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Abstract 
 
This paper studies the vibrational behavior of nonuniform single-walled carbon nanotube (SWCNT) carrying a nanoparticle. A non-

uniform cantilever beam with a concentrated mass at the free end is analyzed according to the nonlocal Timoshenko beam theory. A 
governing equation of a nonuniform SWCNT with attached mass is established. The transfer function method incorporating with the 
perturbation method is utilized to obtain the resonant frequencies of a vibrating nonlocal cantilever-mass system. The effects of the 
nonlocal parameter, taper ratio and attached mass on the natural frequencies and frequency shifts are discussed. Obtained results indicate 
that the sensitivity of the frequency shifts on the attached mass increases when the length-to-diameter ratio decreases. Tapered SWCNT 
possesses higher fundamental frequencies if the taper ratio becomes larger.  
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1. Introduction 

Carbon nanotubes (CNTs) have attracted increasing atten-
tion of researchers since their discovery [1] in 1991, and ow-
ing to their unique properties [2] they have potential and 
evolving applications [3]. Nanoscale mass sensors are based 
on the fact that the change in the natural frequencies is sensi-
tive to attached masses. Therefore, a key issue of mass detec-
tion is to quantify the change in resonant frequencies or fre-
quency shift due to attached masses. Nanoparticle detection 
including gas detection, virus detection and charge detection 
requires extra-high mass sensitivity. The vibration frequencies 
of CNTs reaching THz and their high sensitivity to environ-
ment change make it possible to fabricate nanoscale mass 
sensors [4, 5]. 

As we know, the geometry of mechanical devices strongly 
affects their dynamics behaviors. Consequently, for various 
purposes, a variety of CNTs such as single-, double-, and mul-
ti-walled, as well as Y-, bamboo-, cone-shaped, horn-shaped 
CNTs [6-10] have been synthesized. Nonuniform CNTs pos-
sess varying cross-section and are one of the most attractive 
shapes of CNTs. On the other hand, mass sensors with varying 
cross-section have some advantages over those with uniform 
cross-section. Therefore, it is extremely necessary to study the 
vibration performance of mass sensors made of nonuniform 

CNTs.  
Generally, the theoretical analysis of CNTs is classified into 

two main categories, the discrete atomic modeling and the 
continuum modeling. In addition, experimental evidence [11] 
has showed pronounced size effects in CNTs. Atomic model-
ing such as molecular dynamics simulation are more suitable 
in accurately describing size-dependent mechanical properties. 
However, these discrete simulations are limited to systems 
with a small number of molecules and atoms and therefore 
restricted to small-scale modeling. Moreover, it is extraordi-
nary hard to conduct experimental tests efficiently at nano-
scale. To overcome these deficiencies, modified continuum 
mechanics approaches, the nonlocal elasticity theory [12] 
describing long-range interactions of the nanoscale effect, has 
been widely accepted to deal with size-dependent problems. 
In this way, a lot of researches have been reported on the vi-
bration of CNTs with an attached mass based on the nonlocal 
Euler-Bernoulli beam theory (EBT) [13] and Timoshenko 
beam theory (TBT) [14, 15]. It is mentioned that all of these 
studies are only suitable for uniform CNTs with attached mass. 
For nonuniform CNTs, free vibration analyses without con-
sidering shear deformation and rotary inertia of the cross-
section have been made by Lee and Chang [16], Murmu and 
Pradhan [17], respectively. For nonuniform nanocantilever 
with attached nanoparticle, Tang et al. [18] investigated the 
vibration of horn-shaped single wall CNT (SWCNTs) based 
on the nonlocal EBT. However, there are few studies on reso-
nant frequency of vibration of a nonuniform CNT-based mass 
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sensor using nonlocal TBT, to the best knowledge of the au-
thors. 

The present paper aims at analyzing the vibration response 
of nonuniform SWCNTs with an attached mass. The nonlocal 
TBT with the scale parameter is applied. Using the transfer 
function method (TFM) [19] incorporating with the perturba-
tion method (PM), the natural frequencies of the SWCNT-
based mass sensor are evaluated. A detailed investigation is 
carried out for the effects of the nonlocal parameter, attached 
mass and geometry parameters on the natural frequencies and 
frequency shifts. 

 
2. Governing equations and boundary conditions 

2.1 Dynamic equation of nonuniform SWCNT-based mass 
sensors 

In this study, a nonuniform SWCNT-based mass sensor can 
be modeled as a nonuniform cantilever beam of length L and 
carrying a concentrated mass m at the free tip, as shown in Fig. 
1. Its cross section is a circle with radius r varying linearly r0 
to rL, and the thickness of the pipe retains constant value d .  

Based on the nonlocal TBT, the governing equations of 
transverse vibration for SWCNTs with varying cross-section 
can be expressed as 
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where w  and q  are the transverse displacement and the 
rotation of cross-section, both of which depend on the longi-
tudinal coordinate x  and time t , r  the mass density, xA  
the area of cross-section, xI  the moment of inertia of cross-
sectional area, M  the bending moment, and Q  the shearing 
force. For nonuniform SWCNTs, the radius of cross section 
varies and is assumed to obey 
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then we have 
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Furthermore, the bending moment M and the shearing force 
Q based on the nonlocal TBT can be obtained below, respec-
tively 
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where E is Young’s modulus, G the shear modulus, e0a the 
nonlocal parameter with length unit which can be used to 
modify the classical TBT, k  the shear correction coefficient 
depending on the shape of the cross section. By substituting 
Eqs. (6) and (7) into Eqs. (1) and (2), then coupled governing 
equations of the nonlocal TBT can be obtained as follows 
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2.2 Boundary conditions 

For a cantilever beam, the corresponding boundary condi-
tions read 
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Furthermore, the initial state of the sensor is assumed to be 

at rest, namely 
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Neglecting shear deformation and rotary inertia of the cross-

section, the governing equation of transverse vibration based 
on the nonlocal EBT for SWCNTs with varying cross-section 
is recovered [18]. 

 
3. Solution method 

For the uniform Timoshenko beams with attached mass, it 
is easy to solve the govern equation using TFM [19]. For the 
present paper, since the governing Eqs. (8) and (9) are related 
to differential equations with variable coefficients, it is diffi-
cult to derive its exact solution directly. PM can be employed 
to obtain the approximate solution of the nonuniform struc-

x

 
 
Fig. 1. Nonuniform SWCNT-based mass sensor. 
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tures, effectively. In this section, instead we invoke the TFM 
and the PM to determine the natural frequencies. 

 
3.1 TFM for nonlocal Timoshenko beams 

With the aid of the initial conditions Eq. (12), after perform-
ing Laplace transform, the governing Eqs. (8) and (9) along 
with the corresponding boundary conditions (10) and (11) 
become 
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and 
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where s is the Laplace transform parameter. 

To facilitate our treatment, we introduce the following di-
mensionless parameters 
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where s0 is a reference value related to the Laplace transform 
parameter s. 

Next, after substituting the dimensionless parameters above 
into Eqs. (13)-(17) and introducing a state vector as 
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where the superscript T denotes matrix transpose, Eqs. (13) 

and (14) together with Eqs. (15)-(17) can be rewritten in a 
matrix form below, respectively 
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where ( , )X sF , ( )sM  and ( )sN  are all 4 4´  matrixes 
and given in Appendix A. 

Thus the problem under consideration is then reduced to 
solving ordinary differential Eq. (19) of first order subject to 
the condition Eq. (20). 

 
3.2 Perturbation solution for nonlocal Timoshenko beam 

To obtain approximate solutions of differential Eq. (19) 
with varying coefficients, we invoke the PM. To this end, a 
dimensionless parameter e  is defined as ( )0 /Lr r Le = - , 
and we have 
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where 1s  is a parameter related to the Laplace transform 
parameter s . For simplicity, only first order perturbation 
solution is used in the present study. 

Substituting Eqs. (21)-(24) into Eqs. (19) and (20) and 
equating the coefficient of each power of e  to zero, we have  
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where 0 0( )sF , 0 0( )sN , 1 0 1( , , )X s sF  and 1 0 1( , )s sN  are all 
4 4´  matrixes and given in Appendix B, and we also denote 

 
1 0 1 10 11 1( , , )X s s s= +F F F , 1 0 1 10 11 1( , )s s s= +N N N . 

 
Finally, the natural frequencies can be obtained by  
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Considering the fact that Eqs. (25) and (26) are ordinary dif-

ferential equations with constant coefficients, rather than vary-
ing coefficients, we can easily determine the solutions of Eqs. 
(25) and (26), respectively. That is, the solution to Eq. (25) is 
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readily obtained to be 
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Hence, the zeroth-order perturbation of the circular fre-

quency 0 0sw = - , and the corresponding modal shape can be 
evaluated by  
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To obtain its first-order perturbation solution, we express 
the solution to Eq. (26) according to TFM 
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Inserting 1 0 1 10 11 1( , , )X s s s= +F F F  together with Eq. (29) 

into Eq. (30) leads to 
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Consequently, substituting 1 0 1 10 11 1( , )s s s= +N N N  and Eq. 

(31) into the second equation in Eq. (26) yields 
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where 0lé ùë û  and é ùë ûP  are diagonal matrixes consisting of 
eigenvalues and eigenvectors, respectively. Obviously, there 
must exist a zero-eigenvalue in 0lé ùë û . 1s  in Eq. (27) can be 
then obtained easily by solving Eq. (34), and the first-order 
perturbation solution is then determined. 

4. Numerical results and discussion  

In this section, to show the influences of some parameters 
on the resonance frequencies or frequencies shift, an example 
of a nonuniform SWCNT with an attached mass is presented 
and numerical results of the resonance frequencies and fre-
quency shifts are calculated. In the following computations, 
the material properties and geometry of a SWCNT are chosen 
as follows: Young’s modulus 1TPaE = , Poisson’s ratio 

0.3n = , the shear correction coefficient ( ) ( )2 1 4 3k n n= + + , 
the mass density 32.24g / cmr = , the effective tube thickness 

0.34 nmd = , the radius at the clamped end 0.8nm  unless 
otherwise stated. For convenience, we denote the taper ratio as 
c = 1-rL/r0, which varies from 0 to 0.5 for the present study. 

 
4.1 Result validation 

Prior to the presentation of numerical results, let us examine 
the accuracy and validity of the present approach. This is done 
by comparing our numerical results with those obtained from 
FEM software MSC.Nastran for the case of e0a = 0, which are 
tabulated in Table 1. It can be seen that our results and the 
FEM simulation results are in good agreement. The maximum 
relative error for the fundamental frequencies is 0.8114%. 
This means that the present approach is suitable for analyzing 
cantilevered nonuniform SWCNTs with a concentrated mass 
at the free end.  

Table 1. Comparison of the natural frequencies (GHz) obtained from 
TFM & PM with those using FEM software for a SWCNT-based mass 
sensor with L = 22 nm and r0 = 0.8 nm. 
 

c m/g  1 3 5 

TFM&PM 14.4238 199.0966 546.4015 

FEM 14.5396 201.1667 558.1628 0 

%Error 0.7964 1.0290 2.1071 

TFM&PM 13.9968 193.8567 534.5559 

FEM 14.1113 195.7882 545.7362 

1/4 

10-21 

%Error  0.8114 0.9865 2.0487 

TFM&PM 14.2111 208.1089 566.7282 

FEM 14.2528 211.1869 582.3247 0 

%Error  0.2926 1.4575 2.6783 

TFM&PM 13.8460 203.6253 556.4650 

FEM 13.8864 206.4349 571.3588 

1/8 

10-21 

%Error  0.2909 1.3610 2.6067 

TFM&PM 13.9952 216.7468 586.3507 

FEM 14.0169 220.6942 604.3092 0 

%Error  0.1548 1.7886 2.9717 

TFM&PM 13.6776 212.7577 577.7908 

FEM 13.6974 216.4300 594.5050 

0 

10-21 

%Error  0.1446 1.6968 2.8114 
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4.2 Study of natural frequencies 

In the absence of attached mass, Fig. 2 shows the effect of 
the nonlocal parameter on the natural frequencies for different 
vibration modes, where the frequencies with the subscripts 
NT  and CT  stand for those corresponding to the nonlocal 
and classical TBT, respectively. From Fig. 2, the nonlocal 
effect is found to be more apparent with an increase of 

0 /e a L . Moreover, this effect depends on the vibration modes. 
The higher the vibration order is, the more apparent the nonlo-
cal effect is. 

In addition, the effects of transverse shear deformation and 
rotary inertia on vibration frequencies for nonuniform 
SWCNTs are investigated in Fig. 3. For comparison of the 
natural frequencies between nonlocal Timoshenko beams (NT) 
with nonlocal Euler-Bernoulli beams (NE), Fig. 3 shows the 
variation of the frequency ratio fNT/fNE against taper ratio c, 
and the length of a nonuniform SWCNT is taken as L = 12 nm. 
From Fig. 3, we find that fNT/fNE is always less than unity for 
all modes. This implies that the frequencies based on the non-
local EBT are still overestimated, in particular for higher-order 
modes.  

Fig. 4 illustrates the frequency ratio f/f0 versus the taper ra-
tio c  for three different vibration modes using the nonlocal 
TBT with μ = 0 and e0a/L = 0.05, where f0 is the corre-
sponding value when taking r0 = rL = 0.8 nm which means c = 
0. From Fig. 4, we can see that the frequency ratio is greater 

than unity and increases with taper ratio increasing for funda-
mental frequencies, while this trend is opposite for the higher 
vibration modes. This phenomenon indicates that the nonuni-
form characteristic can increase fundamental frequencies and 
reduce higher-order natural frequencies. 

 
4.3 Study of frequency shift  

Of much interest is the change in the natural frequencies 
due to an attached mass. For this purpose, we denote the dif-
ference between the natural frequencies with and without at-
tached mass as the frequency shift fD . Using the nonlocal 
TBT, Figs. 5 and 6 show the variation of the frequency shift 
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Fig. 2. Nonlocal effect on the natural frequency for different vibration 
modes of a nonuniform SWCNT withμ = 0, L = 22 nm and c = 0.25. 
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Fig. 3. Effects of transverse shear deformation and rotary inertia on 
natural frequencies for a nonuniform SWCNT with e0a/L = 0.05, μ = 
0, L = 12 nm and r0 = 0.8 nm. 
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Fig. 4. Taper ratio c effect on the natural frequency ratio f/f0 of a nonuni-
form SWCNT with e0a/L = 0.05, μ = 0, L = 12 nm and r0 = 0.8 nm. 
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Fig. 5. Taper ratio c  effect on the fundamental frequency shift of a 
nonuniform SWCNT-based mass sensor with e0a/L = 0.1, L = 22 nm
and r0 = 0.8 nm. 
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Fig. 6. Length-to-diameter ratio effect on the fundamental frequency 
shift of a nonuniform SWCNT-based mass sensor with e0a/L = 0.1, 
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for a nonuniform SWCNT with different taper ratios and 
length-to-diameter ratios, respectively. It is again viewed that 
the attached nanoparticle mass increases the frequency shift. 
From Fig. 5, the frequency shift becomes larger if the taper 
ratio increases. On the other hand, from Fig. 6 the influence of 
the length-to-diameter ratio on the frequency shift of shorter 
nonuniform SWCNTs is more sensitive.  

 
5. Conclusions 

In this contribution, the vibration of a nonuniform SWCNT-
based mass sensor was studied using the nonlocal TBT. The 
natural frequencies were determined by the TFM together 
with the PM. The accuracy and validity of numerical results 
were verified by a comparison with the corresponding FEM 
results. The conclusions are given as follows: 

The nonlocal effect on the natural frequencies is more ap-
parent with the vibration modes increasing. The taper ratio 
strongly affects natural frequencies. It increases fundamental 
frequency and decreases higher order natural frequencies.  

Increasing the attached mass or decreasing the length-to-
diameter ratio increases the frequency shift. The SWCNT-
based mass sensor is more sensitive to the frequency shift if 
the taper ratio becomes larger. 
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Appendix  

A.1 

In Eqs. (19) and (20), the elements of the matrices F(X,s), 
M(s) and N(s) vanish unless those that are displayed below. 

 

12 34 1= =F F , ( )2
21 /s s xl b= G G +F ,  

( ) ( )2 2
22 p p2 / s xl b l b= - G + G +F , ( )2

23 p / s xb l b= - G +F ,  

( )2
24 /x s xb l b= - G +F , ( )2

42 / 1x sb l= Y +F ,  

( ) ( )2 2 2
43 / / 1s x x s x x sI L Ia l b l¢¢= G - Y + Y +F ,  

( ) ( )2 2
44 2 1 / / 1x s x sI L Il l¢= - Y + Y +F . 

11 23 1= =M M , ( )2
31 p /L sL Ll m b= G + GN ,  
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2
32 1 /sL Ll b= + GN , 33 1=N , 2

41 sLl= GN ,  
2 3 2

43 /x LI L s EIl r ¢=N , 2 2 2
44 / 1L s El r= +N . 

 
Appendix  

A.2 

In Eq. (25), the elements of the matrices 0 0( )sF  and 
0 0( )sN  vanish unless those that are displayed below. 
 

12 34 1= =F F , ( )2
21 0 0 0/ l b= G G +F ,  

( )2
24 0 0 0/b l b= - G +F , ( )2

42 0 0 0/ 1b l a= G +F ,  

( ) ( )2
43 0 0 0 0 0/ 1a b l a= G + G +F . 

31 /L Lm b= GN , 2
32 / 1L Ll b= G +N , 33 1=N , 2

41 Ll= GN ,  
2

44 1L Ll a= G +N . 
 
In Eq. (26), the elements of the matrices 

1 0 1 10 11 1( , , )X s s s= +F F F  vanish unless those that are displayed 
below. For matrix 10F  the corresponding elements are 

 

( ) ( )2 2
22 0 0 0 02 /L Ll c b c l b= - G + G +F ,  

( )2
23 0 0 0/Lb c l b= - G +F , ( )2

42 0 0 0/ 1xb f l a= - G +F ,  

( )2
43 0 0 0/ 1xb f l a= - G +F ,  

( ) ( )2 2
44 0 0 0 0 04 2 1 / 1l a l a= - T G + G +F . 

 
For matrix 11F  the corresponding elements are 
 

( )22
21 0 0 0 0 0/ / sb l b= G G +F ,  

( )22 2
24 0 0 0 0 0/ / sl b l b= G G +F ,  

( )22 2 2
42 0 0 0/ 1 /L El b r l a= - G +F ,  

( ) ( )22 2 2
43 0 0 01 / 1 /L El b r l a= - G +F . 

In Eq. (26), the elements of the matrices 1 0 1( , )s s =N  
10 11 1s+N N  vanish unless those that are displayed below. For 

matrix 10N  the corresponding elements are 
 

2 5
31 02 / L LL s EIl rdp b=N , 2 2

43 04 /LL T s El r=N . 
 
For matrix 11N  the corresponding elements are 
 

4
31 /L L LA L EImr b=N , 2 4

32 /L L LA L EIl r b=N ,  
2 4

41 /L LA L EIl r=N , 2 2
44 /L El r=N . 
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