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Abstract 
 
The present paper investigates the dynamical properties of a non-autonomous fractional-order horizontal platform system (FOHPS). 

According to different parameter settings, we show that the FOHPS can possess stable, chaotic and unstable states. Using the maximal 
Lyapunov exponent criterion, we show that the FOHPS exhibits chaos. Strange attractors of the system are also plotted to validate cha-
otic behavior of the system. Since the chaotic behavior of the FOHPS may be undesirable, a fractional finite-time controller is introduced 
to suppress the chaos of the FOHPS with model uncertainties and external disturbances in a given finite time. We use the fractional Lya-
punov theory to prove the finite time stability and robustness of the proposed scheme. Finally, computer simulations are given to illus-
trate the efficiency and applicability of the proposed fractional control method.  
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1. Introduction 

Recently, there has been an accelerating level of interest in 
the use of fractional calculus for modeling and control of dy-
namical systems. Fractional calculus is a 300-year-old ma-
thematical topic where it generalizes the concept of integer-
order differentiation/integration to arbitrary (non-integer) or-
der one. Although it has a long history, for many years it had 
not been used in physics and engineering. However, during 
the last 20 years or so, fractional calculus has attracted in-
creasing attention of physicists, chemists and engineers from 
an application point of view [1]. It has been found that many 
systems in interdisciplinary fields, such as differential oscilla-
tors [2], micro-electro-mechanical systems [3] and gyroscopes 
[4] can display fractional-order dynamics. The authors of 
these works have shown that modeling and describing integer-
order systems with fractional-order differential equations can 
be useful in both application and research and can reveal more 
useful and applied dynamical properties of the system. More 
recently, there is a new trend to study the chaotic dynamics of 
fractional-order dynamical systems and to stabilize the unsta-
ble fixed points of them [5-11].  

In recent years, several mechanical systems with chaotic 
phenomena have been developed [12-14]. And, control of 
mechanical systems has attracted the interest of many scholars 

[15-20]. One of the most interesting and attractive nonlinear 
dynamical systems is the horizontal platform system (HPS). It 
is a mechanical device that can freely rotate around the hori-
zontal axis. The horizontal platform devices are widely used in 
offshore and earthquake engineering. It has been shown that 
these systems display a diverse range of dynamic behavior 
including both chaotic and regular motions [21]. Wu et al. [22] 
have used Lyapunov direct method to achieve a sufficient 
criterion for global chaos synchronization between two identi-
cal HPS coupled by linear state error feedback controller. By 
means of a linear state error feedback controller, the robust 
synchronization of the chaotic HPS with phase difference and 
parameter mismatches has been studied in Ref. [23]. Based on 
the Lyapunov stability theorem and Sylvester’s criterion, 
some algebraic sufficient criteria for synchronization of two 
HPS coupled by sinusoidal state error feedback control have 
been derived in Ref. [24]. Pai and Yau [25] have designed an 
integral-type sliding mode controller for generalized projec-
tive synchronization of two HPS with uncertainties. Pai and 
Yau [26] have also designed an adaptive sliding mode control 
scheme for controlling the chaos in the state trajectories of the 
uncertain HPS. In Ref. [27], a finite-time control scheme has 
been proposed to synchronize two HPSs with uncertainties. 
However, to the best knowledge of the authors, there is no 
work in the literature about the control and dynamical analysis 
of the fractional-order horizontal platform systems (FOHPS), 
which remains as an open issue to be investigated. 

In recent years, many scholars believe that the fractional 
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modeling of the traditional integer-order systems opens a 
wide door for research in the area of physical and engineer-
ing systems, as it truly serves as a generalization of the in-
teger-order case. The traditional models of many systems 
need to be revisited within the framework of the fractional-
order differential equations, where the integer-order transfer 
functions of systems become simply special cases of the 
fractional-order ones. Therefore, in this paper, we general-
ize the integer-order model of the traditional HPS system to 
the fractional-order one to obtain more characteristics of the 
dynamics of the system and to discover more dynamical 
properties of the system. From both modeling and practical 
application points of view, the findings of this paper are of 
utility for many engineers and designers dealing with the 
applications of the gyro system.  

This paper investigates the dynamical behavior of a non-
autonomous fractional-order horizontal platform system by 
adopting fractional-order differential equations. We use the 
maximal Lyapunov exponent (MLE) criterion to show that the 
nonlinear behaviors of the FOHPS can be chaotic. We show 
that for some special settings of the system parameters, the 
state of the system can be stable or unstable. Subsequently, a 
fractional-order finite-time controller is proposed to suppress 
the chaotic state of the FOHPS in a given finite time. The 
effects of model uncertainties and external disturbances are 
considered and the robustness and finite-time stability of the 
closed-loop system are proved fractional Lyapunov stability 
theory [28].   

 
2. Chaos in horizontal platform systems 

2.1 Mathematical model of HPS 

The HPS is a mechanical device composed of a platform 
and an accelerometer located on the platform. The platform 
can freely rotate about the horizontal axis, which penetrates its 
mass center. The accelerometer produces an output signal to 
the actuator, subsequently generating a torque to inverse the 
rotation of the platform to balance the HPS, when the platform 
deviates from horizon. The motion equations of the HPS are 
given by [21] 

 
3sin ( )cos sin cosgAx Dx kg x B C x x F t
R

w+ + - - =&& &    (1) 

 
where A = 0.3, B = 0.5 and C = 0.3 are the inertia moment of 
the platform, D = 0.4 is the damping coefficient, k = 
0.11559633 is the proportional constant of the accelerometer, 
g = 0.98 is the acceleration constant of gravity, R = 6378000 is 
the radius of the Earth, x is the rotation of the platform relative 
to the earth and cos 3.4cos1.8F t tw = is the harmonic torque. 
For the above-mentioned parameters values the non-
autonomous HPS Eq. (1) exhibits chaotic behavior [21]. 

Assuming 1x x=  and 2x x= &  the non-autonomous system 
Eq. (1) is transformed into the following normal form 

1 2
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x x
x ax b x l x x h tw
=ì
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&
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        (2) 

 
where a = D/A = 4/3, b = kg/A = 3.776, l = 3g(B-C)/RA = 
4.6 × 10-6 and h = F/A = 3.4/4 are the HPS parameters. 

 
2.2 Mathematical model of HPS 

Definition 1 [1]. The qth-order fractional integration of 
function f(t) is given by 
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Definition 2 [1]. The Caputo fractional derivative of order q 

of a function f(t) is defined as follows: 
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where m is the smallest integer number larger than q. 

Based on the definition of the fractional-order differential 
equations and using Eq. (2), the following fractional-order 
model for the HPS is given. 

 

1 2

2 2 1 1 1sin cos sin cos

q

q

D x x
D x ax b x l x x h tw
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      (5) 

 
where (0,1)qÎ  is the fractional order of the system. 

In order to investigate the dynamical behavior of the FOGS 
Eq. (5), we assume that the fractional order q and harmonic 
torque amplitude F can be changed. The other parameters of the 
system are set to a = 4/3, b = 3.776, l = 4.6×10-6 and 1.8w = . 
We use the maximal Lyapunov exponent criterion and apply the 
numerical method introduced in Ref. [29] to calculate the sys-
tem’s MLE. The initial conditions of the system are chosen as 

1(0) 3.4x = - and 2 (0) 2.4x = . In what follows, we explain 
different parameter settings in two case studies. 

 
2.2.1 Case1: F = 3.4 and (0,1)qÎ  

In this case, we set F = 3.4 and change the fractional order 
q from 0.01 to 0.99. After running the simulations, we observe 
that the FOHPS states are unstable for 0.01 0.06q£ <  How-
ever, when we set 0.06 0.75q£ < , we find out that the sys-
tem behavior becomes chaotic. The MLEs of the HPS Eq. (5) 
for 0.06 0.75q£ < are shown in Fig. 1. Since the correspond-
ing MLEs are positive, one can conclude that the system state 
is chaotic. The strange attractor of the HPS Eq. (5) for q = 0.1 
is revealed in Fig. 2. One can see that the system Eq. (5) ex-
hibits rich and chaotic dynamics. On the other hand, changing 
q from 0.75 to 0.99, we see that the first state of the HPS con-
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verges to zero, while the second state of the HPS shows a 
periodic behavior. 

 
2.2.2 Case2: q = 0.1 and (1,20)F Î  

In this case, we select q = 0.1 and we change the harmonic 
torque amplitude F from 1 to 20. After doing the simulations, 
we understand that the HPS Eq. (5) possesses chaotic state for 
different values of F. Fig. 3 shows the MLEs of the system for 
different values of (1,20)F Î . It is apparent that MLEs are 
positive, indicating that the system possesses chaos. The 
strange attractor of the system Eq. (5) for F = 5 is plotted in 
Fig. 4. One can see that the system behavior is chaotic. 

 
3. Designing a finite-time fractional controller for 

chaos suppression of FOHPS 

Theorem 1 [28]. Let x = 0 be an equilibrium point for the 
non-autonomous fractional-order system 

 
( ) ( , )qD x t f x t=                                  (6) 

where f(x, t) satisfies the Lipschitz condition with Lipschitz 
constant l>0 and (0,1)qÎ is the fractional order of the system. 
Assume that there exists a Lyapunov function V(x(t), t) which 
satisfies the following conditions. 
 

1 2( ( ), )ax V x t t xa a£ £                          (7) 

3( ( ), )V x t t xa£ -&                                (8) 
 

where 1a , 2a , 3a and a are positive constants. Then the 
equilibrium point of the non-autonomous system Eq. (6) is 
Miattag-Leffler (asymptotically) stable. 

Since in real world applications model uncertainties and ex-
ternal disturbances affect the dynamics of the system, the fol-
lowing uncertain FOHPS with a control input is taken into 
account in this paper. 

 
1 2

2 2 1 1 1sin cos sin cos
( ) ( ) ( )

q

q

D x x
D x ax b x l x x h t

f t d t u t
w

ì =
ï

= - - + +í
ï+D + +î

      (9) 

0 0.06 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

q

M
L
E

 
 
Fig. 1. Maximal Lyapunov exponents of the FOHPS with different 
values of q. 
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Fig. 2. Strange attractors of the FOHPS with different values of q = 0.1. 
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Fig. 3. Maximal Lyapunov exponents of the FOHPS with different 
values of F. 

 

-4 -3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

4

5

x1(t)

x 2(t
)

q=0.1, F=5

 
 
Fig. 4. Strange attractors of the FOHPS with different values of F = 5. 
 



1878 M. P. Aghababa / Journal of Mechanical Science and Technology 28 (5) (2014) 1875~1880 
 

 

where 1 2( ) [ ( ), ( )]TX t x t x t= is the state vector of the system 
and ( )f XD , ( )d t and ( )u t represent the system model un-
certainty, external disturbance and control input, respectively. 

Assumption 1. It is assumed that the uncertainty term and 
external disturbance are unknown, but bounded as follows: 

 
1 1

1 1( ) , ( )q qD f t D d ta b- -D £ £                 (10) 

 
where a and b are given positive constants. 

Theorem 2. Consider the non-autonomous uncertain chaotic 
FOHPS Eq. (9). If this system is controlled by the control law 
Eq. (11), then its chaotic behavior will be suppressed in finite 
time. 
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where 2 1 1 1( , ) sin cos sin cosf x t ax b x l x x h tw= - - + + and l1, 
l2, k1, k2 are positive constants and 0<c<1 is a real number. 

Proof. Choosing a Lyapunov function candidate in the form 
of 

1
( ) ( )V t X t= and taking its time derivative, we have 
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Substituting 1

qD x and 2
qD x from Eq. (9) into Eq. (12), one 

has 
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Using Assumption 1, one can obtain 
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Introducing the control law Eq. (9) into the right hand side 

of Eq. (14) and after some mathematical manipulations, we 
have 

 

1 1 2 2 1 1 2 2( ) .c cV t k x k x l x l x£ - - - -&                (15) 

 
Using the fact 1 2 1 2( ) ( )c c cx x x x- + £ - + [30], we have 
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where m = min{k1, k2} and n = min{l1, l2} are two positive 
constants. 

As a result, according to Theorem 1, the state trajectories of 
the uncertain FOHPS Eq. (9) will converge to zero and its 
chaotic behavior will be suppressed asymptotically. In what 
follows, we prove that the chaos suppression take places in 
finite time.  

From the inequality Eq. (16), we have 
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Using some simple calculations, we get 
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Taking integral of both sides of Eq. (18) from 0 to T and let-

ting x1(t1) = x2(t2) = 0 and X(T) = 0 (T = max { t1 , t2}), one has 
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This completes the proof. 

 
4. Simulation of the proposed finite-time fractional-

order controller 

Here, we assume that the fractional order of the system Eq. 
(9) is equal to 0.1, where the system has a MLE of 0.1738. 
Moreover, the following model uncertainty and external dis-
turbance are considered in the simulation. 

The parameters of the controller Eq. (11) are selected as l1 
= l2 = k1 = k2 = 0.1, c = 0.2 and 2a b= = . The initial condi-
tions of the system are set to 1(0) 3.4x = - and 2 (0) 2.4x = . 
The state trajectories of the controlled uncertain FOHPS Eq. 
(9) are shown in Fig. 5. It is obvious that the chaotic motions 
of the non-autonomous uncertain chaotic FOHPS system are 
suppressed quickly in a finite time. The time history of the 
applied control input is depicted in Fig. 6. It is seen that the 
control input converges to zero. 

To compare the performance of the proposed fractional fi-
nite-time technique, the fractional sliding mode control strat-
egy introduced in Ref. [31] is applied to stabilize the uncertain 
chaotic FOHPS Eq. (9). Fig. 7 reveals the state trajectories of 
the controlled uncertain chaotic FOHPS Eq. (9) via the pro-
posed method in Ref. [31]. It is seen that the second state suf-
fers from undesirable oscillations. Furthermore, the time his-
tory of the applied control input via the proposed sliding mode 
approach in Ref. [31] is appeared in Fig. 8. One can see that 
the control input has permanent chattering which restricts the 
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practical implementation of the controller proposed in Ref. 
[31]. However, the method proposed in our paper can quickly 
stabilize the uncertain chaotic FOHPS in a robust manner. 

5. Conclusions 

This paper studies the possible existence of the chaos for a 
non-autonomous fractional-order horizontal platform system 
(FOHPS). Using the maximal Lyapunov exponent criterion, it 
is shown that the FOHPS exhibits chaotic behavior. A robust 
finite-time controller is then designed to attenuate the chaotic 
behavior of the system in the presence of both model uncer-
tainty and external disturbance. Using the fractional Lyapunov 
stability theory, the finite-time stability and robustness of the 
proposed scheme are mathematically proved. A numerical 
simulation illustrates the superiority of the proposed technique 
compared to the sliding mode approach existing in the litera-
ture. 
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