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Abstract 
 
Experimental observations reveal that the physical response of nanostructures is size-dependent. Herein, modified couple stress theory 

has been used to study the effect of intermolecular van der Waals force on the size dependent pull-in of nanobridges and nanocantilevers. 
Three approaches including using differential transformation method, applying numerical method and developing a simple lumped pa-
rameter model have been employed to solve the governing equation of the systems. The pull-in parameters i.e. critical tip deflection and 
instability voltage of the nanostructures have been determined. Effect of the van der Waals attraction and the size dependency and the 
importance of coupling between them on the pull-in performance have been discussed.   
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1. Introduction 

Emerging revolution of nanotechnology gives the opportu-
nity to develop advanced ultra-small systems. Recently, mi-
cro/nano-electromechanical systems (MEMS/NEMS) have 
found enormous engineering applications [1-7]. A beam-type 
MEMS/NEMS constructed from two conductive electrodes, 
which one (beam) is movable and the other one is fix (ground). 
When electrostatic force exceeds the elastic resistance of the 
beam, the pull-in instability occurs and the beam suddenly 
adheres to the ground. Instability of MEMS in micro-scales has 
been investigated by previous researchers neglecting nano-
scale phenomena. However, in sub-micron the nano-scale phe-
nomena should be considered in instability models.  

The first issue is the presence of van der Waals (vdW) force 
in nano-scale distances. This attraction can significantly influ-
ence the NEMS performance when the initial gap between the 
components of nanostructure is typically below several ten 
nanometers. In this case, the attraction between two surfaces is 
proportional to the inverse cube of the separation [8, 9]. In 
recent years, various approaches such as finite element meth-
ods [8, 9] and developing lumped models [10, 11] are utilized 
to investigate the effect of vdW force on nano-systems.  

Another nano-scale phenomenon is size dependent behavior 
of structures that cannot be modeled via classic theories. 

However, by applying non-classic continuum theories i.e. 
non-local elasticity [12], couple stress theory [13], strain gra-
dient theory [14], modified couple stress theory (MCST) [15], 
etc. This size effect can be attributed to material length scale 
parameters. In MCST, the length scale parameters are reduced 
to only one constant [16-20]. Some studies have been con-
ducted on modeling the size-dependent response of MEMS 
using MCST [16, 21-29]. Rokni et al. [21] and Baghani et al. 
[22] used MCST to investigate the size dependent pull-in be-
havior of micro-beams. Noghrehabadi et al. [23] studied the 
pull-in of nano-beams in liquid media. Zhang et al. [24] inves-
tigated the size-dependent behavior of electrostatic viscoelas-
tic beams. Kong [25] and Yin et al. [26] established size-
dependent pull-in models for electrostatic microactuators. 
However, few researchers have investigated the interaction 
between vdW force and size-effect in NEMS [16, 28, 29].  

Herein, effect of vdW force on the size-dependent pull-in of 
nanobridges and nanocantilevers is investigated using MCST. 
Different approaches e.g. differential transformation method 
(DTM), developing lumped model and numerical solution are 
applied to solve the governing equation. The concept of DTM 
was presented by Zhou [30]. This method determines the solu-
tion in the form of polynomials. The concept of DTM is de-
rived from Taylor series expansion, but it does not evaluate 
the derivatives symbolically. The equation and boundary con-
ditions are transformed into a system of algebraic equations. *Corresponding author. Tel.: +98 381 4424401 6, Fax.: +98 381 4424438 
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2. Theoretical model   

2.1 Fundamental of modified couple stress theory 

At nano-scale, the gradient deformations vary sharply, 
hence the stresses and strains depend on the shrinking length 
scale of the structures [31]. To model these gradient effects, a 
higher order strain gradient theory was introduced with three 
length scale parameters relevant to dilatation, deviatoric and 
symmetric rotation gradients [31]. These three parameters can 
be combined into one measurable parameter under the as-
sumptions of MCST [31]. As the characteristic length of the 
deformation field becomes significantly larger than the mate-
rial length scale parameter, strain gradients effect becomes 
negligible because the strain terms are much larger than their 
scaled gradient terms [32]. In this case, the results obtain via 
MCST is the same as that of classic theory. Based on the 
MCST, the strain energy density is written as [15]: 

 

( )1 : :
2

u ms e c= +   (1) 

 
where the stress tensors , strain tensor e , deviator part of the 
couple stress tensor m  and symmetric curvature tensor c  
are defined by the following: 
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where u is the displacement vector. In above relations 

, ,ll m are Lame constant, shear modulus and material length 
scale parameter, respectively [33]. 

 
2.2 Constitutive equation of beam-type NEMS 

Figs. 1(a) and (b) show schematic representation of nano-
cantilever and nanobridge, respectively. Herein, the structures 
with a beam length of L, wide of B, thickness of H and initial 
gap of g are considered. The material parameters are elastic 
modulus E, and Poisson’s ratio ν. The total strain energy for a 
deformed Euler-Bernoulli beam is the summation of strain 
energy stored in the beam due to axial forces ( aU ) and bend-
ing ( bU ). Considering MCST, the energy stored in the beam 
due to axial forces is [26]: 
   

2
0
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L
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where w  and aF  are the beam displacement in direction of 
Z axis and the applied axial force associated with the mid-
plane stretching (for nanobridge). Base on MCST, bending 

strain energy is obtained as [26]: 
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where A, I and m are beam cross section area, 2st cross sec-
tion moment of area and shear modulus, respectively. Consid-
ering the distribution of electrostatic and vdW forces per unit 
length of the beam ( elec vdWf & f ), the work by external 
forces ( eW ) can be obtained as: 
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Now, utilizing Hamilton principle i.e. ( )a b eU U Wd + -  
0= , in which δ indicates variations symbol, the differential 

equation of lateral deflection of the system can be derived as: 
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and the boundary conditions read 
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When nanobridge is in tension, the stretching, i.e. the axial 

force induced due to immovable clamped ends, will occur that 
can be expressed as [26] 
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Fig. 1. Representations of (a) nanocantilever; (b) nanobridge. 
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The electrostatic attraction in Eq. (5) is written as the fol-
lowing [17]  

 
2
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( )1 0.65
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where 0e  is permittivity of vacuum and V is the applied 
voltage.  

Considering some idealizations, the vdW attraction in Eq. 
(5) can be obtained as [29]:   
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where Ā is the Hamaker constant. 

 
2.3 Dimensionless equations 

By using the substitutions x = X/L and /w w g=  one can 
obtain the dimensionless governing equation of the structures, 
from Eq. (6) as the following: 
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And the following boundary conditions 
 

nanocantilever(0) (0) (1) (1) 0 ( )w w w w¢ ¢¢ ¢¢¢= = = =   (12) 
nanobridge(0) (1) (0) (1) 0 ( )w w w w¢ ¢= = = = .  (13) 

 
In Eq. (11), the dimensionless parameters are identified as 
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Letting 0l = , the relations are simplified to those obtained 

by classic continuum nonlinear geometrically beam theory. 
Noted that Eq. (11) is singular for 1w = . However, this 

singularity is physically impossible since the instability occurs 
at lower values of deflection ( 1w < ). The integral term and 
force terms result in high nonlinearity of the equation. There 
exist no exact solutions for the governing equation, hence, 
three different approaches are applied to solve the nonlinear 
differential equation in the next section. 

3. Solution methods 

3.1 Differential transformation method (DTM) 

The basic idea and detail of DTM solution is addressed in 
Appendix A. Multiply both sides of the Eq. (11) by 
( )41 ( )w x- and then apply DTM, the following series solution 
is provided:  
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  (15) 
 

using boundary conditions (Eqs. (12) and (13)). The instability 
occurs when ( 1) / 0dw x db= ®  for nanocantilever and 

( 0.5) / 0dw x db= ®  for nanobridge. The instability parame-
ters of the system can be determined via the slope of the w -
b  graphs by plotting w vs. b . 
 
3.2 Iterative numerical method 

The governing equations of the structures are numerically 
solved with an iterative method. By using this approach, Eq. 
(11) is writing in the following form: 
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and the following boundary conditions: 

 
nano-cantilever(0) (0) (1) (1) 0 ( )i i i iw w w w¢ ¢¢ ¢¢¢= = = =   (17a) 
nano-bridge(0) (1) (0) (1) 0 ( )i i i iw w w w¢ ¢= = = = .    (17b) 

 
One can use the undeformed beam ( 0 0w = ) as an initial 

point. This procedure is continued until the convergence is 
achieved or pull-in has happened. The pull-in parameters can 
be determined via the slope of the w - b graphs.  

 
3.3 Lumped parameter model 

In order to develop a lumped parameter model, the elastic 
response of the structures is modeled by a linear spring. This 
model assumes uniform attractions along the length of beams. 
By assuming a trial function for the beam deflection (see Ap-
pendix A.2) the relation between b  and the maximum 
eflecttion ( maxw ) can be obtained as:  
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  (18) 
 
For lumped parameter model, the pull-in parameters can be 

obtained from Eq. (18) by setting max/ 0d dwb = . 
 

4. Result and discussion  

In order to verify the DTM series solution, deflection of 
typical nanocantilever is determined using different number of 
series terms. The residual error of the series solution, calcu-
lated using Eq. (19) [34], is reported in Table 1. This table also 
shows the comparison between the numerical solution and the 
DTM ones for the nanocantilever. As seen, higher accuracy 
and reduction in residual error can be obtained by considering 
more terms in series solution (x)w . Moreover, the difference 
between numerical and DTM solutions decreases by selecting 
more series terms. 
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In the following, typical nanostructures with 24h = , g/H = 

2 and g/B = 1 are investigated. 

 
4.1 Effect of vdW force  

Fig. 2 shows the influences of the vdW force on dimen-
sionless pull-in voltage ( PIb ) of the nanostructures without 
considering size effect (x = 0). As seen, vdW force decreases 
the instability voltage of the beam. Note that when a  takes 
the critical value, the beam becomes unstable even with β = 0. 
This reveals that when the separation is small enough, vdW 
force can cause the beam to collapse onto the ground plane 
even without an electrostatic attraction. Fig. 3 depicts the 
variation of pull-in deflection ( PIw ) as a function of a . As 
seen, vdW force decreases the pull-in deflection of the struc-

tures. Comparison between Figs. 2 and 3 reveal that the criti-
cal value of vdW force for nanobridge is larger than that of 
nanocantilever due to the lower elastic rigidity of nanocantile-
vers. In Fig. 2, the intersection of the curves with horizontal 

Table 1. Accuracy check of DTM series solution (β = ξ = g/B = 1, α = 0). 
 

 Number of DTM series terms 

 4 Term 8 Term 19 Term 23 Term 

( 1)w x =  0.1031 0.1215 0.11757 0.11763 

E* (%) 12.3 3.29 0.051 0.002 

R** 0.3177 0.1417 0.0073 0.002 

*E: Difference with numerical value (0.117631). 
**R: Maximum residual error (at x = 1). 

 
 

(a) 
 

 
(b) 

 
Fig. 2. Effect of vdW force (α) on the pull-in applied voltage of (a) 
nanocantilever; (b) nanobridge neglecting size effect. 

 

 
(a) 

 

 
(b) 

 
Fig. 3. Effect of vdW force on the pull-in deflection of (a) nanocantile-
ver; (b) nanobridge neglecting the size effect. 
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axis corresponds to the critical value of a  (vdW force). In-
deed, if a  exceed its critical value, the beams adhere the 
ground even without any applied voltage due to strong vdW 
attraction. There exist no PIb  and PIw  for a  greater 
than the critical value of intermolecular force (see Figs. 2 and 
3). The critical value of a determined by lumped model is 
lower than those of DTM and numerical methods. 

 
4.2 Size dependency in the absence of vdW force 

Fig. 4 represents the effect of size dependency on PIb  
of the nanostructures neglecting vdW force. As seen, increas-
ing x results in increasing the pull-in voltage of nano-systems. 

This means size effect enhances the elastic resistance and 
consequent operation voltage of the nano-devices. Figs. 5(a) 
and (b) demonstrate the influence of size dependency on PIw  
of the nanocantilever and nanobridge, respectively. In the 
absence of vdW forces, the pull-in deflection of nanocantile-
ver is not sensitive to the size effect. However, PIw of a 
nanobridge slightly reduces by increasing the size effect. This 
difference is the result of stretching that induces non-linearity 
in governing equation of nanobridge. Note that PIb  is 
more sensitive to the size effect in comparison with PIw . It 
should be noted that the difference between DTM and nu-
merical solution in these figures can be reduced by increasing 
number of series terms.  

In the case of Fig. 5(a), one can achieve less than 1.5% error 
between PIw values determined via DTM (0.4680) and nu-
merical solution (0.4611) by using 23 series terms. The 
lumped models do not provide precise values due to assuming 

uniform distribution of electrical and vdW force along the 
beams. However, lump models are practical in understanding 
physical aspects of the phenomena without mathematical 
complexities. 

 
4.3 Coupling between vdW attraction and size effect 

At nano-scale distances, both vdW forces and size effect 
should be accounted. Figs. 6(a) and (b) illustrate the influence 
of size effect on instability voltage of nanocantilever and 
nanobridge for various values of a . As seen in the presence 
of vdW force, PIb increases with increase in size effect. 
Note that the beam bending rigidity predicted by MCST 
( 2EI Alm+ ) is greater than that of classic theory ( EI ). 
Therefore, the size effect provides a hardening behavior (in-
crease in bending rigidity) that enhances the elastic resistance 
of the nano-beams. The enhanced elastic resistance allowed 
the nanostructures to tolerate higher applied voltage before the 
instability occurs. Figs. 7(a) and (b) depict the variation of 
pull-in deflection as a function of size effect parameter con-
sidering vdW attraction. As seen, the PIw  of nanocantilever 
slightly increases in the presence of vdW force. This trend is 
different from what observed in Fig. 5(a) where PIw does not 
change in the absence of vdW force. On the other hand, Fig. 
7(b) shows that increasing the size effect decreases PIw  of 
the nanobridge in the presence of vdW force (similar to Fig. 
5(b)). However, increasing the vdW force decreases the slope 
of the PIw x- curves. The obtain results reveal that coupling 
between vdW force and size effect is a crucial issue to precise 

 
(a) 

 

 
(b) 

 
Fig. 4. Effect of the size dependency (x) on the pull-in voltage of (a) 
nanocantilever; (b) nanobridge neglecting the vdW force. 

 

 
(a) 

 

 
(b) 

 
Fig. 5. Effect of the size dependency on pull-in deflection of (a) nano-
cantilever; (b) nanobridge neglecting the vdW force. 
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determining the pull-in parameters of the nanostructures and 
should be included in theoretical models.  

 
4.4 Comparison with literature  

The comparison between response of the systems predicted 
via present work (DTM) and those of the Refs. [27, 33] is 
shown in Fig. 8. The geometry and the constitutive material of 
the beams are identified in Table 2. Fig. 8(a) presents the 
variation of deflection as a function of β for a nanocantilever. 
Moreover, Fig. 8(b) shows the comparison between deflection 
of a nanobridge (β = 64) for two cases e.g. considering the size 
effect (MCST) and omitting the size effect (classic theory). As 
seen, the difference between DTM solutions and the literature 
is within the excellent range.  
 
5. Conclusions 

Modified couple stress theory has been used to investigate 
the effect of vdW force on size dependent pull-in instability of 
beam-type nanobridges and nanocantilevers. Three different 
approaches e.g. applying approximated DTM, developing 
lumped parameter model and numerical solution are applied to 
solve governing equations. It is found that: 

• vdW force reduces the pull-in voltage and deflection of 
the systems. It induces initial deflection in freestanding 
structures. Effect of vdW force on instability of nanocan-
tilevers is more pronounce in comparison with nano-
bridges. 

 
(a) 

 

 
(b) 

 
Fig. 6. Effect of the size dependency on the pull-in voltage of (a) nano-
cantilever; (b) nanobridge considering the vdW force.  

 

 
(a) 

 

 
(b) 

 
Fig. 7. Effect of the size dependence on the pull-in deflection of (a) 
nanocantilever; (b) nanobridge considering the vdW force. 

 

 

Table 2. Geometry and constitutive material properties used in Fig. 8. 
 

 g/B x  η g/H l/H E(GPa) μ ν 

Ref.[33] 1     0  0 0 0 77 28.95 0.33 

Ref.[27] 0.2 0.4695 24 2 1/3 98.49 34.68 0.42 

 

 
(a) 

 

 
(b) 

 
Fig. 8. (a) Pull-in behavior of nanocantilever neglecting size effect 
[33]; (b) deflection of nanobridge neglecting vdW force (β = 64) [27]. 
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• Neglecting vdW force, size effect enhances the pull-in 
voltage of nanocantilever without change in the pull-in 
deflection. On the other hand, size effect increases the 
pull-in voltage while slightly decrease the pull-in deflec-
tion of nanobridge. 

• Considering vdW force, both pull-in voltage and deflec-
tion of the nanocantilever increase with increasing the 
size effect. Moreover, increasing the size effect decreases 
the pull-in deflection while increase the pull-in voltage of 
the nanobridge. 

• DTM is in good agreement with numerical solution. Al-
though the lumped models do not provide precise values, 
they are practical in understanding physical aspects of 
the phenomena without mathematical complexities. 

The present model is useful to accurately predict the NEMS 
behavior in nano-scales where the presence of vdW force 
highly affects the pull-in parameters of system. The present 
work can be helpful to precise analysis of nanostructures. 

 
Nomenclature------------------------------------------------------------------------ 

m     : Deviator part of the stress tensor 
c     : Symmetric curvature tensor 
s    : Stress tensor 
e  : Strain tensor 

aU   : Energy stored due to axial forces 
bU   : Bending strain energy  

L  : Length of beam 
B : Wide of beam 
H  : Thickness of beam 
g  : Initial gap 
I  : 2nd moment of cross-section 
A  : Beam cross section area 
felec  : Electrostatic force per unit length 
fvdw  : vdW force per unit length 
a   : Dimensionless van der Waals force 
b   : Dimensionless electrostatic force 
g   : Gap to width ratio 
x   : Size effect parameter 
h  : Gap to thickness ratio 
l   : Lame constant 
m   : Shear modulus 
n   : Poisson’s ratio 
E  : Elastic modulus 
l : Material length scale parameter 
Ā  : Hamaker constant 

0e   : Permittivity of vacuum 
V  : Applied voltage  
w  : Normalized deflection   
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Appendix  

A.1 Differential transformation method 

The basic idea and the fundamental theorems of the DTM 
and its applicability are given in Ref. [34]. The differential 
transform of the kth derivative of arbitrary function y(x) is 
defined as: 
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where y(x) is the original function and Y(k) is the transformed 
function. The differential inverse transform of Y(k) is defined 
as 
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The differential transformation relations for functional op-

erations and boundary conditions are found in Ref. [34]. In this 
work, deflection of the nanostructures can be considered as: 
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where W is the transformation function.  

By applying the transformations on Eq. (11) (see Ref. [34]) 
and after some elaborations, one can found: 
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and the transformations of boundary conditions is: 
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By using two boundary condition of Eq. (A.5) i.e. 
( ) ( )0 1 0W W= = , assuming ( )2W a= and ( )3W b= , we 

obtain higher terms from Eq. (A.4) as: 
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Appendix  

A.2 Lumped parameter model 

To develop a lumped model, the trial solutions can be cho-
sen as the first mode shape of beam free vibration e.g. rela-
tions Eq. (A.8) for nanocantilever and Eq. (A.9) for nano-
bridge: 
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where 1.875l = and 4.73l = for nanocantilever and nano-
bridge, respectively. 

Now, for nanocantilever the total energy of system can be 
written as: 
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and for nanobridge we have: 
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Taking the derivative with respect to maxw  (e.g. 

max/ 0d dwP = ), using max max /w w g=  and substituting 
elecf  and vdWf  , one can obtain Eq. (A.12) for nanocanti-

lever and Eq. (A.13) for nanobridge: 
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By rearranging relations Eqs. (A.12) and (A.13), the rela-

tions between applied voltage and the maximum deflection 
(Eq. (18)) can be obtained. 
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