
 
 

 
Journal of Mechanical Science and Technology 28 (7) (2014) 2879~2888 

www.springerlink.com/content/1738-494x 
DOI 10.1007/s12206-014-0641-1 

 

 

 

 
Trajectory planning for overhead crane by trolley acceleration shaping† 

Nguyen Quang Hoang1, Soon-Geul Lee2,*, Hyung Kim2 and Sang-Chan Moon2 
1Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi, Vietnam  

2Kyung Hee University, 1732 Deokyoungdae-ro, Giheung-gu, Yongin, Gyeonggi-do, 446-701, Korea    
 

(Manuscript Received October 6, 2013; Revised February 18, 2014; Accepted February 26, 2014)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
This paper proposes a novel off-line trolley trajectory planning method for underactuated overhead cranes. The proposed technique is 

feasible and efficient for overhead crane operation. Dynamic coupling between trolley motion and payload swing was successfully ex-
ploited using a staircase form of trolley acceleration. The payload swings in the constant velocity phase were efficiently suppressed and 
the trolley reached the desired position using this technique. The reasonable number of stairs can be determined by evaluating the resid-
ual oscillation amplitude according to the number of stairs and variation in the natural frequency of the pendulum. The proposed ap-
proach was first simulated from the kinematics viewpoint to verify the validity of the trolley trajectory and the swing angle of the payload. 
The proposed approach was then combined with the dynamics of the overall crane, wherein the robust sliding mode controller was ap-
plied to ensure that the trolley tracks the designed trajectory. The numerical simulation results demonstrated superior performance and 
robustness against parameter uncertainties of the proposed method. The proposed method exhibited potential for application in the con-
trol of underactuated systems, such as overhead cranes, single-link flexible-joint manipulators, and flexible Cartesian manipulators.  
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1. Introduction 

Overhead cranes are widely used in various fields, such as 
heavy industries, seaports, automotive factories, and construc-
tion facilities. The productivity and efficiency of an overhead 
crane depends on payload weight and velocity, as well as on 
the capability of the crane to quickly reduce the swing angle 
of the payload after each operation. Theory and practice have 
shown that high acceleration and deceleration correspond to 
large swing angles. This condition leads to hazardous situation 
and may cause serious accidents when the cargo swing angle 
becomes extremely large. A large cargo swing angle can break 
the crane, damage other equipment and infrastructure, or harm 
nearby people. 

The process of operating a crane can be divided into three 
phases, namely, payload lifting, horizontal transportation, and 
payload lowering. The second phase presents the most diffi-
cult challenge. For this phase, the trolley and the payload need 
to quickly reach the desired position. Meanwhile, the swing 
angle of the payload must remain small and must return to 
zero at the end of each operation. Two main approaches may 
be applied to satisfy this requirement: the design of an anti-
swing controller and the design of a reasonable trajectory for 

the trolley, otherwise known as motion planning. In the sec-
ond approach, the desired trajectory normally comprises three 
phases, namely, acceleration, maintaining constant velocity, 
and deceleration. The time and shape of acceleration in the 
first and third phases are chosen such that the swing angle of 
the payload reaches the maximum, and then decreases to zero. 

The first approach has drawn interest from various fields of 
study. A number of control algorithms have been developed 
for overhead cranes. The simplest approach is designing a 
linear controller based on the linearized model around its tar-
get location. This technique assumes a small payload swing 
during an operation. The crane dynamics can initially be a 
linearized model around its target location; subsequently, lin-
ear control approaches can be designed according to this 
model. This technique can be combined with optimal control 
and extended by gain scheduling [1] and input shaping [2-4]. 

To improve performance, various nonlinear and advanced 
control strategies have been tested on the crane control prob-
lem. These strategies include partial feedback linearization [5-
9], sliding mode control [10-14], and adaptive control [5, 15-
18]. A combination of the control methods has also been con-
sidered, such as adaptive sliding mode control [19-23] and 
adaptive fuzzy sliding mode control [24]. 

A design method based on the energy and passivity of the 
system has recently been investigated. This approach has been 
successfully applied in the control of underactuated systems 
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such as overhead cranes [11, 15, 16, 25]. A controller that 
includes the passivity of the payload swing by using the pay-
load as an end effector of a manipulator has been developed. 
H. Aschemann [26] applied energy shaping by interconnec-
tion and damping assignment according to a linearized model 
to increase the damping factor related to the underactuated 
coordinate. 

Most controllers are designed for position regulation. These 
controllers may be difficult to implement when the trolley 
must travel over a large distance because of the limitation of 
the actuating force. Another problem is that these controllers 
require a sensor to measure trolley motion and another to 
measure the swing angle for feedback. This requirement in-
creases the cost of the crane and may be difficult to implement. 

In the second approach, the swing of the payload is sup-
pressed by designing a reasonable trajectory for the trolley. 
This technique has also been evaluated. N. Sun et al. [15] ap-
plied iterative learning to determine the reasonable trajectory. 
However, the planned trajectory was obtained numerically. 
This iterative process needs to be repeatedly performed for 
each crane operation. H.-H. Lee [27] and N. Sun et al. [16] 
applied rectangular acceleration profile modifications to elimi-
nate residual oscillations of a payload in the constant or zero 
velocity phase. Lee [28] used the acceleration in the sine form 
for the trolley in accelerating and decelerating phases. How-
ever, these methods require a precise natural frequency of the 
payload, which is dependent on the cable length. Thus, this 
technique is dependent on system parameters. N. Sun et al. 
[15] used an analytical function to generate an S-shaped tra-
jectory for the trolley and obtain a smooth function for veloc-
ity and acceleration. However, with this function, the trolley 
can only reach its desired location when time approaches in-
finity. 

This paper presents a novel trajectory planning method for 
overhead cranes, wherein the acceleration in a staircase form 
is used to eliminate the residual oscillation of the payload in 
the constant velocity phase and when the trolley reaches its 
desired location. The constraints on the acceleration ampli-
tudes are given by a set of linear equations that can be easily 
evaluated. Numerical simulation results have demonstrated 
the efficiency of the proposed trajectory planning method. In 
addition, the planned trajectory is tracked by a simple robust 
controller that requires only the trolley motion for feedback. 
These findings suggest that the proposed scheme is efficient 
and feasible for crane control.  

In summary, this paper has the following merits: 
(1) The payload swing is theoretically proven to be zero 

during the constant velocity phase, and no residual swing ex-
ists when the trolley reaches the desired location. 

(2) The trajectory planned by acceleration shaping is robust 
against uncertainties in the natural frequency of the payload, 
depending on the cable length. 

(3) The residual vibration of the payload that depends on the 
number of stairs is investigated by simulation; this number of 
stairs should be three or five.  

(4) An algorithm for trajectory planning is also presented; 
this is convenient for practical implementation because of its 
simple structure. 

The remainder of this paper is organized as follows. Section 
2 presents the problem formulation. Section 3 presents the 
method of acceleration shaping, wherein the trolley accelera-
tion in a staircase form is applied to suppress the residual os-
cillation of the payload. Numerical experiments are demon-
strated in Sec. 4. Finally, Section 5 concludes the paper. 

 
2. Problem formulation 

Trajectory planning for a crane during the horizontal trans-
portation phase is presented in this paper. The rope has a con-
stant length, and the system has two degrees of freedom. To 
obtain the dynamic model of the system, the following as-
sumptions are established: (1) the payload is considered a 
point mass; (2) the mass and stiffness of the hoisting rope are 
disregarded; and (3) the effects of wind disturbances are dis-
regarded. Based on the Lagrangian formulation [29], the dy-
namic model of a two-dimensional overhead crane system is 
expressed as follows: 

 
2

11( ) cos sint p p pm m x m l m l f x uq q q q+ + - + =&& &&& &  (1) 
2cos sin 0p p pm l x m l m glq q q+ + =&&&&  (2) 

 
where ( )x t  denotes the trolley displacement, ( )tq  denotes 
the payload swing angle (Fig. 1), and u  is the force acting on 
the trolley. In this equation of motion, tm  and pm  represent 
the trolley mass and the payload mass, respectively; l  is the 
length of the rope; g  is the gravitational acceleration; and 

11f  is the damping coefficient on the trolley.  
Crane dynamics consists of the actuated part described by 

Eq. (1) and the unactuated part described by Eq. (2). The sec-
ond equation captures the kinematic coupling behavior be-
tween trolley acceleration ( )x t&&  and the payload swing angle 

( )tq , which is given by  
 

sin cos .l g xq q q+ = -&& &&  (3) 
 
In practice, the small swing angle of overhead cranes is usu-

 
 
Fig. 1. 2D overhead crane model.  
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ally maintained. Thus, the approximations for sinq q;  and 
cos 1q ;  can be applied. Hence, Eq. (3) may be rewritten as 

 
2 2( / )n n g xq w q w+ = -&& && (4) 

 
where /n g lw =  is the natural frequency of the payload 
modeled by the pendulum. Eq. (4) clearly shows that trolley 
acceleration directly influences payload swing. Therefore, a 
proper trajectory planning method for the trolley significantly 
affects the reduction or elimination of the payload swing.  

Based on the practical operation of overhead cranes, some 
of the following requirements must be carefully considered 
through trajectory planning for the design specification of the 
trolley:  

P1. The trolley reaches the target position within a finite 
time ft ; i.e., 

 
( ) ,d fx t p t t= " ³ .  (5) 

 
P2. During movement, the trolley velocity and acceleration 

must be less than the maximum values 
 

max max| ( ) | , | ( ) |d dx t v x t a£ £& &&  (6) 
 

where max ,v  maxa  are the permitted maximum velocity and 
acceleration, respectively.  

P3. The maximum payload swing must be kept within an 
acceptable domain, 

 
| ( ) | ubtq q£ . (7) 
 
P4. No swing should occur during the constant velocity 

phase, and when the trolley stops at the destination  
 

( ) 0,tq =  when ( ) 0x t =&&  and ( ) 0, ft t tq = " ³ . (8) 
 
Therefore, the trajectory ( )x t  of the trolley must be de-

signed such that the following conditions are satisfied:  
 

(0) 0, (0) 0, (0) 0, (0) 0

( ) , ( ) 0, ( ) 0, ( ) 0.f d f f f

x x

x t p x t t t

q q

q q

= = = =

= = = =

&&

&&
 (9) 

 
3. Trajectory planning by trolley acceleration shaping 

This section presents the design of a trolley trajectory that 
satisfies Eq. (9). This trajectory planning method is based on 
Eq. (2). If 0( ) 0,tq =  0( ) 0tq =&  and 0( ) 0,x t t t= ³&&  at time 

0 0t ³ , then the swing angle ( )tq  becomes zero for all 0t t³ , 
suggesting the design of the trolley trajectory with ( )x t&&  in 
the accelerating [0, ]at tÎ  and decelerating phase 

[ , ]f a ft t t tÎ -  as 

 
( ) 0, ( ) 0

( ) 0, ( ) 0.
a a

f f

q t q t

q t q t

= =

= =

&

&
  (10) 

For simplicity, the accelerating phase is set to counteract the 
decelerating phase. Thus, motion planning is presented only in 
the accelerating phase. 

 
3.1 Rectangular acceleration profile 

Eq. (4) is obtained with constx a= =&& . Thus, 
 

( ) (cos 1)n
at t
g

q w= - ,   ( ) sinn n
at t
g

q w w= -& . (11) 

 
From Eq. (11), if the accelerating time is determined by 

2 / ,a nkT kt p w= =  1,2,...k = , multiples of the pendulum 
period, then ( ) 0aq t =  and ( ) 0aq t =& . Thus, when the con-
stant velocity phase is switched at this time location, the swing 
angle is maintained at zero. The maximum velocity is deter-
mined by  

 

max
2 .a

n

kv a apt
w

= =  (12) 

 
Eq. (12) suggests that the integer k  must be selected to 

ensure maxa a£  and the maximum swing angle may be de-
rived from Eq. (11) as follows:  

 

max
2( / 2) a
g

q q t= = - .  

 
The traveling distance is then calculated as follows:  
 

max max max

max

( ) ( )

( ).
d f a c a c

a a c

p x t v v v
a

t t t t

t t t

= = + = +

= +
 (13) 

 
where ct  is the time of the constant velocity phase. The ac-
celeration and velocity profiles are shown in Fig. 2. 
 
3.2 Acceleration profile of the stair form 

Based on command shaping, which has been successfully 
applied in control vibration systems, we use a staircase form 

 
 
Fig. 2. Acceleration and velocity profile. 
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instead of a rectangular profile to eliminate residual oscillation. 
Assuming that we can eliminate oscillation in the system after 

1N +  time delay, then the acceleration of the trolley is de-
signed by  

 

0 1 2
0

( ) ( ), 0, ...
N

i i N
i

x t a ts t t t t t
=

= - = < < <å&&  (14) 

 
where constia =  needs to be determined, Nt  is the accel-
eration duration, and the step function is defined as follows: 
 

0,
( )

1, .
i

i
i

t
t

t
t

s t
t
<ì

- = í £î
 (15)  

 
Substituting Eq. (14) into Eq. (4), the following equation 

can be obtained:  
 

[ ]
0

1( ) cos ( ) 1 ( ) .
N

i n i i
i

t a t t
g

q w t s t
=

= - - -å  (16)  

 
From Eq. (16), the residual vibration in the constant veloc-

ity is given by   
 

[ ]

( )
( )

0

0 1

0 0 1 1

0 0 1 1

1( ) cos ( ) 1 ,

( ... )
1 cos cos ... cos cos .

sin sin ... sin sin

N

i n i N
i

N

n n N n N n

n n N n N n

t a t t
g

a a a
a a a t

g
a a a t

q w t t

w t w t w t w

w t w t w t w

=

= - - ³

ì ü- + + + +
ï ï

= + + +í ý
ï ï+ + + +î þ

å
 

 (17) 
 
Thus, the amplitude of the residual oscillation is derived 

from Eq. (17) by  
 

2 2( )n c sV V Vw = +  

with 
0 0

cos , sin .
N N

c i n i s i n i
i i

V a V aw t w t
= =

= =å å  (18) 

 
Eq. (17) shows that the following constraints must be satis-

fied to eliminate the residual oscillation:  
 

0
0

N

i
i

a
=

=å  (19) 

0 0
cos 0, sin 0.

N N

i n i i n i
i i

a aw t w t
= =

= =å å  (20) 

 
In addition, the trolley achieves its maximum velocity after 

accelerating duration Nt . Thus,   
 

1

max
0

( ) .
N

i N i
i

a vt t
-

=

- =å  (21) 

 
Eqs. (19)-(21) form a set of four linear equations for deter-

mining the acceleration stairs of the trolley. With this accel-
eration profile, the residual oscillation is eliminated in the non-
acceleration phases. Eqs. (19) and (20) are denoted as zero-
vibration (ZV) conditions. Various cases for the number of 
stairs N are presented below.  

 
Case 1. 1N =  
In this case, two unknowns need to be determined from four 

constraint equations  
 

0 1 0 1

1 0 max

0, cos 0
sin 0, .

n

n

a a a a
a a v

w t
w t t

+ = + =

= =
 (22) 

 
These equations can be solved when time t  is chosen 

such that  
 
sin 0 & cos 1

2 / , 1,2,...
n n

nk k
w t w t

t p w
= =

Þ = =
 

 
Thus, when 2 / nkt p w= , the amplitudes are given by  
 

max
1 0 max .

2
nva a v

k
w

t p
= - = - = -  (23) 

 
The maximum swing angle is determined by 
 

[ ]0

0
max max

( ) cos 1

2( / 2) .

n

n

at t
g

at v
g g

q t w

wq t
p

< = -

Þ = = - =
 

 
Notably, the case of 1N =  and the case of rectangular ac-

celeration profile are identical. 
 
Case 2. 2N =  
From Eqs. (19) and (21), the constraints are as follows: 
 

0 1 2

0 1 1 2 2

1 1 2 2

0 2 1 2 1 max

0
cos cos 0
sin sin 0
( 0) ( ) .

n n

n n

a a a
a a a

a a
a a v

w t w t
w t w t

t t t

+ + =

+ + =

+ =

- + - =

 (24) 

 
Two time delays 1 2,t t  ( 1 20 t t< < ) should be chosen to 

solve Eq. (24). Choosing 1 2 / ,nkt p w=  2 12t t= , we obtain 
the following:  

 
0 1 2

0 2 1 2 1 max

0,
( ) .

a a a
a a vt t t

+ + =

+ - =
 

 
These equations may be expressed in matrix form as fol-

lows: 
 

,=u dF ,  
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with  
 

max
2 2 1

1 1 1
, [0, ]

0
Tv

t t t
é ù

= =ê ú-ë û
dF . 

 
By applying the pseudo-inverse, we obtain the solution  
 

1( )T T -=a dF FF .  
 
Notably, the time 1 2, ,t t t  in cases 1N =  and 2N =  is 

chosen based on the pendulum frequency. 
 
Case 3. 3N ³  
In this case, constraint Eqs. (19) and (21) are determined af-

ter choosing an arbitrary ,it  ( 1,2,...,i N= ) that satisfies 
0 10 ... Nt t t= < < < . The time Nt  should be greater than the 

pendulum period of the payload; thus, 2 / nT p w= . 
 
Case 4. 5N ³  
For 5N ³ , the system consisting of four constraints, that is, 

Eqs. (19) and (21), and 1 6N + ³  unknowns may have at 
least two additional equations. We set the derivative of Eq. 
(20) with respect to the natural frequency nw  to zero and 
thus obtaining the following:  

 

0 0

0 0

cos sin 0

sin cos 0.

N N

i n i i i n i
i in
N N

i n i i i n i
i in

a a

a a

w t t w t
w

w t t w t
w

= =

= =

¶
= =

¶

¶
= =

¶

å å

å å
 (25) 

 
Combining Eqs. (19), (21), and (25) leads to a set of six 

constraint equations for 1 6N + ³  unknowns. These con-
straint equations are denoted as zero-vibration derivative 
(ZVD) conditions for eliminating the residual oscillation of 
the payload and rewritten as follows:  

 

0

0

0

0

0

1

max
0

0

cos 0

sin 0

sin 0

cos 0

( ) .

N

i
i
N

i n i
i
N

i n i
i
N

i i n i
i
N

i i n i
i
N

i N i
i

a

a

a

a

a

a v

w t

w t

t w t

t w t

t t

=

=

=

=

=

-

=

=

=

=

=

=

- =

å

å

å

å

å

å

 (26) 

 
3.3 Determination of time for the constant velocity phase 

The constant velocity duration ct  must be determined to 
ensure that the trolley reaches the desired location dp . First, 

the movement distance in the accelerating phase is evaluated 
by integrating the velocity function from 0t =  to Nt t=  

 

0

0

0

( ) ( )

( ) ( )

( ) ( ) .N

N

i i
l

t

N

a t a t

v t a t dt

x v t dt
t

s t

t

=

= -

=

=

å

ò
ò

  (27) 

 
The time for constant velocity phase is then expressed as 

follows:  
 

max[( 2 ( )] / 0 .c d Np x vt t= - ³  (28) 
 
The duration ct  must be non-negative. When this condi-

tion is not satisfied, the maximum velocity maxv  can be re-
duced. Reduction of maxv  leads to the reduction of accelera-
tion ia ; thus, the traveling distance in the accelerating dura-
tion ( )Nx t  is also decreased. 

 
3.4 Robustness to parameter uncertainties 

The residual oscillation is eliminated with any number of 
stairs 1N ³  when the natural frequency nw  is precisely 
determined. However, this requirement may not be satisfied. 
In this section, the number N  is selected. The dependence of 
the residual vibration amplitude has been assumed to be de-
fined by Eq. (18) on nw  and N  to demonstrate the influ-
ence of the stair number N . Fig. 3 shows the magnitude 

( , )nV Nw  when the natural frequency of the pendulum varies 
around the nominal values nw  for some cases 1,3,5,6N = . 
For N  = 5 and 6, cases including both ZV and ZVD condi-
tions are considered. As indicated in Figs. 3(a) and (b), the 
magnitude of the residual vibration with 1N =  exhibits the 
highest rate of change around the location  

/ 1nw w = , and is depicted as the highest curve. The curve 
with 3N =  is lower than the curves with 5N =  and 6N = , 
as shown in Fig. 3(a). With the ZVD constraints considered 
(Fig. 3(b)), the curves with N = 5 (ZVD) and 6 (ZVD) are 
almost the same and lower than the curve with N = 5 (ZV) 
around the nominal values nw . Based on these figures, we 

 
 
Fig. 3. Magnitude of residual vibration dependent on N and / nw w . 

 



2884 N. Q. Hoang et al. / Journal of Mechanical Science and Technology 28 (7) (2014) 2879~2888 
 

 

conclude that selecting 3N =  for the case ZV or 5N =  for 
the case ZVD can improve the robustness of the approach.  

 
3.5 Algorithm for determining trajectory parameters 

The proposed trajectory planning method for overhead 
cranes can be summarized as follows:  

(1) The cable length l , traveling distance or desired loca-
tion dp , and maximum velocity maxv  are obtained.  

(2) The natural frequency of the pendulum /n g lw =  
and the period of vibration 2 / nT p w=  are calculated.  

(3) The number of stairs N and time sequence are selected 
as follows  

- Number of stairs N  = 1, 2, 3, ...   
- Time sequence:  
• If N = 1 or 2: consider 0 0, 2 /N nkT kt t p w= = = × , with 

1,2,...k = .  
• If N = 3, 4, … : 0 0,t =  consider freely accelerating du-

ration 2 /N nTt p w> = .  
(4) The following are also calculated:  
- Sequence of acceleration step ia  corresponding to time 

sequence ,it  0,1,...,i N= .   
- Travelling distance in the accelerating and decelerating 

phases 2 ( )Nd x t= × .   
- Time duration for constant velocity phase 

max[ 2 ( )] /c d Np x vt t= - × .   
- Total time of operation 

max2 2 [ 2 ( )] /f c N N d NT p x vt t t t= + = + - × . 

 
4. Numerical simulations 

4.1 Kinematic simulation 

Numerical simulations were conducted using MATLAB to 
verify the validity and efficiency of the proposed approach. In 
the simulation, the system parameters were set as tm =  2.0 kg, 

pm =  0.85 kg, l =  1.20 m, and g =  9.81 m/s2, and the target 
position of the trolley was set as dx =  4 m. The maximum 
velocity is selected as maxv =  0.5 m/s. The pendulum fre-
quency and the corresponding period were determined to be 

nw =  2.8592 rad/s and T = 2.1975 s. By applying the algo-
rithm presented in Section 3, the trajectory parameters for 
some cases of N  were obtained, as presented in Table 1. 

The simulation results for the displacement and acceleration 
of the trolley, as well as the swing angle of the payload, are 
shown in Fig. 4. The desired position is achieved after a finite 
time. The swing angle is kept small in the non-acceleration 
phase and when the trolley reaches its final position. The 
maximum velocity can be increased without changing the 
acceleration duration. However, increasing maximum velocity 
leads to increases in the acceleration magnitude and the swing 
angle in the acceleration time.  

To compare the robustness between the ZVD conditions 
and the ZV conditions, we consider the case wherein the cable 
length is changed to 20% of the nominal one, 01.2l l= . The 
swing angles of the payload in some cases are shown in Fig. 5. 

The residual oscillation of the payload when N = 5 (ZVD) is 
the smallest compared with other cases with N = 1 and N = 5 
(ZV), as shown in Fig. 5. These results verify the robustness 

Table 1. Calculation results for some cases of N.  
 

Case N and k a [m/s2] t  [s] cT  [s] fT  [s] maxq [o] 

1-1. N = 1, 
k = 1 

  0.2275 
−0.2275 

t = [0 
2.1975] 5.802 10.197 2.654 

1-2. N = 1, 
k = 2 

  0.1138 
−0.1138 

t = [0     
4.3951] 3.604 12.395 1.325 

2. 
Nt = 1.5 T 

N = 3 
(ZV) 

  0.1138 
  0.1138 
−0.1138 
−0.1138 

t = [0 
1.0988 
2.1975 
3.2963] 

4.703 11.296 1.333 

3. 
Nt = 1.5 T 

N = 4 
(ZV) 

  0.0889 
  0.1257 
−0.0000 
−0.1257 
−0.0889 

t = [0 
0.8241 
1.6482 
2.4722 
3.2963] 

4.703 11.296 1.775 

4. 
Nt = 1.5 T 

N = 5 
(ZV) 

  0.0822 
  0.0938 
  0.0658 
−0.0658 
−0.0938 
−0.0822 

t = [0 
0.6593 
1.3185 
1.9778 
2.6370 
3.2963] 

4.703 11.296 1.705 

5. 
Nt = 1.5 T 

N = 5 
(ZVD) 

  0.1107 
  0.0261 
  0.1268 
−0.1268 
−0.0261 
−0.1107 

t = [0 
0.6593 
1.3185 
1.9778 
2.6370 
3.2963] 

4.703 11.296 1.420 
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Fig. 4. Kinematic simulation results when l = 1.2 m and xd = 4 m.  
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of the approach to the uncertainty in the cable length. 
 

4.2 Dynamic simulation with a sliding mode controller 

The trolley must be manipulated to track the designed tra-
jectory to ensure a small swing angle in the constant velocity 
phase. A sliding mode controller was applied by considering 
disturbances induced by the payload swing. This controller 
was developed based on the dynamics of the trolley, and re-
quired only the trolley motion for feedback.  

The control equation is given by  
 

11( ) sgn( )t p r su m m x f x ks k s= + + - -&& &  (29) 

 
where ,dx x x= -%  ,dx x x= -& & &%  ,s x xl= +&% %  r dx x xl= - &&& && %  for 

0l > , and 0,k >  | |sk d>  ( | |d  is the uncertainty bound 
parameter). The control equation denoted as Eq. (29) may 
cause chattering in the system because of the sgn -function, 
and is thus replaced by a smooth function sgn( ) tanh( ),s cs»  
with 1c >> .  

Some simulations were performed with the controller pa-
rameters 2,  10,  2sk kl = = = . The simulation results for the 
displacement of the trolley, swing angle of the load, and con-
trol input are shown in Fig. 6. The trolley tracks the desired 
trajectory and reaches its destination, and the swing angle 
remains small. The residual oscillations in the cases N = 3 
(ZV) and N = 5 (ZVD) are smaller than those in cases N = 1 
and N = 5 ZV, respectively. 

 
4.3 Experiments 

Experiments with the laboratory overhead crane have been 
conducted to verify the proposed approach. As shown in Fig. 
7, the laboratory crane used in the experiment is equipped 
with three direct current (DC) motors to manipulate the trolley 
and the bridge motions, as well as hoist the payload. Five in-
cremental encoders with 1024 counts per revolution were used 
to measure the trolley and the bridge displacements, cargo-
hoisting motion along the cable, and two payload swing an-
gles corresponding to the motion directions of the trolley and 
the bridge. The crane system was connected to a target per-
sonal computer (PC) with two interface cards. An NI PCI-

6602 card was used to send pulse-width modulation signals to 
the amplifiers of the DC motors and acquire signals from the 
encoders. An NI PCI-6025E multifunction card was used to 
transfer the direction control signals to the motor amplifiers. 
The target PC was connected to a host PC through RS-232 
ports. The overhead crane was controlled by the host PC, 
which integrated the proposed controller design based on 
MATLAB/SIMULINK with xPC Target. For purpose of ex-
periment with the proposed controller, the bridge motion and 
hoist motion are fixed so that the apparatus becomes two-DOF 
system driven only by one actuator.  

The parameters of the laboratory crane are as follows: 
tm =  2.0 kg, pm =  0.85 kg, 11f =  10 Ns/m, l =  0.6 m, and 

g =  9.81 m/s2. The target position of the trolley is set as 

 
 
Fig. 5. Simulation results for N = 5 (l = l0, l = 1.2 l0, ZV, and ZVD). 
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Fig. 6. Simulation results with a sliding mode controller. 

 

 
 
Fig. 7. Laboratory overhead crane system. 
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0.5dx =  m. The frequency 4.044nw =  s−1 of the pendulum 
is determined based on the cable length, and the accelera-
tion time 1.25 1.94N Tt = = s is selected. By choosing the 
number of stairs 3N = , the maximum velocity max 0.2v = m/s, 
and the time sequence [ ]0 0.65 1.29 1.94 T=t , the 
magnitude of stairs were determined to be =a  
[0.083 0.061 0.061 0.083]T- - . In the previous simulation 
section, the system parameters were chosen to be large enough 
to clearly show three phases (accelerating, constant movement, 
and decelerating); hence, l =  1.2 m and 4dx =  m were set. 
However, in the experiment, these parameters were set to the 
actual values l =  0.6 m and 0.5dx =  m because of the limi-
tation of the system dimension. Therefore, the acceleration 
and velocity profiles used in the experiment are different from 
those of the simulation. The obtained velocity profile of the 
experiment looks like a bell shape denoted as a broken line in 
Fig. 8. Almost no constant velocity phase exists because of 
such a small dimension, such that the force trajectory as con-
trol input also looks like a bell shape, as shown in Fig. 10. 
Meanwhile, the force trajectory of the simulation looks like a 
trapezoid, as shown in Fig. 6. The acceleration profile for the 
experiment is denoted as a broken line in Fig. 10. With the 
planned trajectory, the sliding mode controller of Eq. (29) is 
applied to the real crane system. The sliding mode controller 
is the same as that of the simulation and the same control pa-
rameters: 2l = , 10k = , and 2sk =  are applied for control-
ling the crane.  

Similarly, for 5N =  (zvd) and the acceleration time 
1.50 2.330N Tt = = s is selected, the time sequence and the 

magnitude of stairs are determined as   
 

[ ]0 0.466 0.932 1.398 1.864 2.330 T=t   

[ ]0.063 0.015 0.072 0.072 0.015 0.06 .3 T- -= -a  

 
Two experiments have been carried out for N = 3 and N = 5 

(zvd), in which the parameters of the controller Eq. (30) are 
chosen as 2l = , 2sk = , and 10k = .  

The experimental results, including the trolley motion, 
swing angle, and control force, are shown in Figs. 8-10. For 
comparison with the numerical simulation, the responses of 
the simulation with l =  0.6 m and 0.5dx =  m are also 
shown as dotted lines in Figs. 8-10. The trolley reaches the 
target position while the swing angle is kept small at about 1° 
during operation for both the simulation and the experiment. 
Apparently, the responses of the experiment are quite similar 
to those of the simulation. The sway angle of the experiment 
is somewhat different from that of the simulation. However, 
considering that the maximum value of the sway is small, the 
difference is minimal. We assumed that the crane has only 2-
dimensional motion, but the actual swing motion of the rope 
would be 3-dimensional in the experiment. Coupled dynamic 
effect of the 3D motion and un-modeled nonlinear characteris-
tics may cause difference in swing response between the 
simulation and the experiment. These factors also induce re-

sidual vibration after 5 s in the experiment, as shown in Fig. 9. 
During the beginning of the acceleration and deceleration 
periods, 2-dimensional driving effect is dominant in the swing 
angle; hence, the experimental and simulation responses coin-
cide. These experimental results directly confirm that a small 
swing angle is maintained given a suitable trajectory for the 
trolley. It is seen from Fig. 9 that, the swing angle for N = 5 is 
smaller than that for N = 3.  

 
5. Conclusions 

This paper presents a simple trajectory planning method for 
underactuated overhead cranes using acceleration in a stair-
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Fig. 8. Displacement and velocity of the trolley. 
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case form. This acceleration profile ensures a small swing 
angle of the payload during the constant velocity phase and as 
the trolley reaches its desired location. The efficiency of the 
proposed approach was verified by numerical simulation in 
the kinematics viewpoint and in that of crane dynamics. These 
simulations indicate that the payload swing is suppressed by a 
reasonable trajectory of the trolley and a simple controller that 
requires only the trolley motion for feedback. The advantages 
exhibited potential applications in motion planning for under-
actuated systems, such as overhead cranes, single-link flexi-
ble-joint manipulators, and flexible Cartesian manipulators. 
The proposed method intends to include three-dimensional 
overhead cranes in future studies. 
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