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Abstract 
 
Robust collaborative optimization (RCO) is a widely used approach to design multidisciplinary system under uncertainty. In most of 

the existing RCO frameworks, the mean of the state variable is considered as auxiliary design variable and the implicit uncertainty prop-
agation method is employed for estimating their uncertainties (interval or standard deviation), which are then used to calculate uncertain-
ties in the ending performances. However, as repeated calculation of the global sensitivity equations (GSE) is demanded during the opti-
mization process of the existing approaches, it is typically very cumbersome or even impossible to obtain GSE for many practical engi-
neering problems due to the non-smoothness and discontinuity of the black-box-type analysis models. To address this issue, a new RCO 
method is proposed in this paper, in which the standard deviation of the state variable is introduced as auxiliary design variable in addi-
tion to the mean. Accordingly, interdisciplinary compatibility constraint on the standard deviation of state variable is added to enhance 
the design compatibility between various disciplines. The effectiveness of the proposed method is demonstrated through two mathemati-
cal examples. The results generated by the conventional robust all-in-one (RAIO) approach are used as benchmarks for comparison. Our 
study shows that the optimal solutions produced by the proposed RCO method are highly close to those of RAIO while exhibiting good 
interdisciplinary compatibility.  
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1. Introduction 

Complex systems design often involves a large number of 
design variables and information coupling among subsystems. 
Multidisciplinary design optimization (MDO) [1-3] methods 
have been developed to relieve the computational burden by 
decomposing a system into several manageable subsystems. 
Collaborative optimization (CO) is one popular approach 
among them, which decouples various disciplines by introduc-
ing the interdisciplinary compatibility constraints on auxiliary 
design variables and shared design variables. As, each disci-
pline can achieve autonomous design simultaneously, CO is 
widely utilized to solve coupled MDO problems. On the other 
hand, it is widely recognized that uncertainty universally ex-
ists in engineering systems and often causes unexpected qual-
ity loss or catastrophic failure [4]. Therefore, traditional MDO 
has been extended to robust MDO [5] and reliability-based 
MDO [6] with the consideration of uncertainties.  

Literature has seen many works to solve the robust MDO 
problem. A worst-case based uncertainty propagation method 
for evaluating the interval of end performances in robust 

MDO has been developed by Gu [7]. To accommodate this 
approach to generic probabilistic representations of uncertain-
ties, Du and Chen proposed three techniques, namely, system 
uncertainty analysis method (SUA), concurrent subsystem 
uncertainty analysis method (CSSUA) and modified concur-
rent subsystem uncertainty analysis method (MCSSUA) [8, 9]. 
These works greatly facilitate the integration of robust design 
with MDO in an all-in-one fashion. However, they may not be 
applicable to robust MDO formulated in a multi-level type for 
distributed design. To address this problem, lots of robust CO 
(RCO) approaches with various uncertainty management 
strategies have been developed by extending the CO frame-
work to robust design. A novel RCO method based on the 
dual-response surface was proposed, in which the mean and 
standard deviation estimation of the state variables and end 
performances are replaced by two response surfaces respec-
tively [10]. However, it is well known that a large amount of 
sample points are needed to guarantee the accuracy of re-
sponse surface. In addition, the inaccuracy of metamodels 
would have large impact on the uncertainty estimation [11]. A 
RCO framework based on the implicit uncertainty propagation 
(IUP) method was established, in which the state variable is 
considered as auxiliary design variable as is typically done in 
CO, while its interval is estimated by calculating the global 
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sensitivity equation (GSE) in the IUP module [12]. Since this 
approach can only deal with interval uncertainties, based on it 
another RCO method applicable to problems with probabilis-
tic uncertainties was developed by integrating SUA into the 
IUP module [13]. In these works, the IUP method is employed 
to propagate uncertainties, during which repeated GSE calcu-
lation is demanded. However, as the IUP method relies upon 
the first-order Taylor approximation of the state variables, it 
can cause large error when the state variables are highly non-
linear or have large variations. Most importantly, the sensitiv-
ity information for the GSE calculation may not exist at cer-
tain design point. For example, for some black-box-type simu-
lated based functions, such as finite element analysis and 
computational fluent dynamics simulation models, the sensi-
tivity information may not exist due to non-smoothness or 
discontinuity of performance functions, which however can-
not be detected easily before optimization. In this case, the 
IUP based approaches are lack of robustness and no longer 
applicable.  

With the popularity of simulation tools, practical engineer-
ing problems widely involve black-box-type simulated based 
performance functions. It is necessary to develop a more gen-
eral and robust RCO approach that can address the above is-
sue of the existing RCO approaches. In this paper, a general 
RCO framework is developed avoiding the complicated IUP 
module, thus to make the remedy for IUP-RCO. In addition to 
the mean, the standard deviation of the state variable is also 
considered as auxiliary design variable in each discipline 
rather than being estimated by IUP. Consequently, additional 
interdisciplinary compatibility constraints on the state variable 
standard deviation are added at the system-level optimization. 
During optimization, the targets for the state variables from 
the system level are not only the mean but also the standard 
deviation. That is to say, the first two statistic moments of the 
state variables are matched between various disciplines to 
ensure the design compatibility. Thus, the proposed RCO 
method in this paper is named as moment-matching RCO 
(MM-RCO). The rest of this paper is organized as follows. 
The proposed MM-RCO method is introduced in Sec. 2 
with a brief review of the CO method, followed by case 
studies on two mathematical examples to demonstrate the 
effectiveness of MM-RCO in Sec. 3. Conclusions are sum-
marized in Sec. 4.  

 
2. The proposed robust collaborative optimization 

method 

2.1 Review of collaborative optimization 

Collaborative optimization (CO) first proposed by Kroo et 
al. [14, 15] is a bi-level MDO approach specifically created for 
large-scale distributed-analysis applications, which has been 
successfully applied to many design problems [16, 17]. The 
basic architecture of CO [15] for a multidisciplinary system 
with two coupled disciplines is shown in Fig. 1. CO is de-
signed to allow each discipline to solve its subproblem in par-

allel with the others by adding auxiliary design variables 
((xaux)12, (xaux)21) corresponding to the input state variables in 
each subproblem. The system-level optimization design vari-
ables include: its own local design variable (xsys), and xsh

0, y12
0, 

y21
0 that are then sent to disciplines as target values respec-

tively for (xsh)1∪(xsh)2, y12, y21. Each discipline determines its 
local design variables (x1, (xsh)1, x2 ,(xsh)2) in order to meet the 
targets (xsh

0, y12
0, y21

0) as closely as possible subject to its local 
constraints (g1, g2). (xsh)1 is design variable shared by disci-
pline 1 and system, while (xsh)2 shared by discipline 2 and 
system. 

Through introducing auxiliary design variable (xaux)ij as ad-
ditional design variable in discipline j, concurrent design of 
each discipline becomes possible in the CO framework. To 
ensure interdisciplinary consistency, interdisciplinary com-
patibility constraints J = 0 are introduced in the system level. 
The general flowchart of the CO algorithm is shown in Fig. 2, 
with the system and discipline optimization formulations dis-
played in Eqs. (1)-(3), respectively. 

The system-level optimization attempts to minimize the 
system objective f while satisfying all the interdisciplinary 
compatibility constraints J. After its optimization, the de-
signed variables xsh

0, y12
0 and y21

0 would be assigned to disci-
plines as targets to be matched (see the shadowed box in Fig. 
2). Each discipline operates on its own local design variables 
xi with the goal of matching target values posed by the system 
level as well as satisfying its local constraints gi. Meanwhile, 
they would feed back the current optimal objective J* (i.e. 
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Fig. 1. A system with two coupled disciplines and the corresponding 
CO architecture. 
 

 
 
Fig. 2. The general flowchart of the CO algorithm for system with two 
coupled disciplines. 
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optimal shared design variables, optimal auxiliary design vari-
ables and achievable output state variables) to the system level 
after optimization (see the dashed box in Fig. 2). The match-
ing can be obtained by gradually minimizing the discrepancy 
Ji between some of the local design variables and/or local 
states and their corresponding target values with the increase 
of optimization iteration. The optimization procedure iterates 
till it converges.  
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2.2 The proposed moment-matching based robust collabora-

tive optimization method 

RCO is actually an extension of CO with the consideration 
of uncertainties, in which the state variables and ending per-
formances become stochastic. As has been mentioned in the 
introduction, GSE is demanded in the existing RCO methods 
employing IUP (shorted to IUP-RCO for simplicity in this 
paper). In RCO, the completion of one system-level optimiza-
tion and one discipline-level optimization is defined as one 
optimization iteration. Specifically, in each optimization itera-
tion of IUP-RCO, each discipline has to conduct local sensi-
tivity analysis at its current obtained optimal design point and 
then pass the sensitivity information to the IUP module to 
calculate the GSE. The uncertain information derived from 
GSE would then be assigned to the system and each discipline 
to estimate the uncertainty properties in their ending perform-
ances. As have been indicated in the introduction, the IUP 
module in RCO may become paralyzed for certain practical 
design problems due to the non-smoothness or discontinuity 
of performance functions thus terminates the optimization 
process of IUP-RCO. It is necessary to develop a more robust 

RCO method that is applicable to general design problems. 
Therefore, in this work, illuminated by the moment matching 
approach adopted in solving hierarchical MDO problems [18, 
19], where the stochastic interrelated responses are quantified 
by the first two statistic moments and then matched in the 
hierarchy, a new RCO method (MM-RCO) following the 
general framework of the existing RCO approach [12] is pro-
posed. With this method, in addition to the mean, the standard 
deviation of state variable is also introduced as auxiliary de-
sign variable during each discipline optimization. Subse-
quently, additional disciplinary compatibility constraints are 
correspondingly added in the system-level optimization. Dur-
ing each optimization iteration, the system-level optimization 
aims to minimize the system objective function while satisfy-
ing interdisciplinary compatibility constraints and then assigns 
targets (the shared variables and the first two statistical mo-
ments of state variables) to each discipline. The discipline-
level optimization tries to match these targets and then feeds 
back its achievable values to the system. The iteration process 
will continue until certain convergence criteria are satisfied.  

To better show the difference between the proposed MM-
RCO method and the existing IUP-RCO method, the design 
architectures for system with two coupled disciplines as above 
of both approaches are illustrated and compared side by side 
in Fig. 3. It is clear that IUP-RCO has to invoke the IUP mod-
ule within each optimization iteration to calculate the uncer-
tainty properties in the state variables, which will be used for 
performance uncertainty property quantification. While, in 
MM-RCO such information can be easily obtained in each 
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Fig. 3. Design architectures of IUP-RCO (top) and MM-RCO (bot-
tom). 
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discipline optimization via certain uncertainty propagation 
method since the mean and standard deviation of input state 
variables are both considered as auxiliary design variables. 
Moreover, since the state variables are controlled by mean and 
standard deviation in MM-RCO with the application of the 
moment-matching strategy, it allocates more design freedom 
to each discipline. This is largely aligned with CO in that au-
tonomous design can be completely realized in each discipline.  

Based on the CO formulation shown in Eqs. (1)-(3), the cor-
responding MM-RCO formulation for system and discipline 
optimization is given in Eqs. (4)-(6), respectively. The quanti-
ties that discipline i attempts to minimize include: 1) discrep-
ancies between its designed values of the shared variables 
(μsh

0)i and the system targets (μxsh
0)i ; 2) discrepancies between 

its designed values of the auxiliary design variable (μxaux
0)ji, 

(σxaux
0)ji and the system targets μyji

0, σyji
0; 3) discrepancies be-

tween its achievable values of its output state variable μyij, σyij 
and the system targets μyij

0, σyij
0. The formulation of the com-

patibility constraints in the system-level optimization are the 
same as the optimization objectives in each discipline. As has 
been noticed in CO, the interdisciplinary compatibility in 
MM-RCO cannot be guaranteed at the beginning of optimiza-
tion. However, the discrepancies of mean and standard devia-
tion of the auxiliary variable between different disciplines 
would become smaller and smaller, which would closely ap-
proach to zero at the optimal solution. 

Clearly, the key component in robust CO is how to quantify 
the performance uncertainties in the system (μf and σf) and 
discipline optimization (μgi and σgi). With the proposed MM-
RCO method, at any design point (μxi , (μxsh)i, (μxaux)ji, (σxaux)ji) 
of discipline i optimization, since σxi and (σxsh)i are user pre-
specified and known before optimization, μyij and σyij can be 
easily estimated by many efficient uncertainty propagation 
methods without resorting to other discipline. Subsequently, 
performance uncertainties (μf , σf , μgi, σgi) that are functions of 
μxi, σxi , (μxsh)i, (σxsh)i, (μxaux)ji, (σxaux)ji, μyij, σyij can be estimated in 
the same way. While in IUP-RCO, only the mean of state 
variable is added as auxiliary design variable. Thus the vari-
ance of state variable should be calculated by the IUP module 
with tedious local sensitivity analysis in each discipline, based 
on which the performance uncertainties can only be quantified. 
With the moment-matching strategy, the tedious IUP module 
is excluded in MM-RCO by introducing additional auxiliary 
design variables and interdisciplinary compatibility constraints. 
For some practical engineering problems, the GSE calculation 
may be paralyzed at certain design point. In this case, MM-
RCO is much more robust and preferable.  

 
System optimization 
 

12 12 21 21

0 0 0 0 0 0

min

. . 0 1,2

( , , , , , ) .

f f

i

sys xsys xsh y y y y

F k

s t J i

X

m s

m m m s m s

= +

= =

=

              (4) 

 

Discipline 1 optimization 
 

21

21 12 12 12 12

1 1

1 1

1 1

0 2 0 2
1 1 1 21

0 2 0 2 0 2
21

12 12 1 1 21 21

12 12 1 1

min (( ) ( ) ) ( ( ) )

( ( ) ) ( ) ( )

. . 0

= ( , ,( ) ,( ) ,( ) ,( ) )

= ( , ,( ) ,( ) ,( )
aux aux

aux

xsh xsh y xaux

y xaux y y y y

g g

y y x x xsh xsh x x

y y x x xsh xsh x

J

s t k

m m m m

s s m m s s

m s

m m m s m s m s

s s m s m s m

= - + -

+ - + - + -

+ £

1

21 21

1 1 21 21

,( ) )

[ ,( ) ,( ) ,( ) ] .
aux

sh

x

ss x x xaux xauxX

s

m m m s=

 

 (5) 
 
Discipline 2 optimization 
 

12

12 21 21 21 21

2 2

2 2

2 2

0 2 0 2
2 2 2 12

0 2 0 2 0 2
12

21 21 2 2 12 12

21 21 2 2

min (( ) ( ) ) ( ( ) )

( ( ) ) ( ) ( )

. . 0

= ( , ,( ) ,( ) ,( ) ,( ) )

= ( , ,( ) ,( ) ,( )
aux aux

aux

xsh xsh y xaux

y xaux y y y y

g g

y y x x xsh xsh x x

y y x x xsh xsh x

J

s t k

m m m m

s s m m s s

m s

m m m s m s m s

s s m s m s m

= - + -

+ - + - + -

+ £

2

12 12

2 2 12 12

,( ) )

[ ,( ) ,( ) ,( ) ] .
aux

sh

x

ss x x xaux xauxX

s

m m m s=

 

 (6)  
 
In the system-level optimization, often it is difficult to strict-

ly satisfy the interdisciplinary compatibility constraints (Ji = 0) 
especially when approaching to the optimal design point. 
Therefore, a dynamic slack factor s is introduced to loose the 
interdisciplinary compatibility requirement in MM-RCO [18]. 
A relatively larger slack factor is employed in the beginning 
stage of optimization to enhance the global search capability 
of MM-RCO. While in the end, a relatively smaller one is 
used to enhance the interdisciplinary compatibility and expe-
dite the convergence process. The dynamic slack factor (s) is 
defined in Eq. (7), where “a” and “b” are constants and “I” is 
the number of optimization iteration. Generally, a larger “a” 
yields an optimal solution with better interdisciplinary com-
patibility, but more iterations. Therefore, “a” should be care-
fully selected based on the available computational resources. 
With the increase of I, s is decreasing, which augments the 
interdisciplinary compatibility between various disciplines. 
Actually, the selection of the slack factor s is somewhat sub-
jective and problem independent. However, if no slack factor 
is employed, the optimal solution may not be able to converge 
after large numbers of optimization iteration.  

 
/ ( ) .as b I=                    (7) 

 

3. Case studies 

3.1 Example 1 

The all-in-one optimization formulation of the first mathe-
matical example used to test the effectiveness of MM-RCO is 
shown in Eq. (8).  



 F. Xiong et al. / Journal of Mechanical Science and Technology 28 (4) (2014) 1365~1372 1369 
 

  

212
2 3 12

2
12 1 2 3 21

21 12 1 3

12 21
1 2

1 2 3

min

. . 0.2

1 0, 1 0
8 10

10 10 0 10 0 10.

yf x x y e

s t y x x x y

y y x x
y yg g

x x x

-= + + +

= + + -

= + +

= - £ = - £

- £ £ £ £ £ £

           (8)              

 
This problem can be decomposed into two disciplines, of 

which x1 and x3 are shared design variables by the two disci-
plines (see Fig. 4). The MM-RCO formulation is given in Eqs. 
(9)-(11). 
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In discipline 1 optimization, (μxaux)21 and (σxaux)21 corre-

sponding to the input state y21 are auxiliary variables. At any 
design point ( (μx1)1, (μx2)1, (μx3)1, (μxaux)21, (σxaux) 21), since 
(σxaux)21 is design variable which is evidently known for disci-
pline 1, and σx1, σx2 , σx3 are constant given before optimization, 
the uncertainties in its state (μy12, σy12) and output performance 
(μg1, σg1) can be directly calculated by uncertainty propagation 
approaches, such as Monte Carlo simulation (MCS) [20], 
numerical integration [21] or polynomial chaos expansion 
[22]. Since this paper aims to verify the effectiveness of the 
proposed RCO formulation, MCS is utilized to implement this 
task to ensure high accuracy although many efficient uncer-
tainty propagation methods can be employed. In discipline 2 
optimization, μy21, σy21 , μg2 and σg2 can be estimated in the 
same way. In this example, x1 and x3 are considered as random 
variables following normal distribution with distribution pa-
rameter σ = 0.1, i.e. σx1= 0.1, σx2= 0, σx3= 0.1.  

In all the tested examples, the required reliability level is 
99.865% (k = 3) for all the probabilistic constraints, and “a” 
and “b” in Eq. (7) are set as a = 1.2, b = 1. The convergence 
criterion of MM-RCO is that the discrepancy of the objective 
value between the current iteration and the previous iteration 
is less than a pre-specified value. The results from RAIO are 
used as benchmarks for validation. The optimal design vari-
ables X obtained by MM-RCO are plugged into the RAIO 
formulation to obtain the confirmed values of objective (μf and 
σf) and constraints g. All the results for example 1 are shown 
in Table 1. To clearly show how the disciplinary consistency 
is satisfied at the optimal solution, the mean and standard de-
viation (μy and σy) of the two state variables are calculated by 
conducting system analysis (SA) at the optimal design point of 
MM-RCO, which are validated by those from RAIO, and the 
results are listed in Table 2. 

From Table 1, it is observed that the results produced by 
MM-RCO are very close to those of RAIO, which demon-
strates the effectiveness of MM-RCO. From Table 2, evi-
dently the optimal solutions for the auxiliary design variables 
from MM-RCO show great agreements to those generated by 
the SA at the optimal design point, which indicates that the 
discipline compatibility is well ensured at the optimal design 
point by MM-RCO. Meanwhile, both the optimal designed 

Discipline 2
g2

Discipline 1
g1

x1x2

y12

y21

, x3  
 
Fig. 4. Structure after decomposition of example 1. 
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auxiliary design variables and those obtained by SA are very 
close to those of RAIO, which further demonstrates the effec-
tiveness of MM-RCO. To clearly show how the interdiscipli-
nary discrepancies evolve with the optimization iteration of 
MM-RCO, values for the two compatibility constraints in the 
system-level optimization are plotted in Fig. 5. It is clear that 
both discrepancies become smaller and smaller as the iteration 
proceeds, meaning that the disciplinary compatibility is get-
ting better and better. 

 
3.2 Example 2 

The second example can be also decomposed into two dis-
ciplines with two coupled state variables (see Fig. 6) and the 
all-in-one formulation is shown in Eq. (12).  

 

21

1 4 5 12

2
12 1 2 3 21

2
21 1 4 4 5 12

2
1 1 2 3 2

2 1 4 5 12

1 2
1 2

min (0.4 )

. . 2

2

(0.4 )

1 0, 1 0
11 12

0 10 1,2,...,5.

y

i

f x x x y

s t y x x x y

y x x x x y

z x x x x e

z x x x y
z zg g

x i

-

= + +

= + - +

= + + +

= + + +

= + +

= - £ = - £

£ £ =

         (12) 

The MM-RCO formulation for this example is not shown 
here since it is very easy to derive it by following the general 
formulation of MM-RCO in Eqs. (4)-(6). All the design vari-
ables xi (i = 1,…,5) are considered as random variables follow-
ing normal distribution and the standard deviation is σxi = 0.2(i 
= 1,…,5). During the optimization process of MM-RCO, the 
first two statistic moments of y21 are considered as auxiliary 
design variables in discipline 1. Similarly, the first two statis-
tic moments of y12 are considered as the auxiliary design vari-
ables in discipline 2. The optimal design variables X (x1, x2, x3, 
x4, x5) produced by MM-RCO are plugged into the RAIO 
formulation to obtain the confirmed values of objective f and 
constraints g. All the results are shown in Table 3. The mean 
and standard deviation of auxiliary design variables from 
MM-RCO, SA and RAIO are listed in Table 4. It is observed 
that X, μf and σf from MM-RCO are very close to those of 
RAIO. Meanwhile, the first two statistic moments of state 
variables produced by MM-RCO show great agreements to 
those from SA and RAIO.  

Values for the two compatibility constraints in the system 
optimization are illustrated in Fig. 7, which exhibits similar 
trend of example 1 that the discrepancies become smaller and 
smaller with the increase of optimization iteration, thus the 
disciplinary compatibility becomes better and better. It is also 
noticed that J1 for discipline 1 jumps to a relatively large value 
in the first few iterations. However, it quickly becomes small-
er and smaller and approaches to zero at the last few iterations. 

Table 1. Optimal solutions from MM-RCO and PAIO (example 1). 
 

 X (x1,x2,x3) μf σf g(g1,g2) 

MMRCO 3.2643  0.0960  0 9.9863 0.6288 -0.0108 -0.2904 

RAIO 3.3259  0.0997  0 9.8902 0.6259 0      -0.2933 
 
Table 2. Comparison of auxiliary design variables (example 1). 
 

 μy12 σy12 μy21 σy21 

MMRCO 9.9957 0.6287 6.4498 0.1207 

MMRCO (SA) 9.9737 0.6291   6.4969 0.1997 

RAIO 9.8786 0.6262 6.4675  0.1998 
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Fig. 5. The disciplinary discrepancy in each discipline of example 1. 
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Fig. 6. Structure after decomposition of example 2. 

 
 

Table 3. Optimal solutions from MM-RCO and PAIO (example 2). 
 

 X (x1,x2,x3,x4,x5) μf σf g(g1,g2) 

1.6 1.6 9.4 MM 
RCO     8.0413   1.6 

19.6008 2.5601 -0.0429 -0.0066 

1.6 1.6 9.4 
RAIO 

    8.0847   1.6 
19.7004 2.5668 -0.0429 0 

 
 

Table 4. Comparison of auxiliary design variables (example 2). 
 

 μy12 σy12 μy21 σy21 

MMRCO 15.3246 1.5459 95.0928 6.5000 

MMRCO(SA) 15.8927   1.5503 95.1074    6.9027 

RAIO 15.9806 1.5497 95.9651 6.9282 
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Fig. 7. The disciplinary discrepancy in each discipline of example 2. 
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It means that the disciplinary compatibility cannot be ensured 
in the beginning. However, it will be satisfied gradually, 
which further demonstrate the effectiveness of MM-RCO. 

 
4. Conclusions 

The existing RCO approaches employ the IUP method to 
estimate the uncertainties of the state variables, which require 
repeated tedious GSE calculation. However, it is cumbersome 
to estimate the GSE and the most important is that GSE may 
do not exist at certain design point especially for black-box-
type simulation based model due to its non-smoothness and 
discontinuity. It significantly prohibits the applicability of the 
IUP-RCO approaches to solving general robust multidiscipli-
nary systems. To address this issue, a new RCO method based 
on the moment-matching strategy (MM-RCO) is developed in 
this paper, in which the standard deviation of the state variable 
is also considered as auxiliary design variable in addition to 
the mean. Therefore, uncertainties of the ending performance 
in the system and discipline-level optimization can be conven-
iently obtained rather than by employing the IUP module. The 
proposed MM-RCO approach is tested via two mathematical 
examples to demonstrate its applicability and effectiveness. 
Based on our empirical study, it is observed that the optimal 
solutions produced by MM-RCO show great agreements to 
those obtained from RAIO. Meanwhile, the optimal designed 
mean and standard deviation of the state variables are very 
close to those obtained from the system analysis, indicating 
good disciplinary compatibility. Future work will focus on the 
application of the proposed MM-RCO method to some practi-
cal engineering problems. 
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