysis 

RBMDO is formulated as follows: 
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where ( )f ·  denotes the system objective function; 

( )<0ig ·  is the safe or successful region; ( )>0ig ·  is the 
failure region; ( ) 0ig · =  is the limit state surface, which is 
the boundary between success and failure; iRé ùë û  is the re-
quired reliability of the probabilistic constraints 

( ) 0iP gé ù· £ë û ; fpé ùë û  is the allowable probability of failure; 
DVX  denotes the design variables; d  is the deterministic 

design variables; X  denotes the random discipline design 
variables; sX  denotes the random sharing design variables; 
Y  denotes the random coupling design variables, 

{ }= ,i i· ·Y Y Y ,  1, 2, , i n= K ; i·Y  is the input coupling vari-
ables to the i th discipline; i·Y  is the output coupling vari-
ables from the i th discipline; μ  denotes the mean value of 
random variables and random parameters; superscripts L  
and U  denote the lower and upper bounds, respectively; n  
is the total number of disciplines. 

We use RX  to denote the set of random variables 
{ }R s, ,=X X X Y  and express the function relationship be-

tween performance function G  and the design variables as 
( )R,G g= d  X . The probability of the probabilistic constraints 
( ) 0iP gé ù· £ë û  can be described as the CDF of ( )ig ·  and is 

theoretically calculated by Eq. (2). 
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where ( )

R RfX x  is the joint PDF of RX . However, arriving 
at the analytical solution by using Eq. (2) is difficult because 
of the high dimensionality of random variables and the 
nonlinear integration boundary ( )R,G g= d  X  [18]. There-
fore, simulation or approximation methods are widely used. 

Simulation or approximation methods have three types: (1) 
sampling-based methods, (2) moment matching methods, and 
(3) MPP-based methods [15]. Sampling-based methods are 
easy to apply and can provide accurate probability estimations 
with sufficient simulations [19-22]. However, sampling-based 
methods are inefficient for many engineering problems with 
high reliability and computationally expensive performance 
functions [16]. Moment-matching methods ease computa-
tional difficulties by approximating the distribution of per-
formance functions and by fitting the first few moments [23-
26]. MVFOSM is one of the commonly used moment match-
ing methods. It uses the first two statistical moments and em-
ploys first-order Taylor expansion at the mean values of ran-
dom variables. The moment matching method is highly effi-
cient. However, its accuracy is generally lower than that of 
sampling-based methods [15]. MPP-based methods have a 
good balance between efficiency and accuracy. The first-order 
reliability method (FORM) and second-order reliability 
method (SORM) [27, 28] approximate the performance func-
tion with Taylor expansion at the MPP. However, the MPP 
location is also an optimization problem and needs more func-
tion evaluations than MVFOSM, thus making FORM and 
SORM computationally expensive for complex and coupling 
systems [15]. The original random variables in X -space have 
to be transformed into standard normal variables for FORM 
and SORM [29], thus increasing the nonlinearity of the per-
formance function [30, 31]. First-order saddlepoint approxi-
mation (FOSA) is proposed for reliability analysis to avoid 
random variable transformation [31]. FOSA linearizes the 
performance function in the original random X -space with-
out any random variable transformation. The expansion point, 
that is, the most likelihood point (MLP), has the highest prob-
ability density on the limit state ( )R 0g =X . However, find-
ing the MLP in FOSA also requires an optimization process. 
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3. Mean-value first-order saddlepoint approximation 

MVFOSA was introduced in reliability analysis by Huang 
and Du [15] not only for its similar efficiency and robustness 
to MVFOSM but also for its relatively high accuracy. 
MVFOSA uses saddlepoint approximation to evaluate the 
CDF and PDF of the performance function. MVFOSM has 
been used in reliability sensitivity analysis [32] and structural 
reliability analysis [33]. 

In MVFOSA, performance function G  is linearized in the 
original random space by using first-order Taylor expansion. 
The expansion point is at values of deterministic variables *

id  
and mean values of random variables 

Ri
mX . The first-order 

approximation function ( )R
ˆ ˆ ,G G g» = d  X  can be expressed 

as follows: 
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The cumulant generating function (CGF) of RX  was de-

noted as ( )
R

K tX . Table 1 lists the CGFs of some commonly 
used distributions [31]. Two useful properties of CGF are 
given as follows [15]: 

Property I. If ( )R R1 R 2 R,  , ,  nX X X=X K  are independent 

random variables and their corresponding CGFs are 
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RiXK t ( )1,  2, ,  i n= K , then the CGF of R
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Property II. If RX  is a random variable and its CGF is 
( )

RXK t , then the CGF of RY aX b= +  ( a  and b  are con-
stants) is ( ) ( )

RY XK t K at bt= + . 
For example, if RX  follows 2c  distribution with CGF 

( ) ( ) ( )
R

1 2 ln 1 2XK t n t= - - , then the CGF of Y  is 

( ) ( ) ( )1 2 ln 1 2YK t n at bt= - - + . 
On the basis of the above two properties, the CGF of Ĝ  is 

given by Eq. (4). 
The saddlepoint st  can be determined by solving Eq. (5) 

[15, 34], where ( )GK t¢  is the first-order derivative of CGF. 
Once both the CGF of Ĝ  and saddlepoint st  are obtained, 
saddlepoint approximation can be applied for PDF and CDF 
estimations. 
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A simple formula for computing the PDF of Ĝ  is given as 

follows [15, 35]: 
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where ( )Ĝ

K ¢¢ ·  is the second-order derivative of CGF. Two 
concise formulas are proposed for calculating the CDF of Ĝ  
[36, 37]: 
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Table 1. CGFs of some common distributions. 
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where ( )F ·  and ( )f ·  are the CDF and PDF of the stan-
dard normal distribution, respectively. 

 

( ) ( ){ }1/ 2

ˆ=sign 2s sG
w t K té ù-ë û ,                       (9) 

 
and 

 

( )
1/ 2

ˆ= s sG
v t K té ù¢¢ë û ,                                 (10) 

 
where  

( )
1,    if   >0 

sign = 0,    if   =0
1,  if   <0

s

s s

s

t
t t

t

ì
ï
í
ï-î

. 

MVFOSA uses full distribution information. Thus, 
MVFOSA is generally more accurate than MVFOSM [15]. 
MVFOSA requires only a process of finding one saddlepoint 
without any integration or optimization. Thus, MVFOSA is 
employed and combined with CO in this paper to solve 
RBMDO problems under the aleatory uncertainty. 

 
4. Collaborative optimization under aleatory uncer-

tainty 

4.1 SORA method 

CO was introduced and developed to maintain multidisci-
plinary engineering characteristics [38-42]. CO decomposes 
the design problem at the system and discipline levels. At the 
discipline level, local constraints are satisfied while the dis-
crepancies between the design variables and their target values 
are minimized. At the system level, target values are deter-
mined for design variables and the system objective is opti-
mized. 

CO has many advantages [43]. First, multidisciplinary fea-
sibility can be maintained by using compatibility constraints. 
Moreover, CO enjoys discipline autonomy. Thus, discipline 
analysis is easy and can be processed in parallel. Finally, CO 
can keep disciplinary feasibility at the optimization process. In 
engineering applications, CO was employed for the design of 
launch vehicles [40, 44] and aircraft configurations [42]. CO 
has also been widely used in decision-making [45] and con-
ceptual design [46]. 

 
4.2 MVFOSA-CO 

The MVFOSA-CO procedure is presented as follows: 
Step 1: Set the initial values for system-level design vari-

ables as ( )sys, 0
id , ( )sys, 0

iXμ , ( )
s

sys, 0
Xμ , ( )sys, 0

i·Yμ , and ( )sys, 0

i·Yμ  and the 
initial values for discipline-level design variables as ( )dis, 0

id , 
( )dis, 0

iXμ , ( )
s

dis, 0
Xμ , ( )dis, 0

i·Yμ , and ( )dis, 0

i·Yμ , respectively. Superscripts 
sys and dis denote system level and discipline-level design 

variables, respectively. Subscript i  denotes discipline i . At 
1k = , k  denotes the k th cycle. 

Step 2: Solve the system-level optimization problem (Eq. 
(11)). Compatibility constraints iJ  should be less than or 
equal to e , which is a small positive number. Eq. (11) aims 
to optimize the system objective and obtain the solutions of 
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i

k
Xμ , ( )

s

sys, k
Xμ , ( )sys,

i

k

·Yμ , and ( )sys,

i

k

·Yμ . Thereafter, send 
these variables to discipline i  at the discipline level as design 
parameters. 
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Step 3: Solve the discipline-level optimization problems 

(Eq. (12)), where discipline optimization problem tasks mini-
mize iJ , which denotes the compatibility constraints at the 
system level. In the discipline optimization process, system-
level design variables are treated as design parameters, and 
discipline optimization and reliability analysis are nested. 
Reliability analysis consists of three steps: (1) linearize the 
performance function ( )R

ˆ ˆ ,G G g» = d  X  (Eq. (3)) at the 
values of deterministic variables ( )sys, kd  and the mean values 
of discipline-level random variables ( )

R

sys,

i

k
Xm  by using first-

order Taylor expansion; (2) calculate the CGF of the perform-
ance function Ĝ  (Eq. (4)); (3) estimate the CDF and PDF of 
the performance function Ĝ  (Eqs. (6)-(8)). 

Step 4: Check the convergence. Send the values of ( )dis, k
id , 

( )dis,

i

k
Xμ , ( )

s

dis, k
Xμ , ( )dis,

i

k

·Yμ , and ( )dis,

i

k

·Yμ  to the system level and 
calculate compatibility constraints. If all compatibility con-
straints satisfy ,  1, 2, , iJ i ne£ = K  and the value of the 
system objective function is stable, go to Step 5; otherwise, set 

1k k= +  and go to Step 2. 
Step 5: Stop the optimization process. Export final solutions 

( )sys, k
id , ( )sys,

i

k
Xμ , ( )

s

sys, k
Xμ , ( )sys,

i

k

·Yμ , ( )sys,

i

k

·Yμ , and f . 
The flowchart of MVFOSA-CO is shown in Fig. 1. 
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5. Examples 

Two examples are used to show the accuracy and efficiency 
of the proposed method. MVFOSA-CO, MVFOSM-based CO 
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(MVFOSM-CO), and MCS-based CO (MCS-CO) are com-
pared. The results obtained by MCS-CO are used as reference 
for accuracy comparison. 

 
5.1 Mathematical example 

The mathematical problem is provided as a simple test 
problem. The integrated framework of the design optimization 
problem is given as follows: 
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where  f  is the system objective, and 1x , 2x , 3x , 12y  and 

21y  are the design variables. 
The problem is modified into a MDO problem including 

two disciplines given in Fig. 2. In the modified problem, cou-
pling variables 12y  and 21y  affect each discipline. The dis-
tribution information of all random design variables is given 
in Table 2. We assume two distribution types: the normal and 
Gumbel distribution. The formulations of the MVFOSA-CO 
optimization problem including two disciplines are provided 
in Eqs. (14)-(16). 

The MVFOSA-CO approach analysis for the mathematical 
example is provided in Fig. 3. 
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(2) Discipline 1 optimization problem 
 

( ) ( )
( ) ( )

( )

dis1 dis1 dis1 dis1
1 2 12 21

sys dis1 sys dis1
1 21 2

sys dis1 sys dis1
12 2112 21

dis1 dis1
1 2

2 2

1

2 2

2dis1 dis1 dis1
1 1 2 12

Find  , , ,

min   

           

s.t.    + 1 0 0.96,

5 0,   0 1,

x x y y

x xx x

y yy y

x x

J

P x x y

m m m m

m m m m

m m m m

m m

= - + -

+ - + -

é ù- £ ³ê úë û

- £ £ £ £

( )
dis1
21

dis1 dis1 dis1 dis1 dis1
12 12 1 2 21

12

  0 10,

0 10,   , ,

y

y y x x y
y

m

m m m m m

£ £

£ £ =

.         (15) 

Initialize system and discipline
design variables and 1k = 

( )
System level optimization problem
using Eq  11.

( )
Discipline level optimization problem
using Eq  12.

Start

1k k= +

 ?
 = 1, ,

iJ
i n

e£
K

No

Yes

End

Output

 
 
Fig. 1. Flowchart of MVFOSA-CO. 

 

Table 2. Distribution information of random variables in the mathe-
matical problem. 
 

Variables Mean Standard  
deviation Distribution 1 Distribution 2 

1x  
1x

m  
1

0.001 xm  Normal Gumbel 

2x  
2xm  

2
0.001 xm  Normal Gumbel 

3x  
3xm  

3
0.001 xm  Normal Gumbel 

12y  
12ym  

12
0.001 ym  Normal Gumbel 

21y  
21ym  

21
0.001 ym  Normal Gumbel 

 
 

Discipline 1
12y

21y

1 2,x x

1f
Discipline 2

3x

2f
 

 
Fig. 2. MDO problem of the mathematical example. 
 
 

 
 
Fig. 3. MVFOSA-CO approach analysis for the mathematical example. 
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(3) Discipline 2 optimization problem 
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        (16) 

 
The target reliability of each probabilistic constraint is 0.96. 

System optimization is solved by using sequential quadratic 
programming (SQP), and the discipline optimization problems 
are solved by using a genetic algorithm (GA). The results 
from different methods are given in Tables 3-6. A sufficiently 
large number of simulations ( 610 ) is used; thus, the MCS-CO 
results are considered accurate references. 1R  and 2R  are 
the reliabilities of probabilistic constraints 1 and 2, respec-
tively; sn  is the number of iterations in system optimization 
problem; 1n  and 2n  are the numbers of iterations in disci-
pline optimization 1 and 2, respectively. 

In Tables 3 and 4, for the special case where all random 
variables are normally distributed, MVFOSA-CO and 
MVFOSM-CO produce similar results and have the same 
values for system and discipline analyses because MVFORM 
is a special case of MVFOSA [15]. In Tables 5 and 6, 
MVFOSA-CO generates more accurate results than 
MVFOSM-CO. However, both methods have almost the same 
efficiency because MVFOSA-CO uses the complete distribu-
tion information of random variables and has good perform-
ance in the tail regions. 

 
5.2 Speed reducer design 

The second problem is derived from NASA MDO evalua-
tion examples [47]. This problem represents the design of a 
speed reducer and is posed as an artificial multidisciplinary 
problem comprising three subsystems: subsystem 1 (Bearing 
group 1 and Shaft 1), subsystem 2 (Bearing group 2 and Shaft 
2), and subsystem 3 (Gear 1 and Gear 2) (Fig. 4). 

The problem has three sharing design variables. We assume 
that aleatory uncertainty is associated with some input vari-
ables. All random variables are described by Gumbel distribu-
tion. The details of the design variables are given in Table 7. 

The system objective f  is to minimize the speed reducer 
volume. The system objective and constraints are as follows:  

Table 3. Optimization results of the mathematical example (Case 1: Normal distribution). 
 

 sys
1x

m  sys
2x

m  sys
3x

m  sys
12y

m  sys
21y

m  f  

MVFOSA-CO −0.3177 0.3142 0.9056 0.4133 0.5251 3.6312 

MVFOSM-CO −0.3177 0.3142 0.9056 0.4133 0.5251 3.6312 

MCS-CO −0.3177 0.3142 0.9057 0.4134 0.5252 3.6314 

 
Table 4. Reliability of the probabilistic constraints and calculation efficiency of the mathematical example (Case 1: Normal distribution). 
 

 1R  2R  1n  2n  sn  Calculation time 

MVFOSM-CO 0.9739 0.9864 5924 4444 50 5 min 50 s 

MVFOSA-CO 0.9739 0.9864 5924 4444 50 5 min 50 s 

MCS-CO 0.9831 0.9907 5930 4408 50 - 

 
Table 5. Optimization results of the mathematical example (Case 2: Gumbel distribution). 
 

 sys
1x

m  sys
2x

m  sys
3x

m  sys
12y

m  sys
21y

m  f  

MVFOSM-CO −0.3106 0.3051 0.9113 0.4231 0.5098 3.6609 

MVFOSA-CO −0.3177 0.3142 0.9057 0.4133 0.5251 3.6313 

MCS-CO −0.3177 0.3142 0.9056 0.4134 0.5252 3.6315 

 
Table 6. Reliability of probabilistic constraints and calculation efficiency of the mathematical example (Case 2: Gumbel distribution). 
 

 1R  2R  1n  2n  sn  Calculation time 

MVFOSM-CO 0.9837 0.9891 6195 4532 51 5 min 10 s 

MVFOSA-CO 0.9659 0.9704 5888 4423 50 5 min 48 s 

MCS-CO 0.9662 09758 5918 4408 50 - 
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ble 7). 
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Design condition for the shaft based on experience. 
The MVFOSA-CO analysis for the speed reducer MDO 

problem is shown in Fig. 5. 
MVFOSA-CO optimization problem formulations, includ-

ing three disciplines are provided in Eqs. (17)-(20).  
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(2) Optimization problem for discipline 1 
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(3) Optimization problem for discipline 2 
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(4) Optimization problem for discipline 3 
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The required reliability for each probability constraint is 

0.95, and the compatibility constraint accuracy e  is 0.001. 
System optimization is solved by using SQP, and discipline 
optimization problems are solved by using GA. The accuracy 
and efficiency of MVFOSA-CO are compared with 
MVFOSM-CO and MCS-CO in Tables 8 and 9. ( )1 ~ 6iR i =  
denotes the reliabilities of probabilistic constraints. The objec-
tive function optimization histories are shown in Fig. 6 by 
using three different methods. The methods have similar op-
timization histories, as well as similar number of iterations sn  
in the system optimization problem and iterations 1n , 2n ,  

Gear 2 Gear 1

Bearing group 1

Bearing group 2 Shaft 2

Shaft 1

5x

7x 6x 4x

 
 
Fig. 4. Speed reducer design. 
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Table 7. Details of the design variables in the speed reducer design problem. 
 

Variables Description Mean Standard deviation Distribution Lower bound Upper bound 

1x  Gear face width - - - 2.6 3.6 

2x  Teeth module - - - 0.3 1.0 

3x  Number of teeth of 
pinion - - - 17 28 

4x  Distance between 
bearings 1 4xm  

4
0.001 xm  Gumbel 7.3 8.3 

5x  Distance between 
bearings 2 5xm  

5
0.001 xm  Gumbel 7.3 8.3 

6x  Diameter of shaft 1 
6xm  

6
0.001 xm  Gumbel 2.9 3.9 

7x  Diameter of shaft 2 
7xm  

7
0.001 xm  Gumbel 5 5.5 

 
Table 8. Optimization results of the reducer design. 
 

 sys
1x  sys

2x  sys
3x  sys

4x
m  sys

5x
m  sys

6x
m  sys

7x
m  f  

MVFOSM-CO 3.4273 0.6504 18 7.3003 7.6884 3.3208 5.2642 2888.5820 

MVFOSA-CO 3.4247 0.6457 18 7.3005 7.6865 3.3231 5.2635 2866.0874 

MCS-CO 3.4236 0.6442 18 7.3005 7.6856 3.3235 5.2633 2859.1180 

 
Table 9. Reliability of probabilistic constraints and calculation efficiency of the reducer design. 
 

 1R  2R  3R  4R  5R  6R  1n  2n  3n  sn  Calculation time 

MVFOSM-CO 0.9604 0.9678 0.9771 0.9622 0.9707 0.9742 18468 1297 19881 71 23 m 2 s 

MVFOSA-CO 0.9568 0.9625 0.9740 0.9587 0.9675 0.9711 23703 1687 25093 93 25 m 45 s 

MCS-CO 0.9550 0.9601 0.9749 0.9564 0.9642 0.9727 24292 1364 24937 92 - 

 

 
 
Fig. 5. MVFOSA-CO approach for the speed reducer MDO problem. 
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and 3n  in discipline optimization problems 1 to 3 (Table 9). 
This result is attributed to the use of the same MDO 
method(i.e., the CO method). Furthermore, the optimal solu-
tion 2866.0874 obtained by MVFOSA-CO is closer to the 
reference value 2859.1180 obtained by MCS-CO than the 
solution 2888.5820 obtained by MVFOSM-CO (Table 8). 
MVFOSM-CO has the more conservative solution than 
MVFOSA-CO. MVFOSA-CO uses full distribution informa-
tion rather than the first two moments of the random variables; 
thus, MVFOSA-CO performs relatively better in the tail re-
gions. The solution obtained by MVFOSA-CO is more accu-
rate than MVFOSM-CO. Their calculation times are almost 
the same (Table 9). This example shows that MVFOSA-CO 
has the same efficiency as MVFOSM-CO but is highly accu-
rate. 

 
6. Conclusions 

This work aims to improve reliability analysis accuracy in 
MDO problem performance functions that are expensive and 
only respond to traditional MVFOSM methods. MVFOSA-
CO is proposed to address RBMDO problems under aleatory 
uncertainty. The proposed method introduces the first-order 
Taylor expansion of a performance function at the mean val-
ues of random variables and uses saddlepoint approximation 
to estimate CDF and PDF. MVFOSA-CO has several advan-
tages. First, the bi-level analysis and coordination structure of 
MVFOSA-CO allows the application of different subspace 
optimizers among various analysis groups. Different disci-
plines are easily parallelized and well-suited for conventional 
discipline organizations. Second, MVFOSA-CO has high 
accuracy in tail regions while keeping the same efficiency as 
the MVFOSM. Finally, in MVFOSA-CO, non-normal ran-
dom variables do not need to be transformed into normal ran-
dom variables. However, the proposed method is only suitable 
for RBMDO problems that are under aleatory uncertainty and 
that have the analytical CGF of the random variable. 
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