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Abstract 
 
Feature recognition is important for describing shapes in many applications taking advantage of solid modeling. Graph-based feature 

recognition methods search from solid models the unique patterns of features that are represented as a graph. A typical example of such 
patterns is a loop of concave edges. When the loop is an inner loop on a single face, it is a strong hint of the existence of protrusion fea-
ture and recognition of protrusion faces is straightforward. However, when a protrusion feature lies on multiple faces, it is bounded by a 
loop of concave edges that are not on a single face. Consequently, the rule of inner loop is no more available and recognition of protru-
sion faces becomes unclear. To address this problem, a new quantitative measure, orthogonal bounding factor (OBF), is introduced. OBF 
is defined as the sum of cross products of two consecutive vectors normal to a set of faces, and it physically represents the possibility of 
being a protrusion in a solid model. The formal definition of orthogonal bounding factor is established and a method to recognize protru-
sion features using OBF is presented. Examples are also shown to demonstrate the effectiveness of the method for feature recognition.  
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1. Introduction 

Feature recognition is important for describing shapes in 
many applications taking advantage of solid modeling. Ac-
cordingly, there have been extensive research efforts in the 
area, most of which focus on recognizing machining features 
[1-3, 4, 9]. Although the term “feature” is domain-dependent 
and different names are used to represent features of particular 
domains, they can be classified into two basic categories - 
protrusions and depressions, regardless of domain of applica-
tion [4, 5]. Therefore, feature recognition can be viewed as a 
technique to identify protrusions and depressions associated 
with unique geometric or functional characteristics related to a 
particular domain of interest.  

There are mainly two approaches for feature recognition. 
One is the graph-based approach [1, 2, 6-8], of which face-
adjacency-graph method [1, 7] is an example. In this approach 
the faces and edges of a solid model and their topological 
relationships are represented as graphs and they are searched 
to recognize subgraphs of unique patterns for features. A typi-
cal example is the inner loop of concave edges on a single face 
shown in Fig. 1(a), which is a hint of the existence of a protru-
sion feature. Similarly, an inner loop of convex edges on a 
single face is a hint of a depression feature. The graph-based 
approach has strength in recognizing isolated features with 

respect to performance and robustness, but it has difficulty in 
recognizing intersecting features since the unique patterns of 
features are destroyed when features intersect.  

The other, the volumetric approach [3, 9-12], attempts to 
recognize features by generating volumes of features and 
mapping them onto the features of interest. ASVP (alternating 
sum of volumes with partitioning) [3] and MVD (maximal 
volume decomposition) [11] methods are examples. This ap-
proach has strength in recognizing intersecting features, but it 
has geometric restrictions, and combinatorial complexity may 
arise for complicated solid models.  

Each method for feature recognition has pros and cons. It 
would be nice to develop a hybrid system of several methods 
by complementing the drawbacks of others. For example, a 
graph-based method is used to recognize and remove isolated 
features from a complex solid model and then a volumetric 
method can be applied to the simplified model to recognize 
intersecting features [13]. However, the types of isolated fea-
tures that can be recognized from solid models by a graph-
based method are usually limited to features on inner loops of 
single faces. For example, the simple protrusion feature in Fig. 
1(b) is topologically similar to the one in Fig. 1(a), but it is not 
sure which are the protrusion faces because the loop is not an 
inner loop on a single face. If this kind of protrusion can be 
recognized without enumerating all the patterns of possible 
features, it would be helpful for enhancing the applicability of 
graph-based approach and could improve the efficiency of 
hybrid feature recognition.  
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Inspired by this, we propose a quantitative measure that can 
be used in recognizing a protrusion of generic type bounded 
by a loop of concave edges in this paper. This measure is 
named as orthogonal bounding factor (OBF). The concept and 
formal definition of the orthogonal bounding factor is pre-
sented in the following section. 

 
2. Orthogonal bounding factor 

2.1 Background 

When people see an object, they identify a protrusion on the 
object by visually recognizing the area arising above the level 
of the surrounding surface. It becomes more distinctive as the 
protrusion stands more upright. In feature recognition by com-
puter, however, protrusions are recognized by performing 
topological and geometric reasoning with the solid models. A 
loop of concave edges, whether it is on a single face or not, is 
a strong hint of a protrusion feature. If the loop of concave 
edges is an inner loop on a single face as shown in Fig. 1(a), it 
signifies the existence of a protrusion and the face(s) adjacent 
to the single face sharing the inner loop are the protrusion 
face(s). In such a case, the volume of the protrusion can be 
easily generated and removed from the model by simple geo-
metric operations [14].  

When a protrusion lies on multiple faces as shown in Fig. 
1(b), the loop of concave edges bounding the protrusion can-
not be judged whether it is an inner loop or not since it does 
not lie on a single face. This means that we still do not know 
which set of faces sharing the concave edges are the protru-
sion faces. Consequently, an additional criterion is needed for 
judging which faces are the protrusion faces. Yet topological 
reasoning does not seem promising for the judgment in gen-
eral. For example, for the solid model in Fig. 2(a), the conical 
face is the one to be recognized as the protrusion face, while 
the four planar faces are the ones to be recognized as the pro-
trusion faces for the solid model in Fig. 2(b). However, the 
two solid models are topologically identical and there is no 
general way of distinguishing them. Nonetheless, in each case 
the faces recognized as a protrusion stand more upright than 
the surrounding faces. That is, if a set of faces along a loop of 
concave edges are more upright than the other, it would be 
natural to recognize them as protrusion faces. This is the mo-
tivation for developing the orthogonal bounding factor, which 
can be used for a new measure of possibility of being a protru-

sion. In the following section, the formal definition of OBF is 
presented. 

 
2.2 Definition of orthogonal bounding factor 

In a manifold solid model, each edge is owned by exactly 
two faces. Therefore, the faces along a loop of concave edges 
can be grouped into two sets as shown in Fig. 3. In each set 
the face associated with the i -th edge of the loop comprising 
n  concave edges is denoted by .iF  Since a face can own 
several edges of the loop, there may be a case where iF  and 

1iF+  are the same. Now the underlying curve for the i -th 
edge of the loop is denoted by ( ),i tr  where .s e

i it t t£ £  Here 
s
it  and e

it  are the starting and ending parameters for the i -th 
edge, respectively. Accordingly, ( )s

i itr  and ( )e
i itr  are the 

starting and end points of i -th edge, respectively. Note that 
1 1( ) ( )e s

i i i it t+ +=r r  and 1 1( ) ( ).e s
n nt t=r r   

Let ( ( ))i i tN r  denote a vector normal to iF  at a point on 
the i -th edge. Now, when the loop has n  concave edges 
and each edge of the loop is discretized into 1m +  equally-
distributed points, a vector normal to iF  at the j -th point of 
the i -th edge is defined as follows:  

 

 
(1)

  
 
Now, ( )mW  is defined in Eq. (2) as a vector function of 

variable m , which is the sum of the cross product of two 

  
              (a)                         (b) 
 
Fig. 1. Examples of protrusions: (a) protrusion on a single face; (b) 
protrusion on multiple faces. 

 

 
              (a)                         (b) 
 
Fig. 2. Which are the protrusion faces? The two solid models are topo-
logically identical: (a) the conical face is the protrusion face; (b) the 
four planar faces are the protrusion faces. 
 

          

       
 
Fig. 3. The two sets of faces along a loop of concave edges. 
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consecutive normal vectors.  
 

 (2) 
 

where . 
 
Finally, OBF is defined in Eq. (3) as the norm of ( )mW  

with the infinite value of m . 
 

                         (3) 
 
The value of OBF increases as more ,i jN  are orthogonal to 

a common direction. Theoretically, the maximum value of 
OBF for a convex protrusion is 2p . 

OBF for the cylindrical face along a circular concave edge 
shown in Fig. 4 is derived, for example. The concave circular 
edge is represented as ( ) cos( ) sin ( ) ,t R t R t= +r u v  where 
0 2 .t p£ £  Here u  and v  denote the major and the minor 
axes of the circular edge, respectively. The vector N(r(t)) 
normal to the cylindrical face at a point on the circular edge is 
then:  

 

 
 
Using the trigonometric formulas,  
cos(( 1) )j t+ D = cos( )cos sin( )sinj t t j t tD D - D D  and  
sin (( 1) ) sin ( )cos cos( )sin ,j t j t t j t t+ D = D D + D D  and  

letting ,= ´w u v  the above equation becomes:  
 

 

 
 
An interesting and useful property of OBF is that it is in-

variant for a protrusion. For example, OBF for a full cylindri-
cal face along any loop of edges containing the axis of the face 
is always 2p  regardless of the shape of the loop. OBFs for 
some typical protrusions are shown in Fig. 5. The small ar-
rows in the figure depict the vectors normal to the faces along 
the loop of edges. In Fig. 6, the OBF decreases as the rectan-
gular protrusion tapers. 

 
3. Protrusion recognition using OBF 

First, in order to recognize protrusions from solid models 
using OBF, the loops of concave edges on multiple faces 
(LMF) should be identified. As compared to the identification 
of a loop of concave edges on a single face (LSF), the identifi-
cation of LMF is not straightforward. Since an LMF spans 
over several faces, consideration of the topology of a single 
face does not help. Instead, the connecting relationship among 
all the concave edges needs to be considered. To achieve this, 
we adopted graph theory. In fact, commercial geometric mod-
eling kernels provide classes and procedures for the graph 
theory. For example, the ACIS geometric modeling kernel of 
Spatial Corporation provides generic_graph class that in-
cludes the member functions for generating graphs from lists 

   
              (a)                  (b)            (c) 
 
Fig. 4. An example of OBF calculation: (a) a cylindrical protrusion 
bounded by a loop of concave circular edge of radius R; (b) The red 
arrows depict the normal vectors at the points on the cylindrical face 
along the loop of concave circular edge; (c) The small blue lines depict 

1, 1, 1j j+´N N  and the big blue arrow the ( )mW . 

 

       
      OBF = 2π        OBF = 2.598        OBF = 4 

         (a)               (b)               (c) 
 

        
     OBF = 5.657         OBF = 2π           OBF = 2π 

         (d)                (e)                 (f) 
 
Fig. 5. OBFs of some typical protrusion features: (a) an elliptical pro-
trusion; (b) a regular triangular protrusion; (c) a rectangular protrusion;
(d) an octagonal protrusion; (e) a protrusion with two convex cylindri-
cal faces; (f) a rectangular protrusion with rounded corners. 
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of faces and edges and finding cyclic loops from the graphs. 
By utilizing the member function is_cycle() of the ACIS ge-
neric_graph class, LMFs of a solid model are identified in this 
paper. Fig. 7 shows some examples of LMFs identified by the 
method.  

The process of recognizing protrusions is shown in Fig. 8. 
Given a loop of concave edges identified by the method of 
graph theory, the faces owning the edges are collected and 
grouped into two sets S1 and S2. Then OBF for each set is 
calculated as shown in Fig. 9. The variable m  in Eq. (3) 
approaches infinity, but it is set to a reasonable value in actual 
implementation ( m = 50). If OBF for the face set S1 is bigger 
than that for the face set S2, The faces in S1 can be recognized 
as protrusion faces.  

However, as shown in Fig. 9(b), it occurs that OBF for the 
faces of a depression is also bigger than that for the surround-
ing face. Therefore, it is necessary to distinguish depressions 
from protrusions and the directionality of faces is taken into 
account in order to address the problem. To determine the 
directionality of faces in a set, the midpoint of the bounding 

box of the loop of concave edges is found. If the vectors nor-
mal to the faces point to the midpoint, the directionality is 
inward, otherwise it is outward. This can be achieved by tak-
ing the dot product of the normal vector and the position vec-
tor of the mid-point. If a set of faces has a bigger value of 
OBF than the other and the directionality is outward, the faces 

 
OBF = 4 

 

      
           OBF = 3.921             OBF = 3.555 
 

    
          OBF = 3.031              OBF = 2.449 
 
Fig. 6. The OBF decreases as the rectangular protrusion tapers. 

 

    
        (a)               (b)                (c) 
 
Fig. 7. LMFs (in red) identified by is_cycle() method of the ACIS 
generic_graph class. 

 
 

 
Fig. 8. The process of recognizing a protrusion using OBF. 

 

      
(a) 

 

          
(b) 

 
Fig. 9. Calculation of OBF for the set of faces along the loop of con-
cave edges: the blue and red arrows depict the normal vectors: (a) 
protrusion; (b) depression. 

 
 



 Y. Woo and S.-H. Kim / Journal of Mechanical Science and Technology 28 (5) (2014) 1759~1764 1763 
 

  

in the set are recognized as protrusion faces.  
The method presented in this paper has been implemented 

as a system using C/C++ with the ACIS geometric modeling 
kernel running on a PC. Fig. 10 shows the examples of protru-
sion faces recognized by the method. Delta volume of a solid 
model is defined as the difference between the solid model 
and the bounding box of the solid model. A depression feature 
in a solid model appears as a protrusion in the delta volume of 
the solid model. Therefore, it is claimed that the method can 
be applied to recognizing depression features.  

 
4. Limitations and future work 

A novel method for recognizing protrusions of generic type 
using the orthogonal bounding factor has been presented in 
this paper. Examples have been also shown to demonstrate the 
effectiveness of the method for feature recognition. The con-
tributions of the research are summarized as follows:   
• The concept of the orthogonal bounding factor has been 

introduced and its formal definition has been established.  
• OBF can be used as a quantitative measure of the possi-

bility of being a protrusion for a given loop of concave 
edges.  
• There is no need to enumerate the types of all the possi-

ble features since the method does not require predefined 

patterns for protrusion types.   
 
However, there are also limitations of this method and the 

some of them are summarized as follows: 
• Calculation of OBF is limited to the protrusions that have 

a loop of concave edges. If a protrusion is not bounded 
by a loop of concave edges as shown in Fig. 11, it cannot 
be recognized. 
• Identification of loops of concave edges from a solid 

model is crucial for the method. Though some commer-
cial geometric modeling kernels provide methods for 
identifying loop of concave edges, it is not robust enough 
for a complex model where some loops are coupled and 
overlap. A more robust and complete method for identi-
fication of such loops is needed. 
• OBF is a supplemental measure for graph-based feature 

recognition. It cannot be used as the sole criterion for de-
termining a protrusion feature. 

 
Once the faces of a protrusion feature are recognized, the 

volume of the feature needs to be generated from the faces so 
that it can be removed from the solid model. Therefore, for the 
method presented in this paper to be more practical and effec-
tive, a technique to generate the volume of feature from rec-
ognized protrusion faces is needed. A possible suggestion is 

   
OBF1 = 6.253       OBF1 = 6.067        OBF1 = 5.196 
OBF2 = 0.0         OBF2 = 0.0          OBF2 = 0.0 

 

   
OBF1 = 4.701       OBF1 = 6.253          OBF1 = 6.211 
OBF2 = 2.351       OBF2 = 3.125          OBF2 = 1.674 

 

     
OBF1 = 3.968        OBF1 = 3.785        OBF1 = 5.099 
OBF2 = 2.257        OBF2 = 0.004        OBF2 = 1.835 

 
Fig. 10. Examples of the protrusions recognized by using OBF: faces 
in red are the protrusion faces recognized by the method shown in Fig. 
8. OBF1 denotes OBF for the protrusion faces and OBF2 the one for 
the other set of faces sharing the loop of concave edges. 

 

      
 
Fig. 11. Examples of protrusions that cannot be recognized by the 
method. 

 

     
               (a)                       (b) 
 

     
               (c)                           (d) 
 
Fig. 12. Protrusion recognition for an example model: (a) the identified
loops of concave edges; (b) the protrusion faces recognized using 
OBF; (c) selective volume decomposition with the protrusion faces; (d) 
the net volumes of the protrusion features. 
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the use of selective volume decomposition [15] as shown in 
Fig. 12. Generation of volumes from the recognized protru-
sion faces will be a major future work associated with this 
research.  

Finally, as a new method, it may not be perfectly general to 
accommodate every kind of real industrial model and there 
may exist some limitations that as of yet have not been dis-
covered. However, this research is not final and we will con-
tinue to enhance the method as the research goes on. 
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