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Abstract 
 
In this work, load distribution on ball-screw systems (BSS) is determined by experimental techniques. Two optical techniques are 

used: photoelasticity for stress-field measurement and the mark-tracking method for displacement-field determination. In parallel to the 
experimental study, finite element method (FEM) and analytical solutions are used to calculate the loads applied on each ball of the BSS. 
Experimental results are used to validate the choice of boundary conditions and contact conditions between ball-screw and ball-nut in the 
FEM solution. The validation criterion is the correspondence between numerical and experimental fringes representing the differences of 
principal stresses. In addition to the study of load distribution, this paper presents the influence of the angle of contact direction on the 
stress distribution in BSS.  
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1. Introduction 

The objective of this work is the study of load distribution 
in a ball screw system (BSS). This system is a mechanical 
actuator usually used to translate the rotational motion of a 
screw to the linear motion of a nut. The friction between the 
nut and the screw is limited by the inclusion of balls and a re-
circulation system during operation [1-3]. To study the life 
span of these systems, the load value applied on each ball 
needs to be identified. Several analytical solutions [4-6] are 
presented in the literature to attain this goal. Another way to 
find the load distribution at the ball-screw contact is to build a 
model using the finite element method (FEM) [7]. Both these 
approaches are based on hypotheses (geometry of contact, 
boundary conditions, friction model, etc.) and need experi-
mental validation, which is indeed essential for any theoretical, 
numerical or technical solution to be qualified in aerospace 
applications. 

To the best knowledge of the authors, there is no experi-
mental study that presents a direct measurement of load distri-
bution in a BSS. The manufacturers of these systems use an 
indirect process: after obtaining the load distribution by ana-
lytical or finite element methods, an endurance test is per-
formed on the test bench. The fatigue criteria of the BSS are 

usually based on bearing fatigue laws. The load distribution is 
validated if the endurance limit criterion is not exceeded. 
Therefore, this approach does not allow contact forces and 
load distributions to be assessed directly.  

To overcome the lack of experimental techniques for load 
distribution measurement in a BSS, non-contact methods can 
be used. Several optical techniques such as photoelasticity for 
stress-field measurement or digital-image correlation and the 
mark-tracking method for kinematics-field determination may 
be applied. An analysis can be carried out in 2D on the surface 
of the specimen [8, 9] or for a thin sample [10, 11] and in 3D 
in the bulk of volume [12-14] by using a tomography method 
like X-ray or an optical device.  

The ball-screw system presents a complex geometry linked 
to the helical path of ball rolling. Furthermore, these contacts 
are local and distributed in the whole volume and the meas-
urement of mechanical data is harder to perform in these par-
ticular zones. To avoid difficulties of implementation of 3D 
techniques and problems of accessibility, a simplification to 
two 2D problems is made: (1) a global study of a slice of 
specimen by neglecting the helix angle since the study is fo-
cused only on the mechanical behaviour in the vicinity of ball 
contact and the load distribution along the screw axis; (2) a 
local study of the contact angle in the case of a one-ball slice. 

The present work is a first step in a global study of load dis-
tribution in a ball-screw system of trimmable horizontal stabi-
liser actuator (THSA) in an aircraft (Fig. 1). The movement of 
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a nut along a screw performs mobility of the back plane. 
Firstly, a 2D finite element model is built, in order to calcu-

late load distribution. Then, two measurement techniques, 
photoelasticity [10, 11] and the mark-tracking method [8, 15], 
are used to validate the FEM calculation. Experimental tech-
niques make it possible to obtain an optimised mesh and real-
istic boundary conditions on a demonstrator specimen made in 
an elastic transparent material. The obtained FEM model re-
mains viable in the elasticity domain whatever the material. 
Once the FEM modelling has been validated, the obtained 
load distribution and the contact angle evolution are compared 
to the results obtained by an analytical approach. The vali-
dated FEM solution can then be used to model the real 3D 
case using axisymmetric elements. The consideration of the 
helix angle is performed by post-processing of results obtained 
by FEM. 

The next section presents the experimental and finite-
element modelling of the global and local study on two dem-
onstrators. The section also presents the analytical solution of 
load distribution in a BSS demonstrator. The last two sections 
present a discussion and a comparison between the experi-
mental and numerical results obtained for both tests with an 
application example to an industrial case. 

 
2. Methods  

2.1 Measurement methods  

Two experimental methods are used in this study: firstly 
photoelasticity is used to access the spatial stress distribution 
and secondly, the mark-tracking technique measures dis-
placement in different locations of the specimens.  

 
2.1.1 Photoelasticity 

Photoelasticity is based on the optical-index properties of 
transparent materials, which yield data on stress distribution in 
the specimen model. The experimental setup used here is 
composed of a plane polariscope with an acquisition system 
(Fig. 2). The polariscope comprises a light source (white or 
monochromatic) and two polarising filters, called the polarised 
and the analyser. A specimen and a loading system are placed 
between these two filters. Under the phenomenon of birefrin-
gence, the specimen becomes optically anisotropic when 
loaded in that it has temporary double refraction. After trav-
ersing the sample, the wave is divided along two directions 

that correspond to the principal directions of the refractive 
index tensor. Through the analyser, the two waves propagate 
with the phase shift φ which is proportional to the difference 
of principal indexes. According to Maxwell Eqs. [16], this 
difference is linked to the principal stress difference: 

 

1 2

2 ( )Cdpf s s
l

= -  (1) 

 
where d is the thickness of specimen, C is Brewster’s constant 
and λ the wave length. The light intensity I recorded by CCD 
camera is given by the dark-field relationship [10, 11]: 
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with A a constant and α the angle between analyser and prin-
cipal stress directions. The spatial distribution of I gives a two-
fringe field: isochromatic and isoclinic fringes linked to α and 
φ respectively, i.e. intensity and direction of principal stresses. 

 
2.1.2 Mark-tracking method 

The mark-tracking method consists in determining the co-
ordinates of the spot on the image at each load step. The coor-
dinates (xg, yg) of one mark are given by the following Eqs. [8, 
15]: 
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where f(x, y) is the grey level of the pixel of coordinates (x, y) 
and fs is a lower limit used to extract the mark from the back-
ground (see Fig. 3). For example, for black marks, only pixels 
with intensity lower than fs are taken into account in Eq. (3). 
The technique is used on a zone of interest defined around 
each spot by its upper left coordinates (xz, yz) and its size 
(Nx,Ny). For large deformations and movements, this search 
zone shifts automatically at each time step, taking into account 
the measured displacement, in order to keep the spot within 
the zone of interest. The threshold fs is determined so that the 
mark size obtained in the process is the largest possible, while 

 
                (a)                          (b) 
 
Fig. 1. Ball screw system of the THSA plane. 

 
 

 
Fig. 2. Principle diagram of the photoelastic test. 
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the background is discarded.  
Accuracy is a function of the mark size: for a diameter 

greater than 8 pixels the tendency comes close to 0.025 pixels 
[15]. Finally, this technique gives the coordinates of each 
mark and its displacement by the difference in relation to the 
position in the initial image. 

 
2.2 Demonstrator specimens 

The specimen shown in Fig. 4(a) is the 2D simplified model 
of the ball-screw system (designated hereafter as Test A). The 
external dimension of the nut (dimension A in Fig. 4(a)) is A 
= 104 mm. The length of the BSS specimen (dimension B in 
Fig. 4(a)) is B = 180 mm. To analyse load distribution along 
the axial direction of the screw, the specimen may take up to 
seven rows of balls. The screw is loaded with its upper part 
always under tension and the load intensity is measured by a 
cell. The maximal applied load was chosen in order to main-
tain stress levels below the elastic limit of the material. For the 
nut, boundary conditions are imposed on the metal frame, 
which is assumed undeformable relative to the nut. The metal 
frame contains several holes for varying the type of limit con-
ditions on the nut. One may have a T-T configuration (traction 
for screw and traction for the nut), or a T-C configuration 
(traction for the screw and compression for the nut). T-T con-
figuration is obtained if the nut is attached to the frame at the 
bottom hole. T-C configuration is obtained if the nut is at-
tached to the frame at the upper hole. An intermediate con-
figuration between T-T and T-C can be obtained if the inter-

mediate holes are used. 
To observe the stress evolutions at the contact zone, the 

second assembly is used (designated hereafter as Test B), as 
shown in Fig. 4(b). The diameter of the crown representing 
the screw or the nut is 120 mm and the diameter of the ball is 
35.72 mm. The influence of the contact angle β can be studied 
by rotating the crown, which represents the nut or the screw, 
around the ball from 0° to 60°. The groove of this assembly 
has a gothic geometry comprised of two semi-circles, giving a 
shape close to the real one of the BSS groove. 

Specimens are made in PMMA material with a thickness d 
= 5 mm. Mechanical properties and Brewster’s constant are 
determined simultaneously with a tensile device placed in a 
polariscope (Fig. 5) [17]. Young modulus, Poisson coefficient 
and photoelastic coefficient are equal to E = 2.25 GPa, ν = 0.3 
and C = 60 Bw, respectively. 

 
2.3 FEM modelling 

Specimens were meshed by linear 2D elements with refined 
zones around the contact areas as shown in Figs. 6 and 7. 
These meshes are obtained by ZéBuloN finite element code 
(one can see www.numerics.com for more information about 
this code). The specimen of Test A was meshed by 52161 
elements and 51369 nodes hence 102738 Degrees Of Freedom. 
For the contact zone, the C2D4 quadrangle elements with four 
nodes are used and the C2D3 triangular elements with three 
nodes are used for the remains of the mesh. Given the symme-
try of the specimen geometry and the applied loading, only 
half of the system was modelled. The boundary condition of 
Test A are presented in Fig. 6. Blocking was applied along x 

 
Fig. 3. Mark coordinates in mark tracking method.  

 

 
        (a) Test B                        (b) Test A 
 
Fig. 4. Diagram of specimens, A = 104 mm, B = 180 mm and C = 60 mm. 

 
 

 
(a) 

 

 
(b) 

 
Fig. 5. (a) Material characteristic curve; (b) identification of photoelas-
tic constant.  
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axis of the screw to represent the state of symmetry condition 
of the set. The load was applied on the top of the screw as an 
imposed displacement.  

Blocking along the x axis was imposed on the right edge of 
the nut to model the radial stiffness of the system. To model 
the T-C configuration of the system, the screw top edge was 
blocked along the y axis. For Test A, two simulations were 
performed: one with a nominal geometry with ball diameter 
constant and equal to 7.144 mm. Then a second simulation 
was carried out, taking into account the dimensional errors of 
the ball diameters [18] induced by machining. Radius errors 
were -0.004 mm, -0.025 mm and -0.0125 mm on the lower 
three balls respectively. The same mesh and the same bound-
ary conditions were used for both simulations. 

The specimen of Test B was meshed by 19414 elements 
and 9930 nodes hence 19860 DOFs. The C2D3 triangular 
element with three nodes is used for this mesh. For this test, 
the load is applied on the top of the ball along the y axis (verti-
cal axis of the view) and the crown was clamped at its end. 
Variation of β was imposed by turning the crown simulating 
the nut or screw. Two calculations were performed for this test, 
corresponding to two angles of contact direction (β = 0° and β 
= 40°). 

Given the low thickness of the specimens, the calculation 
was performed using the plane-stress hypothesis. The material 
used was PMMA, whose characteristics are presented in Table 
1. Balls-screw contact and balls-nut contact were taken into 
account by using Lagrange multipliers with friction coefficient 
of μ = 0.4 [19]. All calculations in this study were performed 
with ZéBuloN computer code [20]. 

 
2.4 Analytical approach 

The proposed analytical solution is an adaptation of the 
Jones method of calculating load distribution in bearings [21] 
applied to the BSS specimen used in this study. Fig. 8 presents 
the geometrical relationship between the centre positions of 
the screw groove and the nut groove with the centre of the ball. 
In the absence of a radial load and an axial preload for the 
studied case, the contact happens at two points only, despite 
the gothic shape of the groove. The equation of the contact 
angle is given by [22]:  

d

sin .i
i

i

A
B

b
d

=
+

  (4) 

 
δi is the crushing balls under the influence of the contact 

pressure. Bd is the distance between the groove centres of 
screw and nut. This distance is obtained by Bd = (fn + fs − 1)Db 
with Db the ball diameter, fn = Rn /Db and fs = Rs /Db. Rn and Rs 
are the radii of screw and nut grooves, respectively. Ball 
crushing δi is related to the contact pressure by Hertz’s relation 
[23]: 

 
2
3

i iCPd =   (5) 

 
Fig. 6. Specimen 2D mesh of the ball screw system (Test A) with 
zoom on the ball and boundary conditions. 

 

 
Fig. 7. Specimen 2D mesh of the Test B with a zoom in the right con-
tact zone. 

 

Table 1. Mechanical characteristics of the specimens material 
(PMMA) used in simulation. 
 

Young’s modulus (GPa) 210 

Poisson’s ratio 0.3 

Thickness (mm) 5 

 

 
 
Fig. 8. Geometrical relationship between centres of grooves and ball 
centre.  
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with C = Cs + Cn. These two parameters Cs and Cn represent 
the hertzian contact stiffness between balls and screw and 
between balls and nut respectively. For each ball of the system, 
one can deduce the geometrical relationship from the Pythago-
rean theorem: 

 
1

2 2 2
d( ) .i i iA R Bd = + -  (6) 

  
Parameters Ai are related to the displacement xi by: 
 

d 0sin .i ix A B b= -   (7) 
 
Radial deformations of the system are negligible and the Ri 

parameter is a constant. xi is the shift of the centre of the screw 
groove to the centre of the nut groove. Extending 1i ix x --  of 
a portion of the screw can be deduced from the geometric 
relationship of the figure: 

 
1 1 .i i i ix x A A- -- = -   (8) 

 
In the studied case, the extremities of the nut are embedded 

and the system extension is due only to the longitudinal exten-
sion of the screw. 
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where L is the pitch of the screw, E is the Young’s modulus 
and S the cross section of the screw. Force Fi is the internal 
force of the screw at the ball i. For T-C configuration, internal 
forces Fi are related to external forces Fa by the relation: 
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The combination of Eqs. (4), (5), (8), (9) and (10) gives [4]: 
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with K = L/(ES). Taking into consideration Eq. (4), the bal-
ance of external forces with ball load is expressed by [5]: 
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with n the number of balls in the system. 

Eqs. (6), (11) and (12) represent 2×n nonlinear equations to 
solve. Newton Raphson’s method is used to solve this system. 
Resolution of this system allows the identification of the load 
distribution Pi and the contact angles βi using Eq. (4) and pa-
rameters Ai. 

3. Results  

3.1 Validation of numerical models by experimental data 

Photoelasticity gives the experimental fringes. From finite 
element results, simulated fringes are calculated by using Eqs. 
(1) and (2) from the stress tensor. The comparison between 
experimental and numerical fringes is then performed. Fur-
thermore, displacements measured by the mark-tracking 
method are compared to those obtained by simulation. Marks 
are plotted along axis of the screw for Test A (Fig. 9(a)) and 
along load direction axis for Test B (Fig. 9(b)). Therefore the 
confrontation is double from both static (stress) and kinemat-
ics (displacement) fields, which then allows validation of the 
simulation hypotheses. 

 
3.1.1 Test A: distribution of load along the BSS 

Fig. 10 shows the experimental isochromatic fringes of the 
right side of specimen with five rows of balls. Figs. 10(a) and 
(b) present the load cases of Fa = 240 N and Fa = 318 N, re-
spectively. In the test beginning at low load, ball/screw and 
ball/nut contacts appear on the first row of balls. Contacts 

    
        (a) Test A                       (b) Test B 
 
Fig. 9. PMMA specimens with marks. 

 

      
           (a) Fa = 240 N            (b) Fa = 318 N    
 
Fig. 10. Experimental isochromatic fringes. 
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appear on the other rows of balls by increasing the load inten-
sity with upper balls being the most heavily loaded. Two con-
tact points appear on each ball, highlighted by fringe concen-
tration zones. The evolution of the fringes is symmetrical with 
respect to the screw axis regardless of the applied load. The 
density of fringes decreases with ball position, which corre-
sponds to the decrease in contact stress intensity with the dis-
tance to the applied load point. 

Simulated fringes obtained by Eq. (2) are presented in Fig. 
11 for the first simulation corresponding to the nominal ge-
ometry (without dimensional error of balls). This figure pre-
sents two load cases corresponding to the experimental case, 
hence Fa = 240 N and Fa = 318 N. Qualitatively, distributions 
of simulated fringes are similar to those found in the experi-
ment. The same distribution pattern of fringes is observed in 
experimental and numerical results. The first row (upper ball 
on Fig. 11) is the most heavily loaded. The two contact points 
on each ball give directions and the angle contact β for each 
ball. The number of fringes and therefore, the stress levels in 
the case of a load of Fa = 318 N is greater than in the case of a 
load of Fa = 240 N. Nevertheless, from a quantitative view-
point, a discrepancy between experimental and numerical 

results is observed for the first simulation with nominal ge-
ometry. Fig. 12 shows the principal stress difference (σ1-σ2) 
versus the number of balls obtained by experiment and by 
FEM. Experimental (σ1-σ2) are obtained by experimental 
fringes and Eq. (1) with sin φ/2 = 0. The evolution tendency of 
(σ1-σ2) is the same for both simulation and experiment. The 
upper row of ball is the more heavily loaded and the bottom 
row is the least loaded. However, the numerical values differ 
between simulation and experiment especially for balls 5 and 
6. This difference is due to the geometrical errors induced by 
the machining process. 

Fig. 13 shows the principal stress difference values for load 
case Fa = 318 N and Fa = 240 N for the second simulation. In 
this simulation, errors on the ball radii are corrected as was 
indicated in Sec. 2.3. This figure shows good agreement be-
tween simulation and experiments. Small differences noticed 
in the figure are due mainly to machining errors of the nut and 
screw. These results clearly show the influence of dimensional 
errors on the load distribution in a BSS, as has been discussed 
in Ref. [24] by Mei et al. 

The results obtained experimentally by the mark-tracking 
method and by FEM are shown in Fig. 14. The load cases are 
selected according to the level of displacement of the central 
row of balls (third ball). The load cases correspond to a dis-
placement of 0.37 mm for load case 1 and 0.24 mm for load 

      
            (a) Fa = 240 N          (b) Fa = 318 N    
 
Fig. 11. Simulated isochromatic fringes for nominal geometry. 
 

 
 
Fig. 12. Principal stress difference distribution for the first simulation 
with nominal geometry and Fa = 318 N. 

 

 
 
Fig. 13. Principal stress difference distribution for the second simula-
tion with corrected radii errors for Fa = 240 N and Fa = 318 N. 
 

 
 
Fig. 14. Mark displacement evolution for Test A. 
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case 2. Fig. 14 shows the evolution of longitudinal displace-
ment Ux of the screw axis marks shown in Fig. 9(a). The posi-
tion of the each ball corresponds to the position of the mark. 
This figure shows a good correspondence between the solu-
tions obtained by FEM and by experiment. The small differ-
ences observed between simulation and experiment are of the 
order of 2 percent for the first row of balls. 

  
3.1.2 Test B: local contact 

Experimental results of Test B are presented in Fig. 15. 
This figure shows experimental and simulated photoelastic 
fringes for two contact direction angles β = 0° and β  = 40° 
with Fa = 50 N. There is a good correspondence between ex-
perimental and numerical results. For β = 0° (Figs. 15(a) and 
(b)), two contact points are shown symmetrical about axis y 
(the central axis of the ball). The presence of two contact 
points is justified by the crown’s gothic shaped groove. If the 
contact direction β increases, only one contact point remains 
with a higher number of fringes describing a higher stress 
value as shown in Figs. 15(c) and (d). 

Fig. 16 presents the evolution of experimental and simu-
lated displacements along the load direction according to the 
mark positions shown on Fig. 9(b). Marks with x ≤ 40 mm 
belong to the crown and marks with x > 40 mm belong to the 
ball. There is a good correspondence between both approaches. 
A jump in displacement around the 40 mm position is ob-
served. This jump is due to non contact of the ball with the 
crown along the observation line; so the displacement field 
cannot be continuous. The height of the jump is higher for β = 
0° than β = 40° since the observation line is closer to the con-
tact point. 

3.2 Comparison between analytical and numerical results 

The analytical solution presented in Sec. 2.4 allows calcula-
tion of contact loads Pi, contact angles βi, axial displacement xi 
and the ball crushes δi of the BSS presented in Section 2.3. 
This analytical solution will be possible after resolution of the 
10 nonlinear Eqs. (11) and (12) by the Newton-Raphson 
method. 

It should be noted that the analytical solution neglects the 
radial deformation of the system. Load distribution Pi, as well 
as the other unknowns, βi and δi depend only on the axial de-
formation xi of the screw. 

Fig. 17 shows the evolution of contact forces Pi obtained by 

  
         (a) Exp., β = 0°                          (b) Sim., β = 0°  
 

  
        (c) Exp., β = 40°                           (d) Sim., β = 40°  
 
Fig. 15. Experimental and FEM fringes for Test B with Fa = 50N. 

 

 
(a) β = 0° 

                      

 
(b) β = 40° 

           
Fig. 16. Mark displacement evolution for Test B. 
 

 
 
Fig. 17. Load distribution versus ball number position for FEM and 
analytical solution (AS). 
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FEM and by analytical solution (AS) for three load cases: Fa = 
360 N, Fa = 265 N and Fa = 158 N. These analytical and nu-
merical results clearly show that the first row of ball is the 
more heavily loaded and the ratio of the contact forces be-
tween the first and last rows of balls is practically 2 for the 
three load cases. A similar pattern for the contact angle is ob-
served in Fig. 18. The contact angle decreases away from the 
point of load application. 

 
4. Discussion 

The FEM solution has been validated from a static view-
point by the photoelasticity technique and kinematically by 
the mark-tracking method. The analytical solution showed that 
distribution of loads depends primarily on the axial deforma-
tion of the BSS. However, in order that the FEM solution may 
be applied to an industrial case, three corrections must be 
made: system modelling should be done using a metallic ma-
terial and not with PMMA; cylindrical shape should be used 
for the system and not a flat one; finally, the helix angle 
should be taken into account. 

In this study, it is assumed that the material is linear elastic, 
and so the value of Young’s modulus and Poisson’s ratio 
should not influence the load distribution. The solution thus 
remains valid for a metallic material. The cylindrical form of 
the system can be taken into account by selecting axi-
symmetric finite elements. Indeed, the same mesh used for the 
PMMA study will be used for industrial case simply by 
changing 2D elements to axisymmetric elements. The accu-
racy of the mesh will not then be affected. 

The helix angle in the analytical and FEM models is con-
sidered equal to zero Degree. Analytical and finite element 
solutions remain valid at the near multiplicative coefficient 
cos γ. To take into consideration the helix angle, one simply 
multiplies the forces Pj in Eqs. (10) and (12) by cos γ, hence 
[24]: 
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For the FEM solution, the helix angle can be taken into ac-

count by postprocessing. In this case, contact force iPg of each 
row ball is obtained by : 

 

cos
i iPPg g
=   (15) 

 
with γ obtained from BSS geometry [25]:  

sarctan( / 2 )L Rg p=  and iP the contact forces obtained by 
FEM. 

The evolution of contact forces on different balls is defined 
by: 
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with n the ball number in the row i, m the total number of balls 
by row. For the last row, the least loaded row, the contact 
force for each ball is defined by l lP Pg= /m and not by Eq. 
(16). For each row, one considers that 1

0
i i

mP p -= . 
By way of application, the results for an industrial BBS, 

whose geometry corresponds to demonstration model pre-
sented in Sec. 2.2 in configuration T-C, are presented bellow. 
The mechanical and geometric characteristics of the industrial 
BSS are summarised in Table 2. Fig. 19 shows the load distri-
bution versus the row number for 5 load cases from 20 kN to 
100 kN with helix angle of γ = 7°. For the maximal load case 

 
 
Fig. 18. Evolution of contact angle β versus ball number position.  
 

 

Table 2. Geometric and mechanical characteristics of the industrial 
BSS. 
 

Rb 

(mm) 
Rs 

(mm) 
Rn 

(mm) 
L 

(mm) γ E 

(GPa) ν m r 

7.144 28.5 29. 22. 7° 210. 0.3 12 5 

 

 
 
Fig. 19. Forces contact evolution Pg  versus the row number for the 
industrial case. 
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Fa = 100 kN, the contact force at the first row of balls reaches 
1 51.37Pg = kN, while the last row is only 5 14Pg = kN. 
Fig. 20 shows the trend of contact forces on each ball for 3 

load cases in the industrial case. These values will be used in 
the fatigue laws of the BSS to calculate their lifespan. 

 
5. Conclusions 

In this work, the load distribution in a ball-screw system is 
studied by three approaches: analytical, numerical and ex-
perimental. The latter has been used to validate the first two 
approaches. In order to assess stress distribution in the BSS, in 
particular at the different contact points, a photoelasticity test 
bench was used. The results show that the row of balls closest 
to the point of load application is the most stressed. The value 
of the loads on the balls reveals a continuing decrease the 
further away one gets from that point of loading. Discussions 
in the previous section showed that a 2D FEM model, experi-
mentally validated, can be used for an industrial case using 
axisymmetric elements. This study focuses on the 2D case. 
Further work is underway to complete the study in a 3D case 
with adapted experimental volume measurement methods [14, 
26]. 
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