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Abstract 
 
In this paper a dynamic model is presented for predicting the vibration behavior of a ball bearing under the influence of localized de-

fects on the outer race. The calculation of contact force is based on Hertzian contact deformation theory. The pulse generated by the ball 
striking the defect on outer race is modeled by using the blending functions of the cubic hermite spline. The effect of change in the angu-
lar position of the defect, size of the defect on outer race, multiple defects on outer race and the variation of load on the vibration ampli-
tude is predicted by this model. A computer program in MATLAB is developed and the governing equation of motion is solved by 
Euler’s method. The numerical results are presented as a function of variation of the geometry of the outer race due to the impact at the 
defect and normal race contact w.r.t. time and the conclusion about the health of the bearing is determined by the spectral analysis. To 
validate the results, experimentation has also been performed.   
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1. Introduction 

Rolling element bearings are among the most important and 
critical components in mechanical systems. A damaged bear-
ing in a machine acts as a vibration generator and has a great 
impact on the performance of the entire system. This outlines 
the need for monitoring the health of bearing from time to 
time to avoid sudden failure of the system. The damage in a 
bearing is due to different defects present on races and rolling 
elements. The manufacturing process itself may give rise to 
these defects or these may develop during the service condi-
tions. Different measurement techniques based on vibration 
and acoustics are used for detecting the defects in a bearing. In 
addition to the experimental methods, the analytical methods 
are also used by the researchers which yield reasonably accu-
rate results to predict the dynamic behavior of bearing. 

A geometrically perfect bearing is a source of vibration 
since the load is carried by finite number of balls. As bearing 
rotates, the position of the balls in the load zone changes giv-
ing rise to periodical variation of total stiffness of bearing 
assembly. Sunnersjo [1] has carried out the study on the effect 
of varying compliance on vibrations of rolling bearings. But 
the vibration level of bearing is significantly altered in the 

presence of defects. A detailed description of these defects are 
available in standard books on bearings [2, 3]. Tandon and 
Choudhury [4] presented a detailed review of vibration and 
acoustic measurement methods for detection of defects in 
rolling element bearings and considered localized and distrib-
uted defects. When a defect strikes its mating surface, a pulse 
of short duration is generated as a result of sudden change in 
the contact stress. It is the frequency of pulse generation which 
is to be monitored and describes the location of fault. Harris 
[2] explained the fundamental kinematic analysis for model-
ing the performance of rolling element bearings. McFadden 
and Smith [5, 6] have presented a model which describes the 
modulating influences on impulses generated by single point 
and multipoint defects on the inner race of bearings. Su and 
Lin [7] extended the vibration model developed by McFadden 
and Smith to describe the bearing vibration under diverse 
loading. They have reported the need of time domain analysis 
along with frequency domain to reliably monitor a running 
bearing. Tandon and Choudhury [8] proposed an analytical 
model for predicting the vibration frequencies of rolling bear-
ings and the amplitudes of significant frequency components 
due to a localized defect on outer race, inner race or one of the 
rolling elements under the axial and radial loads. The model 
considers the effect of load and pulse shape on the vibration 
amplitude. Sawalhi and Randall [9] presented a combined 
gear/bearing dynamic model for a gearbox test rig to study the 
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interaction between gears and bearings in the presence of 
faults. Patel et al. [10] presented a dynamic model to study the 
vibrations of deep groove ball bearings having single and mul-
tiple defects on surfaces of inner and outer races. The authors 
have considered masses of shaft, housing, races, and balls in 
the model. The additional deflection due to the interaction of 
the ball at the defect was defined in terms of the width of the 
defect. Patil et al. [11] have presented an analytical model for 
predicting the effect of a localized defect on the ball bearing 
vibrations. The contacts between the ball and the races were 
considered as non-linear springs. The pulse generated by strik-
ing of the defect was modeled as half sine wave. Harsha et al. 
[12] developed an analytical model to predict non-linear dy-
namic response in a rotor bearing system due to surface wavi-
ness. In the analytical formulation, the contacts between the 
rolling elements and the races were considered as non-linear 
springs, whose stiffness is obtained by using Hertzian elastic 
contact deformation theory. Purohit and Purohit [13] pre-
sented an analytical model of a rotor bearing system to ob-
serve the effect of varying the number of balls and preload on 
the vibration characteristics of a defect free system. They con-
cluded that for larger preloads, the vibration amplitudes asso-
ciated with the ball passage frequency reduces and increasing 
the number balls results in reduction in the vibration ampli-
tude. 

Based on the literature survey, it is found that the pulse gen-
erated by impact at the defect is modeled as a half sine wave, 
triangular and rectangular wave. However, for modeling of the 
defect pulse, splines may prove equally good. It is found that 
there are no investigations on the use of splines in such study. 
With the rotation of the cage, the ball will alter the geometry 
of the outer race. As the defect on the outer race on the bear-
ing gets struck by the rolling elements, the geometry of the 
movement of the races changes and a pulse of very short dura-
tion is generated. The action of the ball orbiting the inner race 
is analogous to the cam with the outer race acting as a fol-
lower. This phenomenon forms the basis for using blending 
functions of the cubic hermite spline for modeling the pulse 
generated by the striking of the defect. Essentially the shape of 
the pulse is assumed according to the physical phenomenon 
happening inside the bearing which is discussed in detail in 
the next section.  

 
2. Formulation of the mathematical model of system 

At the end of the shaft of rotor-bearing system being ana-
lyzed, a deep groove ball bearing (designation: SKF 6205) is 
mounted as a test bearing as shown in Fig. 1. The inner race of 
the bearing is rigidly fixed to the shaft and the outer race is 
fixed in a rigid support. The elastic deformation between the 
outer race and each point of contact with the balls is assumed 
be Hertzian. In the mathematical model, the ball bearing is 
considered as non-linear spring-mass system. The model pre-
sented here considers the specific case of a non-rotating outer 
race, loaded radially. 

The assumptions and considerations while deriving the 
model are summarized as follows: 
• The ball bearing model has equi-spaced balls rolling on 

the surface of the inner and outer race and there is no in-
teraction between them. 
• Slipping of the balls during rolling on races is neglected. 
• The motions of race and balls occur in the plane of the 

bearing only. 
• The inner race of the bearing is rigidly fixed to the shaft 

and the outer race is fixed in a rigid support. 
• Deformations at the contacts are Hertzian contact defor-

mations. 
• The bearings operate under isothermal conditions. 
• The shape of the pulse generated by impact at the defect 

as shown in Fig. 8 models the defect. 

 
2.1 Internal speeds, motions and load distribution in a ball 

bearing 

Ball bearings are used to support various kinds of loads 
while permitting rotational motion of a shaft. The expressions 
for rolling bearing internal rotational speeds are developed by 
Harris [2]. When a bearing mounted on a shaft rotates at some 
speed, the rolling elements orbit the bearing axis and simulta-
neously revolve about their own axes (refer Fig. 2).  

The rotational speed of the cage is given by 
 

. 
(1)

 
 
The angular velocity of the cage is 
 

. 
(2)

 
 
Angular velocity of balls is defined by the following rela-

tion:       
 

. 
(3)

 

 
 
Fig. 1. Rotor-bearing system. 
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Bearing load distribution (refer to Fig. 3) with respect to 
angular position of ball is calculated by Eq. (4): 

 

 (4) 
 
where  

 
2.2 Calculation of restoring force 

In general, the deflection of the ith ball located at any angle 
q  is calculated by following expression (refer to Fig. 4): 

 
. (5a) 

 
x  and y  are the deflections along X and Y direction re-

spectively and g  is the internal radial clearance which is the 
clearance between an imaginary circle, which circumscribes 
the balls and the outer race. At the time of impact at the defect, 
a pulse of short duration is produced and it is accounted for by 
the term D  i.e. additional deflection. Hence, Eq. (5a) is 
modified by adding D  to internal radial clearance and is 
given by  

 
. (5b) 

 
The restoring force generated by ball-race contact deforma-

tion of the ball is of nonlinear nature because of the Hertzian 
contact. The local Hertzian contact force and deflection rela-
tionship for bearing may be written as 

 

 (6a) 
 

where K is the constant for Hertzian contact elastic deforma-
tion which depends on the contact geometry.  

Substituting d  from Eq. (5b) in Eq. (6a), we get 

 

 (6b) 
 
For the contact of each ball in non-defective region, referred 

to as normal race contact, additional deflection, D  is zero. 
The restoring force is resolved along directions X and Y. The 
components of the restoring force are  

 

 
(6c)

 

 
(6d)

 
 

where z = No. of balls. 
Fig. 5 shows the contact between mating surfaces of revolu-

tion. Under no load condition, point contact exists between the 

 
 
Fig. 2. Rolling speeds and velocities. 

 

 
 
Fig. 3. Bearing load distribution. 

 

 
 
Fig. 4. Schematic diagram of a rolling element bearing. 
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ball and race which changes to area contact which has the 
shape of an ellipse. The two terms curvature sum and curva-
ture difference describe the contact between the mating sur-
faces. Curvature sum ∑ρ is calculated using the radii of curva-
ture in a pair of principal planes passing through the point 
contact and using curvature difference F(ρ), dimensionless 
contact deformation δ* is calculated [2]. The effective elastic 
modulus K for the bearing system is written as: 

 

. 
(7a)

 
 
The elastic modulus for the contact of a ball with the inner 

race is 
 

    
(7b)

 
 
Similarly, the elastic modulus for the contact of a ball with 

the outer race is 

      
(7c)

 
 

The value of K for 6205 bearing is 49582 N/mm [14]. 

 
2.3 Simulation of local defects using blending functions of 

cubic hermite spline 

This section describes mathematical simulation of localized 
defects on outer race. Cracks, pits, spalls are included in the 
class of localized defects. When such a defect on one surface 
strikes its mating surface, a pulse of short duration is produced. 
This pulse represents the severity, extent and age of the dam-
age. These factors have influence on the amplitude of re-
sponse. Different pulse forms being used for this situation are 
rectangular, triangular, half-sine pulse etc. This pulse being of 
short duration, there is tendency to neglect the pulse width. In 
real situation, the pulse generated due to impact at the defect 
may not be of such a regular shape. Rectangular, triangular 
forms are the approximations for the shape of the real pulse 
and are the two extremities (non-realistic) in between which 
the shape of the defect pulse lies in actual situation. Half sine 
pulse is one of the cases lying in between these two extreme 
forms. For the pulses of regular shape, the variation in dis-
placement is gradual throughout which may not happen in real 
situations depending on the form of defect. Secondly, this 
assumption is based on the fact that displacement at all inter-
mediate points between the two instances; entry of ball in the 
defect region and exit at the defect are known. In real situation, 
displacement at intermediate points are dictated by the shape 
of the defect, depth of the defect and width of the defect, 
based on which the real pulse will assume some shape. 

In the present study, the simulation of the defect pulse using 
cubic Hermite spline is based on the assumption that the dis-
placements at intermediate points are difficult to predict and 
the more realistic assumption would be to assume displace-
ment behaviour at the entry edge of the defect and exit edge of 
the defect. In case of cubic Hermite spline, displacements at 
the control points (intermediate points) are not known. Instead 

Table 1. Input data for the model. 
 

Inner race diameter 31.1 mm 

Outer race diameter 46.98 mm 

Pitch diameter 39.04 mm 

Ball diameter 7.94 mm 

Internal radial clearance 20 µm 

Radial load 424 N 

Mass of rotor 4 kg  

No of balls 9 

Speed of rotor 2400 rpm 

Damping factor 200 Ns/m 

Contact angle 00 

 

 
 
Fig. 5. Geometry of contacting bodies. 

 

 
 
Fig. 6. Different positions of ball no. 2 relative to the outer race defect. 
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displacements at the start and end points are known. At the 
starting edge of the defect, ball retards due to loss of contact 
with the outer race and at this instant the displacement is as-
sumed to be -1 as shown in Fig. 8. As the ball leaves the de-
fect, it accelerates due to regaining of contact with the outer 
race and the displacement is assumed to be +1. Hence, the 
displacement law is retardation followed by acceleration. As 
opposed to this, in case of regular shapes, the displacements 
are gradual which is far from reality.  

As every ball establishes and breaks the contact with the de-
fective region of the outer race shown in Fig. 6, the geometry 
of race movement will change. The behavior of ball establish-
ing and breaking the contact with the race is similar to cam 
(follower) jump phenomenon. Essentially the ball orbiting the 
inner race acts as a cam and the outer race acts as the follower. 
For normal race contact, there is hardly any change in the 
geometry of the movement. During the travel of the ball in the 
defective region of the outer race, the locus of race center 
position as a function of angle q  and its time derivatives are 
to be obtained through the mathematical modeling of the sys-
tem. While developing the computer program, it is ensured 
that the ball at q  is the only one in the defective region. The 
ball ahead of it (leading) has lost its contact with the defective 
region and the ball lagging behind is waiting for its contact 
with the defective region.  

In mathematics, a spline is a sufficiently smooth polynomial 
function that is piecewise defined and it possesses a high de-
gree of smoothness at the places where the polynomial pieces 
connect. Splines are curves which are usually required to be 
continuous and smooth. Cubic spline interpolation is a fast, 
efficient and stable method of function interpolation between 
key points. In spline interpolation, the interpolation interval is 
divided into small subintervals. Each of these subintervals is 
interpolated by using the third-degree polynomial. The poly-
nomial coefficients are chosen to satisfy certain conditions. 
General requirements are function continuity passing through 
all given points and continuity of higher derivatives etc. In 
hermite interpolation, the function value and the value of the 
first derivative are known at each interpolating point. Interpo-
lation with derivative values is also known as osculatory in-
terpolation. Hermite curves are very easy to calculate but also 
very powerful. To calculate a hermite curve, the following 
vectors are needed: 

1. P0 = the start point of the curve. 
2. P0

/ = the tangent at the start point describing how the 
curve leaves point P0. 

3. P1 = the endpoint of the curve. 
4. P1

/ = the tangent at the endpoint of the curve. 
These four vectors are simply multiplied with four hermite 

basis functions shown in Fig. 7 and added together. These 
blending functions are given by Eqs. (8a)-(d): 

 
H0(t) = 2t3-3t2+1        (8a) 
H1(t) = -2t3+3t2            (8b) 
H2(t) = t3-2t2+t        (8c) 

H3(t) = t3-t2.        (8d) 
 
The function H0(t) starts at 1 goes slowly to 0. Function 

H1(t) starts at 0 and goes slowly to 1. Multiply the start point 
with H0(t) and the endpoint with H1(t). Let t go from 0 to 1 to 
interpolate between known start and end points. H2(t) and 
H3(t) are applied to the tangents in the same manner. They 
make sure that the curve blends in the desired direction at the 
start and end point. Blending functions point wise can be writ-
ten as 

 
P(t) = (2t3-3t2+1)P0+(-2t3+3t2)P1+(t3-2t2+t)P0

/+(t3-t2)P1
/    (9a) 

P/(t) = (6t2-6t) P0+(-6t2+6t) P1+ (3t2-4t+1) P0
/+ (3t2-2t) P1

/ .   (9b) 
 
Substituting P0 = -1 and P1 = 1 in Eq. (9a), equation of the 

curve is written as 
 
S = - 4t3+6t2-1.                   (9c) 
 
For 1mm defect size on outer race ‘t’ in MATLAB program 

is calculated as 

 
t = 0:0.043478:1            (9d) 

 
where time step = 0.043478 = 1/stay instants of ball in outer 
race defect (23 for 1 mm defect size). The Stay instants of ball 
in outer race defect changes linearly depending on the defect 
size. The effect of bearing degradation is simulated in the 
mathematical model by considering different defect sizes such 
as 0.5 mm, 1 mm, 1.5 mm. The shape of the pulse remains 
same but the size varies when there is change in the defect size. 
This is one of the features of the defect pulse modelled by 
cubic hermite spline. The simulated pulse generated as a result 
of impact at the defect is shown in Fig. 8. Normal race contact 
in Fig. 8 refers to the normal geometrical movement of the 
outer race i.e. when the defect lies between the neighboring 
balls and is not getting struck. When the defect gets struck, the 
movement of the outer race geometry changes resulting in 
generation of the pulse as described in the previous section.  

 
Fig. 7. Hermite blending functions. 
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2.4 Equation of motion 

Taking x and y as the displacements along X and Y direc-
tions, the governing equations accounting for inertia, damping 
and restoring forces and constant vertical force in X direction 
for a two degree of freedom system are formed.  

 

 
            (10) 

.
 

            (11) 
 
The system of Eqs. (10) and (11) are two coupled non-linear 

ordinary second order differential equations. Here D  term 
corresponds to additional deflection for the travel of ball in the 
defective region of the outer race which is modeled by cubic 
Hermite spline. This  D  term is calculated based on Eqs. 
9(c) and (d) and is graphically represented in Fig. 8. For nor-
mal race contact, D  i.e. additional deflection will be zero. 
The damping in this system is represented by an equivalent 
viscous damping C. 

 
3. Results and discussion 

3.1 Computational procedure 

Using Euler’s method Eqs. (10) and (11) are solved and the 
displacements in X and Y directions and their time derivatives 
are obtained. Initial conditions of x and y are 10-6. The time step 
of 1.745x10-5 sec has been considered in the computation which 
corresponds to 0.10 bearing rotation increment. A computer 
program in MATLAB is developed for solving the equations. 

 
For a shaft speed Ns = 2400 rpm. 
Cage speed, cw = 100 rad/sec. 
Ball pass frequency of outer race, fod = 144 Hz. 

 
3.2 Effect of change in the angular position of defect  on 

outer race  

To study the effect on the amplitude level of vibration with 
change in position of the defect on outer race, the angular 
position of the defect is changed in steps at 424 N constant 

 
 
Fig. 8. Simulated Pulse generated by impact at the defect. 

 
 

 
Fig. 9. Time waveform for defect on outer race at 424 N radial load. 

 

 
 

 
 

 
 
Fig. 10. Frequency spectra for different defect positions at 424 N radial 
load. 
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radial load. The reference position of the defect is assumed at 
00 and in this position of the defect, the defect is just below the 
load and the expected amplitude level is high. Fig. 9 shows the 
time waveform for 1 mm defect on outer race at 424 N radial 
load.  

Fig. 10 shows the spectra for different angular positions of 
the defect on outer race.  

The theoretical ball pass frequency of outer race (BPFO) is 
144 Hz. The spectra for different conditions of loading and 
position of defect shows dominant peak at this frequency and 
its second harmonic. When the defect is at 0 degree, i.e. just 
below the load, the amplitude of vibration is maximum. As the 
position of the defect is changed away from this reference 
position, it is observed that the amplitude of vibration reduces. 
This variation is shown in Fig. 11.  

 
3.3 Effect of variation of radial load with defect size of 0.5 

mm, defect at 60 degree on outer race 

The radial load on the bearing was varied in steps from 212 
N to 848 N. The frequency spectra for different loading are 
shown in Fig. 12. The variation of amplitude with the radial 
load is plotted in Fig. 13. It is observed that, for the outer race 
defect, with the increase in load, there is significant increase in 
the amplitude level. 

 
3.4 Effect of outer race defect size 

To study the effect of defect size, the load is kept constant at 
424 N and the time step in Eq. (9d) is varied depending on the 
size of defect on outer race.  

The results of increase in the defect size are shown in Fig. 
14. It is observed that the amplitude level increases with the 
increase in defect size.  

 
3.5 Effect of two defects on outer race  

To study the effect of two defects on outer race, additional 
defect is simulated at 1800 to the existing defect. This is done 

 
 

 
 

 
 

 
 
Fig. 12. Frequency spectra for 0.5 mm defect on outer race at 600 for 
different radial loads. 
 

 
 
Fig. 11. Variation of amplitude with angular position of defect at 424 N 
radial load. 
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for 1mm defect size and at 424 N constant load. Based on 
spectra shown in Fig. 15, it can be concluded that the vibration 
amplitude is almost doubled in case of two defects 1800 apart 
as compared to a single defect on outer race. 

4. Experimentation 

In the present work, the vibration signatures are collected 
from the bearing of an experimental set up shown in Fig. 16. 
The shaft of the experimental setup is driven by an AC motor 
equipped with a variable frequency drive. The test bearing, a 
single-row deep groove ball bearing (SKF 6205) is placed in 
the bearing housing at the non-drive end of the shaft and 
loaded by screw and nut arrangement in radial direction. The 
vibrations of the bearing are recorded using PCB shear accel-
erometer with a sensitivity of 100 mv/g. The accelerometer 
mounted on the test bearing housing is connected to NI 9234 
sound and vibration card. Using this hardware, the time do-
main signals of the test bearings are acquired and processed in 
Lab VIEW software. The defects were created on the outer 
race by electric discharge machining. The signals are sampled 
at 10 kHz with 4096 samples. For the experimentation, bear-
ing was run at 2400 rpm.  

Figs. 17 and 18 show the experimental results of the defec-
tive bearing with the defect on outer race. There is slight 

 
 
Fig. 13. Variation of amplitude with radial load. 
 

 
 

 
 

 
 
Fig. 14. Effect of outer race defect size. 
 

 

 
 

 
 
Fig. 15. Effect of two defects on outer race. 

 

 
 
Fig. 16. Experimental setup. 
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variation of about 4% in the theoretical and experimental val-
ues of outer race defect frequency. The amplitude of vibration 
predicted by the model and obtained through experimentation 
differs because of the fact that the theoretical model does not 
account for contribution of each element in the vibration of 
rotor bearing system. It is observed that with the increase in 
defect size on outer race, the amplitude of vibration increases 
as predicted by the theoretical model. 

 
5. Conclusions 

(1) In the present study a theoretical model is developed to 

predict the vibration produced by bearing with the defect on 
outer race. The model simulates the effect of radial load, effect 
of defect size, its position and effect of multiple defects and 
predicts the presence of fault on the outer race of bearing by 
showing peak in the spectrum at the characteristic defect fre-
quency. The frequency spectrum obtained from mathematical 
model shows peaks mainly at BPFO denoted by fod and its 
harmonic denoted by 2fod. The results have been validated 
with experimentation under different defect sizes on the outer 
race. The frequency spectra obtained from experimentation 
also shows peak at BPFO and its harmonics and also at the 
shaft frequency and its harmonics. 

(2) The model very accurately shows decrease in the ampli-
tude level when the angular position of the defect is kept away 
from the load zone. It is clear from the model that with the 
increase in the size of the defect, the vibration amplitude in-
creases. Similarly, for two defects on outer race, vibration 
amplitude is almost doubled as compared to a single defect on 
outer race. 

(3) There is margin of difference in the amplitude level pre-
dicted by the model and obtained through the experimentation. 
This is because of the fact that the theoretical model cannot 
account for contribution of each element in the vibration of 
rotor bearing system. 

(4) In this model, the pulse generated by striking the defect 
is modeled according to the physical phenomenon using the 
blending functions of the cubic hermite spline. There are very 
few studies on modeling the defect using splines.  The mod-
eling of the defect pulse using cubic Hermite spline is based 
on the assumption that displacements at the control points 
(intermediate points) are not known. Instead displacements at 
the start and end points are known which are -1 and +1 respec-
tively. 

(5) This model simulates the defect on outer race only. 
While simulating the defects on inner race with spline, major 
changes are required to be done in the mathematical model. 
This being the first step of using the spline for modelling the 
defect pulse, the present study is limited to the defect on outer 
race only. In the next study, efforts will be made to implement 
the cubic hermite spline for the defective inner race and the 
defective ball. 
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Nomenclature------------------------------------------------------------------------ 

nc : Rotational speed of cage (rpm) 
ns : Rotational speed of shaft (rpm) 
ωc : Angular velocity of cage (rad/sec) 
ωr : Angular velocity of ball (rad/sec) 
D : Diameter of ball (m) 

 
 
Fig. 17. Time waveform of defective bearing at 2400 rpm (experimental). 

 

 
 

 
 

 
 
Fig. 18. Effect of outer race defect size at 2400 rpm (experimental). 
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dm : Pitch diameter (m) 
g   : Radial clearance (µm) 

maxd   : Maximum deflection in the direction of radial load 
e 	 	 :	Load	distribution	factor	
x,y : Deflection along X and Y direction (m) 
n : Load-deflection exponent 
K : Load-deflection factor 
∑ρ : Curvature sum 
F (ρ) : Curvature difference 
δ* : Dimensionless contact deformation 
D   : Additional deflection (m) 
C : Damping factor (N s/m) 
M : Mass of rotor (kg) 
W : Radial load (N) 
BPFO : Ball pass frequency outer race (Hz) 

 
References 

[1] C. S. Sunnersjo, Varying compliance vibrations of rolling 
bearings, Journal of Sound and Vibration, 58 (3) (1978) 
363-373. 

[2] T. A. Harris, Rolling bearing analysis, Third Ed. John Wiley 
and Sons, New York, USA (2001).  

[3] T. S. Nisbet and G. W. Mullett, Rolling bearings in service: 
Interpretation of types of damage, Hutchinson (1978). 

[4] N. Tandon and A. Choudhury, A review of vibration and 
acoustic measurement methods for the detection of defects 
in rolling element bearings, Tribology International, 32 
(1999) 469-480. 

[5] P. D. McFadden and J. D. Smith, Model for the vibration 
produced by a single point defect in a rolling element bear-
ing, Journal of Sound and Vibration, 96 (1) (1984) 69-82. 

[6] P. D. McFadden and J. D. Smith, Model for the vibration 
produced by multiple point defects in a rolling element bear-
ing, Journal of Sound and Vibration, 98 (2) (1985) 263-73. 

[7] Y. T. Su and S. J. Lin, On initial fault detection of a tapered 
roller bearing: frequency domain analysis, Journal of Sound 
and Vibration, 155 (1) (1992) 75-84. 

[8] N. Tandon and A. Choudhury, An analytical model for the 
prediction of the vibration response of rolling element bear-
ings due to a localized defect, Journal of Sound and Vibra- 

tion, 205 (3) (1997) 275-92. 
[9] N. Sawalhi and R. B. Randall, Simulating gear and bearing 

interactions in presence of faults: Part I. The combined gear 
bearing dynamic model and the simulation of localized bear-
ing faults, Mech. Syst. Signal Process, 22 (2008) 1924-1951. 

[10]   V. N. Patel, N. Tandon and R. K. Pandey, A dynamic 
model for vibration studies of deep groove ball bearings con-
sidering single and multiple defects in races, Journal of Tri-
bology, 132 (2010) 041101-1-10. 

[11]   M. S. Patil, Jose Mathew, P. K. Rajendrakumar and Sandeep 
Desai, A theoretical model to predict the effect of localized 
defect on vibrations associated with ball bearing, Interna-
tional Journal of Mechanical Sciences, 52 (2010) 1193-1201. 

[12]   S. P. Harsha, K. Sandeep1 and R. Prakash, Non-linear dy-
namic behaviors of rolling element  bearings due to surface 
waviness, Journal of Sound and Vibration, 272 (2004) 557-580. 

[13]   R. K. Purohit and K. Purohit, Dynamic analysis of ball 
bearings with effect of preload and number of balls Int. 
Journal of Applied Mechanics and Engineering, 11 (1) 
(2006) 77-91. 

[14]   Yi Guo and Robert G. Parker, Stiffness matrix calculation 
of rolling element bearings using a finite element/contact 
mechanics model, Mechanism and Machine Theory, 51 
(2012) 32-45. 

 
A. D. Sahasrabudhe did his Bachelor 
of Engineering Degree in Mechanical 
Engineering with a Gold Medal from 
Karnataka University followed by Mas-
ter of Engineering and Ph.D. from In-
dian Institute of Science, Bangalore 
with UGC fellowship. 

 
 

P. G. Kulkarni is currently a Ph.D. stu-
dent of COEP, University of Pune, India. 
He did his Master of Engineering in 
Mechanical Engineering from Walchand 
College of Engineering, Sangli. His 
research interests include condition 
monitoring and signal analysis.  

 
 
 
 
 
 
 
 
 


