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Abstract 
 
Feature-based classification techniques consist of data acquisition, preprocessing, feature representation, feature calculation, feature se-

lection, and classifiers. They are useful for online, real-time condition monitoring and fault diagnosis / features, which are now available 
with the development of information technologies and various measurement techniques. In this paper, an intelligent feature-based fault 
diagnosis is suggested, developed, and compared with vibration signals and thermal images. Fault diagnosis is performed using thermal 
imaging along with support vector machine (SVM) classification to simulate machinery faults, resulting in an accuracy level comparable 
to vibration signals. The observed results show that fault diagnosis using thermal images for rotating machines can be applied to indus-
trial areas as a novel intelligent fault diagnostic method with plausible accuracy. It can be also proposed as a unique non-contact method 
to analyze rotating systems in mass production lines within a short time.  
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1. Introduction 

Condition monitoring and fault diagnosis of operating ma-
chines has received considerable attentions because of its po-
tential advantages, such as reduced maintenance cost, im-
proved productivity, and increased machine operation [1]. 
Williams et al. [2] adopted the British standard (BS 
3811:1984) and defined condition monitoring as the continu-
ous or periodic measurement and interpretation of data to in-
dicate the condition of an item and determine its need for 
maintenance. Condition monitoring is needed to guarantee the 
survival of a machine so that incipient fault can be detected 
and diagnosed as early as possible. The possibility of failure 
cannot be avoided in machines, but the early diagnosis of in-
cipient failure is useful to avoid machine breakdowns. When 
fault occurrence exists in the machines, symptoms will be 
present, such as excessive vibration and noise, extremely high 
temperature, and oil debris. Vibration analysis, thermography, 
motor current signature analysis, airborne ultrasound analysis, 
and other technologies can be used as condition monitoring 
and fault diagnostic techniques.  

Predictive maintenance evaluates the condition of equip-

ment through periodic or continuous monitoring. The ultimate 
goal of predictive maintenance is to perform maintenance at a 
scheduled point in time when the maintenance activity is cost 
effective and before the equipment loses performance within a 
threshold.  

Vibration sensors have been used extensively as fundamen-
tal tools for machine condition monitoring for approximately 
four decades [3]. The sensors are used for their effectiveness 
in measurement process and data analysis by representing 
machine conditions. Vibration signal monitoring in rotating 
machines remains effective for obtaining machine behavior. It 
can extract machine conditions through signal analysis in time 
and frequency domains. Many researchers have reported on 
machine fault diagnostic techniques that use vibration sensors 
with the application of an intelligent system in their proposed 
methods [4-7]. The use of temperature monitoring for journal 
bearings has also been reported [8-10]. However, these works 
do not employ any intelligent systems for monitoring and 
diagnosis. Temperature monitoring using a thermocouple 
sensor is usually employed as a secondary sensor instead of 
vibration and AE sensors. Therefore, reports that employ intel-
ligent diagnostics using such sensors are rarely found. 

Another method that has recently become popular in ma-
chine condition monitoring and fault diagnosis is thermogra-
phy. Good performance and simplicity have made this tech-
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nique highly popular in engineering maintenance. Thermogra-
phy has been used in a wide range of areas, such as mechani-
cal, electrical, petrochemical, material, medical, structural, and 
architecture. The use of thermography in machine condition 
monitoring and diagnosis has been reported; infrared thermo-
graphy (IRT) was performed to detect faults in rolling ele-
ments that bear degradation [11]. Evaluation of thermal data 
image for machine diagnosis was also reported [13]. Principal 
component and independent component analyses extract im-
age features. Their proposed system was augmented using 
support vector machine (SVM) for the diagnostic process. A 
recent publication implemented feature extraction of images 
through two-dimensional (2-D) discrete wavelet transform 
[14]. The intelligent system used the SVM for machine diag-
nosis.  

However, the lack of trained experts has been a serious is-
sue in industries for several decades. The effort to solve this 
problem depends on the expert system or on machine learning 
systems. Some studies have investigated fault diagnosis that 
uses artificial intelligence with vibration signal as the alterna-
tive. However, few studies have investigated the intelligent 
fault diagnosis of rotating machines with thermal images, even 
though thermography is a successful diagnostic tool for ma-
chines. Hence, the motivation of this research is to establish an 
intelligent fault diagnostic method that can be effectively ap-
plied in machine-based thermal images and vibration. SVM, a 
relatively new computational learning method based on statis-
tical learning theory, was introduced by Vapnik et al. [15, 16] 
to serve as ES and to carry out intelligent machine condition 
monitoring system. SVM became famous and popular in the 
machine learning community due to its excellent generaliza-
tion ability, which is better than that of traditional methods 
such as neural network. Therefore, SVM has been success-
fully applied in a number of applications, ranging from face 
detection, verification, and recognition; object detection and 
recognition; as well as handwritten character and digit recog-
nition; to text detection and categorization; speech and speaker 
verification, recognition, information; and image retrieval, 
prediction.  

Recently, significant technological developments have been 
made in the field of IRT, resulting in the appearance of low-
cost IRT instruments. These developments have not only 
popularized the monitoring technology, but have also caused a 
dramatic increase in the number and variety of IRT applica-
tions. To use the thermography correctly and extract more 
useful information from thermal images, users must know its 
exact advantages and limitations. A predictive maintenance 
using IRT is widely applied in the industrial field for high- and 
low-voltage electric equipment, rotating machinery, and other 
potential applications because heat is often an early symptom 
of equipment damage or malfunction. 

This paper focuses on developing a novel method that uses 
the SVM algorithm for fault diagnosis through IRT, which can 
be an alternative to vibration signal analysis. The aim of this 
research is to redevelop and modify the SVM algorithm and to 

combine it with other preprocessing methods to obtain better 
performance from the classification function of SVM. 

 
2. Feature-based diagnostic techniques 

2.1 Feature extraction and selection 

Too many features can cause cures of dimensionality, 
whereas too few features may greatly degrade classification 
accuracy. Two methods can effectively reduce feature dimen-
sionality: feature extraction and feature selection. Methods 
that create new features based on transformations or combina-
tions of the original feature set are called feature extraction. 
Feature selection refers to algorithms that select the best fea-
ture subset from all the features. The feature extraction often 
precedes feature selection. It also leads to savings in computa-
tion time, shown in Fig. 1. Feature selection contributes to 
monitoring and diagnosis accuracy. SVM is a relatively new 
computational learning method based on statistical learning 
theory. Introduced by Vapnik et al., SVM has become famous 
and popular in the machine learning community due to its 
excellent generalization ability compared with that of tradi-
tional methods such as neural network [16].  

 
2.2 Binary classification using SVM 

In the machine condition monitoring and the fault diagnosis, 
the SVM is employed to recognize certain special patterns 
from the acquired signal. These patterns are then classified 
according to the fault occurrence in the machine. After the 
signal acquisition, a feature representation method can be 
performed to define the features, such as the statistical feature 
of the signal, for classification purposes. These features can be 
considered the patterns that should be recognized using SVM. 

For linear data, determining the hyperplane f(x) = 0 that 
separates the given data is possible. 

 

1
( ) 0

M
T

j j
j

f b w x b
=

= + = + =åx w x  (1) 

 
where w is the M-dimensional vector and b is a scalar. The 
complete equation can be written as 
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where the hyperplane is the classifier of input data in either the 
positive class or the negative class. Vector w and scalar b are 

 
 
Fig. 1. Feature-based condition monitoring and fault diagnostic system [1]. 
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used to define the position of the separating hyperplane. The 
decision function is made using sign f(x) to create a separating 
hyperplane that classifies input data in either a positive class 
or a negative class. A distinctly separating hyperplane should 
satisfy the constraints indicated below. 
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For the nonlinear function, the equation below can be 

used to solve the dual optimization problem. 
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where ai is the coefficient required to express the w and solve 
the minimum of w.  

For the multi-class classification, different approaches, such 
as one-against-one (OAO) and one-against-all (OAA), can be 
used in the fault diagnosis of machine systems. A detailed 
discussion on these approaches can be found in Ref. [17]. 

  
3. Experimental details 

The experiment was carried out using a small machinery 
fault simulator (MFS) that can simulate the fault modes that 
commonly occur in rotating machinery, such as misalignment, 
unbalance, ball bearing faults, and other mechanical fault 
situations. The machine has a range of operating speeds up to 
6000 rpm. The fault simulator has a 0.5 kW motor, 60 Hz, 
three-phase induction motor, a coupling, bearings, discs, and a 
shaft. The faulty conditions to be analyzed are bearing fault, 
unbalance, misalignment, and looseness. A normal condition 
(healthy, condition 1) is a benchmark for comparing the four 
faulty conditions. The MFS was operated at 1800 rpm. The 
faulty conditions are described with normal, unbalanced, 
looseness, misalignment and bearing fault cases. 

When tested for each faulty condition, the machine should 
be operated for over 20 minutes for each fault to ensure the 
temperature saturation of the bearings and motors. The objec-
tive of this experiment is to figure out the IR characteristics of 
the diagnosis for faulty motors. This information is used to 
process a variety of features to obtain the difference between 
faulty motors and to confirm a possibility as a mechanical 
fault diagnostic tool.  

The vibration and thermography signature for detecting and 
diagnosing faults in an induction motor may be considered as 
a kind of pattern recognition paradigm. It consists of data ac-
quisition; signal processing; feature extraction, selection, and 
reduction; and fault diagnosis. The aim of this method is to 
find a new alternative source feature and a machine diagnostic 
technique using SVM. A novel fault diagnostic method for 
induction motors is proposed based on feature extraction, dis-
tance evaluation technique, and SVM multi-class classifica-

tion. For one-dimensional signals, the acquisition of vibration 
data was carried out and then followed by feature calculation. 
The statistical features were calculated from the time and fre-
quency domains of the vibration signals. Feature extraction 
using a nonlinear technique via component analysis reduces 
dimensionality. This step is performed to remove redundant 
features and even degrade the performance of the classifier. 
Feature selection was performed using the distance of evalua-
tion technique. This method was chosen due to its simplicity 
and reliability. Finally, the classification process for diagnos-
ing faults was carried out using SVM based on multi-class 
classification. For 2-D signals, thermal images were acquired 
simultaneously with vibration data. Then, the format of ther-
mal images was changed from RGB to CIELab space for fea-
ture calculation. The transformed images were more useful 
because they were of a color scale independent of the device. 
Next, the color differences were grouped according to k-
means algorithms to segment the region of interest and reduce 
data. The SVM algorithm was used to calculate shape features, 
which could represent the thermal pattern from images calcu-
lated and classify the diagnosis of faults. The vibration signals 
were acquired using a dynamic analyzer (LMS, PIMENTO) 
with eight channels, 24bit A/D converter, through four accel-
erometers with a sensitivity of 100 mV/g on the vertical and 
horizontal directions. The sampling rate was 5 kHz, and data 
were recorded every 20 sec per fault. The thermal images of 
the simulator were recorded using a cooled-type IR camera 
(FLIR, SC 5000). The acquired images were stored in a note-
book computer in RGB format, with an image size of 320 ´ 
256 pixels and 60 Hz frame rate. Fig. 2 shows the small MFS. 

To digitize and present radiated energy as a form of color 
gradient in thermal images, the measured thermal images were 
reformed as a matrix for the computational process and trans-
formed into CIELab color space coordinates. CIELab cannot 
be transformed directly from RGB, and should first be trans-
formed into CIEXYZ. The CIEXYZ system can be calculated 
using the standardized transform as follows [18]: 

 
Fig. 2. Experimental setup for vibration detection of the bearing house 
using a small MFS. Insert shows the thermography measurement sys-
tem of MFS. 
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The CIELab can be calculated with these X, Y, Z values, 

and Xn, Yn, Zn, CIE tristimulus values of the reference white 
point. Thus, * * *, , L a b are given as follows [19]: 
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4. Results and discussions 

The measured vibration signals and thermography images 
are shown in Fig. 3. From the thermal images in Fig. 3(b), the 
differently colored rotor shaft and bearing (in a brighter color 
than the background color) indicates that heat dissipations are 
mainly from two bearings and thermal spreading toward con-
nected shafts, resulting in a gradual change in temperature 
along the distance. However, the measured time signal of the 
misaligned sample, shown in Figs. 3(c) and (d), presents sta-
ble periodic peaks not found under normal conditions [Fig. 
3(a)]. Usually, friction that results from mechanical faults is 
the main factor that generates heat. Therefore, a misaligned 
shaft and bearing fault can generate more heat around the 
bearing housing, which can produce a thermal gradient. As 
shown in Fig. 3(d), a larger color gradient from the left bear-
ing is clearly observed because the bearing is misaligned. An 
additional fault is shown when the bearing outer race fault of 
the right bearing gives additional peaks in the time signal with 
the highest amplitude in Fig. 3(e). The clear difference in 
color gradient in the right bearing, compared to Fig. 3(d), cor-
responds to the time signal measurement.  

The acquired thermal images were transformed successfully 

      
                                          (a)                                   (b) 
 

      
                                           (c)                                   (d) 
 

      
                                           (e)                                   (f) 
 
Fig. 3. Time signal and thermal images of MFS operating under (a-b) normal; (c-d) parallel misalignment; (e-f) bearing outer race fault conditions.  
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from RGB values to CIELab. L* values can be excluded to 
simplify feature calculation because a thermal image is the 
distribution of radiation and the radiations from MFS. The 
background behind the MFS was too distinctive to rule the 
values out. The L* values in CIELAB were changed to 0, and 
the (a, b) values of all the pixels in each thermal image could 
be projected into an a-b plane without any image distortion, as 
shown in Fig. 4. The dots in Fig. 4 represent the plus values, 
and the black dots represent the minus values. From the pro-
jected patterns, which seem to be similar but are not the same, 
we can recognize different fault modes by different projected 
patterns. The pattern for a normal situation in Fig. 4(a) can be 
distinguished by the other fault modes.  

After feature calculation, a large amount of unnecessary in-
formation may continue to be contained. Feature extraction is 
employed to obtain effective features that represent better 

machine conditions. SVMs based on multi-class classification 
are applied to perform the classification process using OAO 
and OAA methods. Fig. 5 shows the extracted regions of in-
terest (shaft, bearing, and bearing housing) in different mode 
conditions. Compared to the normal condition in Fig. 5(a), the 
extracted images from the processed thermal images can sug-
gest meaningful image shapes, which can be used to diagnose 
faults for different fault modes without direct measurement.   

Therefore, extracting the features of a thermal image can 
provide a non-contact inspection method for fault analysis, as 
successfully classified and demonstrated in this study. The 
performance of OAO classifiers is better than that of OAA 
classifiers in terms of classification accuracy. The overall suc-
cess ratios of class classification are 93% for OAA and 95% 
for OAO testing.   

 
5. Conclusions 

The proposed method can be applied with both thermal images 
and vibration. It shows excellent accuracy levels. The accura-
cies of classification by thermal images with only three fea-
tures are 93% to 95% and 96.25% from the classification of 
vibration signals with over four features. To obtain high accu-
racy through SVM with thermal images, the parameters must 
be optimized. In addition, a larger number of image features 
increases the classification performance. Faster and easier 
diagnostic techniques to obtain the condition signals were 
successfully suggested and demonstrated through the non-
contact inspection method via thermography. Therefore, this 
method can be used as an alternative or complementary tool to 
diagnose the faults of rotating machines through vibration. 
Moreover, this method is very useful for diagnosing the stator 
winding problem, which cannot be properly detected early 
with vibration analysis. 
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