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Abstract 
 
An optimization approach for black-and-white and hinge-removal topology designs is studied. To achieve this motive, an optimal to-

pology allowing grey boundaries is found firstly. When a suitable design has been obtained, this solution is then used as a starting point 
for the follow-up optimization with the goal to free unfavorable intermediate elements. For this purpose, an updated optimality criterion 
in which a threshold factor is introduced to gradually suppress elements with low density is proposed. The typical optimality method and 
new technique proposed are applied to the design procedure sequentially. Besides, to circumvent the one-point hinge connection problem 
producing in the process of freeing intermediate elements, a hinge-removal strategy is also proposed. During the optimization, the binary 
constraints on design variables are relaxed based on the scheme of solid isotropic material with penalization. Meanwhile, the mesh-
independency filter is employed to ensure the existence of a solution and remove well-known checkerboards. In this way, a solution that 
has few intermediate elements and is free of one-point hinge connections is obtained. Finally, different numerical examples including the 
compliance minimization, compliant mechanisms and vibration problems demonstrate the validity of the proposed approach.  
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1. Introduction 

By means of the method of topology optimization, general 
topology optimization problems, such as the compliance 
minimization, compliant mechanisms and vibration problems, 
can be posed as material distribution problems. During the 
process of solving, the design domain is usually divided into a 
certain number of finite elements. Subsequently, to determine 
the optimal placement of a given isotropic material in the de-
sign space, a numerical optimization cycle is needed. For rea-
sons of the manufacture, a black-and-white (0-1) structural 
topology is classically desired, whereas it requires mathemati-
cal programming that can handle lots of discrete 0-1 design 
variables, such as simulated annealing [1, 2], genetic algo-
rithm [3, 4], sequential integer programming methods [5, 6], 
dual method [7, 8], and methods for global optimization [9, 
10], and so on. However, it is computationally prohibitive to 
solve the optimum problem using these methods. Thus, the 
most common approach to circumvent solution difficulties is 
still to relax design variables, i.e. replace the integer variables 
with continuous variables [11-21], so that the material distri-
bution problem can be solved using most mathematical pro-

gramming with continuous design variables. Among the re-
laxation methods, two major approaches, namely microstruc-
ture based and power law based, are used in the field of the 
topology optimization. The homogenization technique [11, 
12], which determines the optimal material distribution by 
designing the size parameters of microstructures, is a repre-
sentative microstructure method. This technique is effective 
for a large class of elasticity problems, but it commonly needs 
a lot of design variables and results in topologies with micro 
perforations, checkerboards and one-point hinge connections. 
As an alternative, SIMP (solid isotropic material with penali-
zation) method has thereby become increasingly popular due 
to its advantages in computation efficiency and conception 
simplicity. This method directly treats the material density of 
each element as a design variable, which reduces the size of 
the optimization problem to a large extent [13-19], whereas it 
is noteworthy that the SIMP method could produce topologies 
with intermediate elements. It is very impractical and of high 
cost to produce structural elements with varied densities. This 
means that the intermediate values of this artificial material 
model should be penalized in some manner to make them 
uneconomical. In past works, researchers usually ensured 
continuous design variables to be forced towards a black and 
white solution by applying a penalization on the density of 
element as ρp, (p > 1) [13-18]. But this penalization method is 
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prone to lead to checkerboards and one-point hinge connec-
tions. This necessitates applications of some restriction meth-
ods, such as the perimeter [22], local gradient [23] and mesh-
independency filter [24, 25]. By exerting a length scale on the 
variable variation, these methods can make checkerboards and 
one-point hinge connections to be arbitrarily weak, but grey 
band could thus be brought around the topology again, as 
reviewed in Refs. [20] and [26]. Another method is to employ 
a specified threshold value to obtain elements with normalized 
densities equivalent to either 1.0 or 0.0 [27, 28]. However, it is 
not evident how to choose the threshold value appropriately in 
these works. In order to relieve intermediate elements in the 
resultant topologies, explicit penalization terms are also pro-
posed to either append to the objective function [29] or impose 
as a separate constraint [30]. However, it is also possible for 
the extra penalization terms to cause difficulties for the opti-
mization software in finding a feasible solution. In addition to 
the above methods, other methods include a simple heuristic 
for gray-scale suppression by the modification of the optimal-
ity criterion statement by Groenwold et al. [19], a method 
combing a separate constraint and a post-processor based on 
the sequential linear integer programming by Werme [31], 
filtering techniques based on image processing by Sigmund 
[32] and Wang et al. [33], a hybrid SINH method by Bruns 
[34], evolutionary structural optimization method by Chu et al. 
[35], complex-shaped beam element and graph-based optimi-
zation by Sauter et al. [36], A hybrid methodology combining 
simulated annealing and SIMP by Garcia-Lopez et al. [37], 
standardized elements by Jang et al. [38], curve-based meth-
ods by Luo et al. [39], James et al. [40], Wang et al. [41] and 
Zhou et al. [42]. 

In this paper, an optimization approach for black-and-white 
and hinge-removal topology designs is studied. To achieve 
this motive, an optimal topology allowing grey boundaries is 
found firstly. When a suitable design has been obtained, this 
solution is then used as a starting point for the follow-up opti-
mization with the goal to free unfavorable intermediate ele-
ments. For this purpose, an updated optimality criterion in 
which a threshold factor is introduced to gradually suppress 
elements with low density is proposed. The typical optimality 
method and new technique proposed are applied to the design 
procedure sequentially. Besides, to circumvent the one-point 
hinge connection problem producing in the process of freeing 
intermediate elements, the hinge-removal strategy is also pro-
posed. During the optimization, the binary constraints on de-
sign variables are relaxed based on the scheme of solid iso-
tropic material with penalization. Meanwhile, the mesh-
independency filter is employed to ensure the existence of a 
solution and remove well-known checkerboards. In this way, a 
solution that has few intermediate elements and is free of one-
point hinge connections is obtained. Finally, different numeri-
cal examples including the compliance minimization, compli-
ant mechanisms and vibration problems demonstrate the va-
lidity of the proposed approach. 

 

2. Basic notation and problem formulation of test 
problems 

2.1 Basic notation 

Assume that the design domain Ω is discretized into N finite 
elements. Element densities ρe, 1,2, ,e N= L  are considered 
as design variables. The bounds of ρe, 1,2, ,e N= L  are 

 
min[ ,1] ( 1,2, , )e e Nr rÎ = L                      (1) 

 
where ρmin is a positive lower bound and taken the value of 
0.001 here, whose function is to prevent the singularity of the 
finite element stiffness matrix. As a result, the element stiff-
ness matrix Ke should vary with the element density variable 
ρe and can be expressed as [17]: 
 

0 ( , 1)p
e e p Z pr= Î >K K                       (2) 

 
where penalization factor p is used to enforce extreme values 
of design variables. In the present approach, the penalty pa-
rameter p is fixed at 3p =  to hasten the optimization con-
vergence, K0 is the stiffness matrix of an arbitrary solid ele-
ment and can be written as: 
 

0

e

T

V
dV= òK B DB                                 (3) 

 
where Ve is the material volume of a solid element, B is the 
strain matrix of a point of a solid element. On the other hand, 
the element mass matrix Me in the vibration problem is also 
the function of the element density and can be written as: 
 

0q
e er=M M                                      (4) 

 
where q is a penalization factor, normally 1q =  is chosen 
[43], M0 represents the element mass matrix of an arbitrary 
solid element and can be written by using the shape function 
matrix Ns and the material density ρmat as: 
 

0
mat .

e

T
s sV

dVr= òM N N                             (5) 
 
Note that localized eigenmodes may occur in subregions of 

the design domain with low values of the material density 
(e.g., ρe ≤ 0.1) [43, 44]. For this reason, Me is thus rewritten as 
[43]: 

 
0
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From Eqs. (2) and (6), the global stiffness matrix K and 

mass matrix M can be formulated as: 
 

,e e
e e

= =å åK K M M                           (7) 
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2.2 Problem formulation of test problems 

In this paper, the compliance minimization problems, com-
pliant mechanism problems and fundamental eigenvalue prob-
lems are respectively employed to test the feasibility of the 
proposed algorithm. In what follows, the corresponding prob-
lem formulations will be presented. 

 
2.2.1 Compliance minimization problems 

Under given load Fin and boundary conditions, the problem 
formulation with the objective to minimize compliance can be 
written as: 

 

0

min max

Min ( )
s.t.

0 1, 1,2, ,

T
s

e e
e

e

E

V V

e N

r q

r r r
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ï

=ïï
í £ï
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< £ £ = =ïî

å
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KU F

r

          (8) 

 
where ρ is a column vector constructed by ρe, 1,2, ,e N= L , 
ρmax is the upper bound of design variable ρe and taken the 
value of 1, U is the nodal displacement vector, F is the force 
vector with zeros at all degrees of freedom except at the input 
point where it is Fin, θ and V0 are respectively the volume 
fraction and total volume of the design domain, Es is the strain 
energy of the compliance minimization problem. 

 
2.2.2 Compliant mechanism problems 

A compliant mechanism should be flexible so that it can 
easily deform to achieve given mission, but it should also be 
stiff to provide an adequate mechanical advantage and work-
ing stability [20, 21, 45]. Usually, the strain energy and mutual 
potential energy are respectively formulated as measures for 
the overall stiffness and flexibility of a compliant mechanism. 
Assuming that active load Fin is specified, again assuming unit 
dummy load Fout is applied at output point in the direction of 
the output displacement, the compliant mechanism problem 
can be defined in terms of these two conflicting objectives as 
[45-51] 

 

0

min max
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where Fd is the force vector with zeros at all degrees of free-
dom except at the output point where it is Fout, Ud is the nodal 
displacement vector under the load Fout, Ems is the mutual po-
tential energy and can be formulated as: 
 

( )d T
msE .= F U                                   (10) 

2.2.3 Eigenvalue problems 
For dynamically loaded structures, a commonly used design 

goal is to maximize the fundamental eigenvalue λmin, which 
can be formulated as [20, 43, 44]: 
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where M is the global mass matrix, λj and ωj are respectively 
the j th eigenvalue and eigenfrequency with 2

j jl w= , Φj is 
the eigenvector corresponding to ωj, and Φj, 1,2, ,j J= L  are 
M orthonormalized. Simultaneously, all the J candidate ei-
genvalues considered should be numbered such that 
 

1 2 10 .J Jl l l l-< < < < <L                         (12) 
 
Moreover, for the problem Eq. (11), concentrated nonstruc-

tural masses are added to parts of the design domain to avoid 
trivial solutions during the solving process [20, 43]. 

 
3. The hinge-removal strategy 

When forcing continuous design variables towards a black 
and white solution, the one-point hinge connection problem 
may be encountered, which leads to the connection of zero 
thickness, as plotted in Fig. 1. This makes the designed com-
pliant mechanism not to be suited for manufacture from one 
piece of material. To circumvent this problem, the hinge-
removal strategy is proposed in the present study. Specifically, 
at the beginning of each optimization iteration, one-point 
hinge connection patches in the topology are firstly checked. 
Consider the patch of four contiguous elements e11, e21, e31 and 
e41 and define the following condition 
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where δ1 and δ2 are predetermined hinge detection parameters 
with δ1 < δ2, 11er , 

21er , 
31er  and 

41er  are respectively den-
sities of elements e11, e21, e31 and e41. If the condition in Eq. 
(13) holds true, one can determine that elements e11, e21, e31 
and e41 constitute a potential patch of the one-point hinge con-
nection, as shown in Fig. 1(a) or Fig. 1(b). Of these, elements 
e11 and e21 are ones with relatively low density, while elements 
e31 and e41 are ones with relatively high density. In order to 
cure the hinge patch checked, densities of elements e11 and e21 
are then modified by using ones of elements e31 and e41 as 
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31 41

1ˆ( ) ( )
2e e eg r r r= +                             (14) 

 
where ĝ(ρe) is the modified density of element e, e respresents 
low-density element e11 or e21 possessed by a potential one-
point hinge patch. To including all cases shown in Figs. 1(c)-
(e), Eq. (14) is thus rewritten as: 
 

1

1 ˆ( ) ( ( ))
H

e e h
h

g g
H

r r
=

= å                            (15) 

 
where g(ρe) is the modified density of low-density element e 
possessed by the (1 4)H H£ £  potential one-point hinge 
patches, h is the number of the one-point hinge patch. 

 
4. Numerical implementation 

For simplicity, assume that Ωdl is the set of the elements 
with relatively low density in all patches of the one-point 
hinge connection in the design domain. One can define the 
modified density of element e of set Ω\Ωdl as: 

 
( ) \ .e e dlg er r W W= Î                         (16) 

 
For all elements in the design domain, the modified densi-

ties Eqs. (15) and (16) are used to replace the original values 
in the stiffness matrix K and mass matrix M. Hence, sensitivi-
ties of the objective functions of the above optimization prob-
lems with respect to design variable ρi can respectively be 
represented as [20, 33, 43, 44]: 
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where ue and d

eu  are the nodal displacement vectors of ele-
ment e due to Fin and Fout respectively, Φje is eigenvector of 
element e, ( )e ig r r¶ ¶  is the sensitivity of the modified den-
sity g(ρe) with respect to design variable ρi. For element e of 
set Ωdl, one obtained 
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Considering the common high-density elements possessing 

by any two one-point hinge patches among the H ones, Eq. 
(20) can be further written as: 
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where sets S11, S21, S22, S31, S32 and S41 can be formulated as 
 

{ }11 31 41,S e e=                                   (22) 

{ } { }21 31 41 32 42, ,S e e e e= I                          (23) 

{ } { }22 31 41 32 42, ,S e e e e= U                          (24) 
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{ } { } { }32 31 41 32 42 33 43, , ,S e e e e e e= U U                 (26) 

{ } { } { } { }41 31 41 32 42 33 43 34 44, , , ,S e e e e e e e e= U U U        (27) 

 
where e3h and e4h are elements with relatively high density in 
the h th one-point hinge patch of element e. And for element e 
of set Ω\Ωdl, one has 
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Moreover, the sensitivity of the volume constraint can be 

written as: 
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        (a)                  (b)                  (c) 
 

 
                  (d)                   (e) 
 
Fig. 1. The cases of one-point hinge connection: (a) H = 1; (b) H = 1; 
(c) H = 1 and H = 2; (d) H = 1 and H = 3; (e) H = 1 and H = 4. 
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where V(ρ) is the volume of the optimized topology. Clearly, 
the emergence of the one-point hinge patch will lead to an 
increase in the complexity of the sensitivity calculation of the 
objective function. Nevertheless, by using the hinge-removal 
strategy proposed, one-point hinge connections can be found 
and circumvented promptly, which avoids the reproducing of 
this problem in the same location in subsequent iterations. 
Moreover, considering that the one-point hinge problem often 
produces in the process of freeing intermediate elements, the 
hinge-removal strategy will be implemented only in the fol-
low-up optimization. Further, δ1 is chosen as a small value for 
most cases in this work such that a smaller number of poten-
tial one-point hinge connections can be expected. As a result, 
computational effort on the cure of the one-point hinge prob-
lem would be greatly reduced. Especially for the case where 
no one-point hinge connection is found, the implementation of 
the hinge-removal strategy has little influence on the CPU 
time. Therefore, the proposed hinge-removal strategy will be 
applied in the three problems mentioned above. 

 
5. Optimality criterion 

5.1 Typical optimality criterion 

In the proposed approach, an optimal topology with grey 
boundaries is found firstly. Therefore, the typical optimality 
criterion (OC) method with continuous design variables is 
employed to update element densities. Following Bendsøe and 
Sigmund [20] and considering the hinge-removal strategy, a 
heuristic updating scheme for density variables in the above 
design problems can be formulated as: 
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      (30) 

 
where k is the iteration number, (0 1)h h< <  is a relaxation 
factor, ζ is a small move limit, and k

eL  is non-negative and 
written as [20]: 
 

max(0, )k k
e eBL =                                 (31) 

 
where k

eB  are found from the Kuhn-Tucker necessary condi-
tions as [20]: 
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where ef r¶ ¶  is the sensitivity of the overall objective func-
tion in Eqs. (17) −  (19), γ is a Lagrange multiplier, which is 
adjusted by a bi-sectioning algorithm iteration in OC to ensure 
ρk+1 in Eq. (30) to satisfy the active volume constraint, i.e. [20, 
52-55] 
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where ∑icas1, ∑icas2 and ∑icas3 are sums of three types of design 
variables updated in Eq. (30), respectively. 

 
5.2 Updated optimality criterion 

When a suitable design allowing grey boundaries has been 
obtained, the optimal solution is then used as a starting point 
for the follow-up optimization with the goal to free unfavor-
able intermediate elements, such that desired black-and-white 
topology can be obtained. For this reason, an updated optimal-
ity criterion is developed by slightly modifying OC in Eq. (30) 
to update density variables. The updated optimality criterion is 
written as: 
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where parameter α is a threshold factor, and min 1r a< £ , the 
function of which is to inhibit elements with intermediate 
densities. The reasons to adopt Eq. (34) as an updated criterion 
include the following aspects. Firstly, because the optimal 
topology with grey boundaries is used as an initial design for 
the follow-up optimization, what should be removed are only 
intermediate elements. Thus, during the k+1 th iteration, those 
elements whose densities are ρmax in the k th iteration remain 
unchanged. Secondly, from the stiffness matrix and mass ma-
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trix of the finite element, it can be seen that elements with 
high density have larger contribution to the design problem 
than the ones with low densities. Therefore, elements with 

( ) ( )k k
e eg hr aL <  are deleted; and elements with 

{ }max( ( )) ( ) min (1 )( ( )) ,k k k
e e eg gha r z r r£ L < +  are updated 

by ( ( )) ( )k k
e eg hr L ; while elements with ( ( )) ( )k k

e eg hr L ³  
{ }maxmin (1 )( ( )) ,k

egz r r+ are updated by { }maxmin (1 )( ( )) ,k
egz r r+ . 

Thirdly, By virtue of inhibiting the appearance of elements 
with ( ( )) ( )k k

e eg hr aL < , material can be added to the high-
density elements as expected. Further, in order to obtain a 
preferable effect to remove intermediate elements, a continua-
tion scheme similar to that developed by Sigmund [32] is thus 
used to determine parameter α in this study. That is, parameter 
α should be specified as a relatively small positive number 
initially and then increased gradually during the iteration until 
that the ideal 0-1 topology is obtained. Of course, it should 
also be noted here that for the continuation scheme a relatively 
large iteration number to achieve convergence may be re-
quired, as observed in Ref. [32]. However, because of the easy 
formulation by slightly modifying OC, the updated optimality 
criterion itself doesn’t increase the complexity of the sensitiv-
ity calculation of the objective function. By integrating the 
hinge-removal strategy with the updated optimality criterion, 
it can be seen that the proposed approach only requires calcu-
lation complexity as low as possible. The increase in the CPU 
time with the present optimization approach would thus be 
moderate. From this perspective, the proposed approach is 
meaningful and feasible for black-and-white and hinge-
removal topology designs. 

 
6. Sensitivity filter 

During the whole optimization process, in order to ensure 
the existence of a solution and remove the well-known check-
erboards, we employed the popular mesh-independency filter, 
which works by modifying the element sensitivities as [25]: 
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K         (35) 

 
where NEi is the neighborhood of element i, which is defined 
by the elements having centers within a given filter radius R of 
the center of element i. Let xe is the center location of element 
e, one has [25] 

 

{ }i e iNE e R= - £x x                            (36) 

 
And Ĥe is a convolution operator decaying linearly with the 

distance from element i, i.e. [25] 
 

ˆ
e e iH R= - -x x                                (37) 

During the whole optimization, the modified sensitivities Eq. 
(35) are used to replace the original values in Eqs. (17) −  (19). 

 
7. Optimization procedure 

The algorithm of the proposed approach for black-and-
white topology design of compliant mechanisms can be for-
mulated in the following way. 

1: Initialize the initial and follow-up density variables ρfir 
and ρsec, the initial value α0 and increment ∆α of threshold 
factor α, the initial iteration number N1, iteration number N2, 
iteration counter k, hinge detection parameters δ1 and δ2, the 
maximum change dmax in design variables ρsec, intermediate 
element counter Ng, the filtering radius R and the stopping 
limit ε. 

2: Modify iteration counter k. 
3: If k = N1+1, then ρsec=ρfir. 
4: If k > N1 is true, perform the hinge-removal strategy. 
5: Perform finite element analysis, sensitivity calculation 

and mesh-independency filter. 
6: If k ≤ N1 is true, update design variables ρfir based on the 

typical OC in Eq. (30). Otherwise, perform the continuation 
scheme similar to that in Ref. [32], i.e. 

if abs(V(ρ)/V0 - θ) ≤ 0.0001 and mod(k,N2)==1 then 
min( ,1 )a a a a= + D -  

  end 
and update design variables ρsec based on the updated OC in 

Eq. (34). 
7: If k ≤ N1 is true, repeat steps 2-7. 
8: If dmax ≤ ε and k > N1 is true, calculate V(ρ) and Ng. Oth-

erwise, repeat steps 2-8. 
9: Modify ε according to the values of V(ρ) and Ng. Repeat 

steps 2-9 until a solution with volume preserving and few 
intermediate elements is obtained. 

In this algorithm, when giving α0 and ∆α, the termination 
value of α is adjusted implicitly by the modification of ε to 
avoid difficulty in specifying it artificially. More specifically, 
a decrease in ε will lead to an increase in the termination value 
of α, which will bring a better black-and-white solution. Based 
on numerical experience, parameter ε can take the value of 
1e J-  (where J  is a positive integer) and be modified as 
follows: if there exist intermediate elements in the final topol-
ogy adhering to the volume constraint, which indicates that 
the termination value of α is too small, one should attempt to 
decrease ε appropriately. With this implicit adjustment, de-
sired black-and-white topology design satisfying the volume 
constraint can be obtained. On the other hand, hinge detection 
parameter δ2 ideally takes the value of 1 to ensure the continu-
ity of the resultant material. Also, computational experience 
shows that purely black-and-white topologies are often ob-
tained with 6J ³ , so parameter ε is initialized as 1e 2-  to 
ensure an increasing α in seeking the optimum solution in this 
study. 

In a sum, the flowchart of the proposed approach is given in 
Fig. 2. 
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8. Numerical examples 

8.1 A MBB beam 

In the first example, the popular MBB beam which previ-
ously has been studied by many researchers [16, 19, 32, 33] is 
used to test the performance of the proposed approach for the 
black-and-white and hinge-removal topology design. The 
design domain and the boundary condition are sketched in Fig. 
3. The dimension of the design domain is 6 1´ . The Young’s 
modulus and Poisson’s ratio are respectively 1E =  and 

0.3v = . An input force in 1F =  is applied at the centre of the 
top edge. The volume fraction and filter radius are specified as 
0.5 and 0.15, respectively [33]. Moreover, other parameters 
are given as 1 100N = , 2 20N = , 1 0.1d =  and 2 1d = . The 
optimization objective is to obtain the optimal topology of the 
MBB beam which minimizes the compliance. 

This optimization problem is solved based on 180 30´  4-
node square element mesh discretization. Fig. 4 depicts the 
initial optimal topology based on the typical OC. It can be 

seen that grey boundaries inevitably appear in the topology 
plot, as seen in many topology design problems [20]. Subse-
quently, this solution is used as a starting point and then the 
follow-up optimization is implemented. To free unfavorable 
intermediate elements, the updated optimality criterion is thus 
employed to update design variables. And the hinge-removal 
strategy is also employed to check and circumvent potential 
one-point hinge connections. A set of optimal topologies with 
corresponding parameters are obtained, as shown in Fig. 5. 
Numerical solutions to the MBB beam are also listed in Table 
1, wherein all the CPU time is based on a desktop computer 
with Intel(R) Core(TM) i7 870 processor of 2.93 GHz clock 
speed (the same hereinafter). Comparing Fig. 5 with Fig. 4, it 
can be seen that all final optimal topologies are markedly dif-
ferent from the initial one. Unfavorable grey regions are effec-
tively removed and all members in topology solutions are 
plotted with a clear black-and-white and hinge-removal design 

e ( )V r gN

firr

secr

sec fir=r r

 
 
Fig. 2. Flow chart of the optimization approach for the black-and-white 
and hinge-removal topology design. 

 

Table 1. The numerical solutions of the MBB beam with 180×30 
mesh from the proposed approach. 
 

α0 Δα αt Es ε V/V0 Ng k T(s) 

0.1 0.08 0.98 96.10 1e-9 0.5 6 341 840 

0.1 0.1 0.9 96.16 1e-9 0.5 0 244 540 

0.25 0.08 0.97 96.22 1e-9 0.5 0 263 600 

0.25 0.1 0.85 96.42 1e-9 0.5 0 205 420 

0.5 0.02 0.96 96.01 1e-12 0.5 0 545 1.2x103 

0.5 0.04 0.98 96.13 1e-9 0.5 10 341 900 

αt : the terminal value of α；T(s): total CPU time. 
 

inF

 
 
Fig. 3. Design domain of a MBB beam. 

 

 
 
Fig. 4. The initial optimal topology of the MBB beam using the pro-
posed approach with 180 30´  mesh. 
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Fig. 5. The final optimal topologies of the MBB beam using the pro-
posed approach with 180 30´  mesh: (a) 0 0.1a =  and 0.08aD = ; 
(b) 0 0.1a = , 0.1aD = ; (c) 0 0.25a = , 0.08aD = ; (d) 0 0.25a = , 

0.1aD = ; (e) 0 0.5a = , 0.02aD = ; (f) 0 0.5a = , 0.04aD = . 
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pattern. The reason for this is that the updated optimality crite-
rion formulated by slightly modifying OC enforces intermedi-
ate elements to be progressively removed from low to high 
density such that material can be added to the high-density 
elements. On the other hand, there is no one-point hinge con-
nection to be found by tracking the optimization process. 
However, the implementation of the hinge-removal strategy 
has little influence on the CPU time. This is because the sensi-
tivity calculations of the objective function become simple in 
this case.  

Simultaneously, it can also be seen that final topologies in 
Fig. 5 and objective function values in Table 1 are relatively 
consistent and preserving the volume constraint. These show 
that the proposed approach is feasible for compliance mini-
mum problems. Meanwhile, one can find that the continuation 
on α may result in a relatively large iteration number to 
achieve convergence. However, the increase in the total CPU 
time is moderate. This is because the present approach only 
requires computational complexity as low as possible. 

 
8.2 A compliant force inverter 

In the second example, the force inverter, which previously 
has been studied by Sigmund [32], is also employed to check 
the performance of the proposed approach for the black-and-
white and hinge-removal topology design. As sketched in Fig. 
6, the design domain, whose dimension is 120 120´ , is sup-
ported at the top and the bottom of the left edge. The Young’s 
modulus is 1E =  and Poisson’s ratio 0.3v = . An input 
force in 1F =  is applied at the centre of the left edge. The 
input and output springs are in 1k =  and out 0.001k = , respec-
tively. And the volume fraction and filter radius are respec-
tively specified as 0.25 and 2.5 [32]. Moreover, other parame-
ters are given as 1 100N = , 2 20N = , 1 0.1d =  and 2 1d = . 
Due to the symmetry, only the lower half of the design do-
main is discretized with 4-node square element mesh. The 
optimization objective is to obtain the optimal topology of the 
force inverter which maximizes the stiffness and flexibility 
simultaneously. 

This optimization problem is solved for different mesh den-
sities, 120 60´  and 180 90´  elements. Fig. 7 depicts the 
symmetric halves of initial optimal topologies by using the 
typical OC. It can be seen that grey boundaries appear in the 
topology plot for each mesh. Then, by using each of them as a 
starting point respectively, the follow-up optimization is per-
formed. Design variables are updated based on the updated 

OC and the hinge-removal strategy is used to prevent the one-
point hinge connection. Fig. 8 and Table 2 depict the corre-
sponding optimal topologies and numerical results with differ-
ent meshes and varying parameters. As shown, black-and-
white designs with appropriate parameters are obtained. Fur-
ther, these topology layouts are free of one-point hinge con-
nections and the minimum size of hinges is one-element-thick. 
Without doubt, black-and-white designs are contributed to the 
action of the optimality criterion formulated by slightly modi-
fying OC. At the same time, the hinge-removal strategy can 
find the potential one-point hinge connections producing in 
the topologies and always circumvent them promptly. Besides, 
by combining Fig. 8 and Table 2, it can be seen that the opti-
mal solutions are preserving the volume constraint and fairly 
consistent in both the resultant topologies and objective func-
tion values for the fixed mesh. These suggest that the pro-
posed approach is also feasible for compliant mechanism 
problems. Moreover, one can find that the continuation on α 
requires a large iteration number to achieve convergence as 

Table 2. The numerical solutions with different meshes from the pro-
posed approach. 
 

Mesh α0 Δα αt fsm ε V/V0 Ng k T(s) 
120×60 0.2 0.025 0.975 -2.28 1e-6 0.25 0 903 4.08×103 

 0.25 0.05 0.95 -2.28 1e-6 0.25 0 570 2.345×103 

 0.4 0.02 0.94 -2.28 1e-6 0.25 0 836 3.548×103 

180×90 0.2 0.025 1 -2.29 1e-6 0.25 0 922 16.81×103 

 0.25 0.05 1 -2.29 1e-6 0.25 0 582 10.85×103 

 0.4 0.02 1 -2.29 1e-6 0.25 2 882 25.92×103 

αt: the terminal value of α; T(s): Total CPU time. 
 

         
              (a)                       (b) 
 
Fig. 7. The initial optimal topologies of the force inverter using the 
proposed approach with different meshes: (a) 120 60´  mesh; (b) 
180 90´  mesh. 

 

   
         (a)                (b)               (c) 
 

   
         (d)               (e)               (f) 
 
Fig. 8. The final optimal topologies of the force inverter using the 
proposed approach with different meshes: (a) 120 60´  mesh, 

0 0.2 ,a =  0.025aD = ; (b) 180 90´  mesh, 0 0.2 ,a =  
0.025aD = ; (c) 120 60´  mesh, 0 0.25a = , 0.05aD = ; (d) 

180 90´  mesh, 0 0.25a = , 0.05aD = ; (e) 120 60´  mesh, 
0 0.4a = , 0.02aD = ; (f) 180 90´  mesh, 0 0.4a = , 0.02aD = . 

inF outF
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Fig. 6. Design domain of a force inverter. 
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well, whereas the increase in the total CPU time is still moder-
ate, thanks to the low computation complexity of the proposed 
algorithm. 

On the other hand, we compare the present approach with 
the bilateral density filtering proposed by Wang and Wang 
[33] for this example. The convergence criterion in Ref. [33], 
i.e. 1 5| | 10k kf f+ -- <  or 1 6| ( ) ( ) | 10a k a kr r+ -- <  (where ρa is 
the average density of non-empty elements) or maxk k> , is 
adopted. Note that continuation strategies in which parameters 
σd and σr are chosen with relatively large values initially and 
then slowly decreased until the black-and-white optimum is 
obtained are used in their work. However, no specific details 
are given. Here, these two parameters are thus initialized as 1 
and then gradually diminished until convergence with the 
fixed step ∆σ of 0.002- , 0.005-  and 0.01- , respectively. 
The final optimal topologies and numerical results from the 
bilateral density filtering are shown in Fig. 9 and Table 3. 
Comparing them with Fig. 8 and Table 2, respectively, it can 
be seen that the proposed approach in this paper is slightly 
superior to the bilateral density filtering with parameters cho-
sen in the 0-1 convergence, topology consistency and CPU 
time required. 

 
8.3 Freely vibrating thin-plate structures 

In the third example, freely vibrating thin-plate structures 
similar to Ref [43] are used to further verify the validity of the 
proposed method. As shown in Fig. 10, these thin-plate struc-

tures are with the same design domain of 40 mm×40 mm×40 
mm, but three different cases of boundary conditions and at-
tached concentrated, nonstructural masses. The material is 
isotropic with Young’s modulus 1110 PaE = , Poisson’s ratio 

0.3v =  and mass density 378 kg/mmr = . And the volume 
fraction and filter radius are respectively specified as 0.5 and 
1.5. For hinge detection parameters, 1d  takes the value of 0.1, 
0.7, and 0.1 respectively, while 2d  is specified as 1. More-
over, 1N  is respectively given as 50, 60, 50, while 2N  is 
specified as 20. The optimization objective is to maximize the 
fundamental eigenvalue. 

The design domains are all discretized using 4-node 40×40 
plate elements. Based on the typical OC, the initial optimal 
topologies corresponding to these three cases are firstly ob-
tained, as shown in Fig. 11. From this figure, it can be seen 
that intermediate design variables render the associated ele-
ments as gray. Therefore, each solution is used as a starting 
point and then the follow-up optimization is implemented to 
cure these problems in the topology layouts. The hinge-
removal strategy and updated optimality criterion are applied 
in the optimization process.  

Fig. 12 and Table 4 depict the optimal topologies and nu-
merical results corresponding to parameters chosen. By com-
paring Fig. 12 with Fig. 11, it can be seen that resultant to-
pologies from the proposed approach with appropriate pa-
rameters are almost truly 0-1 optimal designs satisfying the 
volume constraint. Clearly, this is due to the function of the 
updated optimality criterion. And by tracking the optimization 
process, the one-point hinge connection problem is found only 
in the case of four corners supported and concentrated mass at 
the center of the structure and is cured effectively as shown in 
Figs. 12(c) and (d). Again, it can be seen that final topologies 

   
         (a)               (b)                (c) 
 

   
        (d)                (e)                (f) 
 
Fig. 9. Optimal topologies of the inverter with different meshes from 
the bilateral density filtering: (a) 120 60´  mesh, 0.002sD = ; (b) 
180 90´  mesh, 0.002sD = ; (c) 120 60´  mesh, 0.005sD = ; (d) 
180 90´  mesh, 0.005sD = ; (e) 120 60´  mesh, 0.01sD = ; (f) 
180 90´  mesh, 0.01sD = . 

 

       
         (a)                (b)                 (c) 
 
Fig. 10. Freely vibrating thin-plate structures (40 mm×40 mm×1 mm): 
(a) four edges clamped and concentrated mass m at the center of the 
structure (m = 0.3 ms, ms the total structural mass of the plate); (b) four 
corners supported and concentrated mass m at the center of the struc-
ture (m = ms); (c) one edge clamped and concentrated mass m attached 
at the mid-point of the edge opposite to the clamped one (m = ms). 

 
 

Table 3. The numerical solutions with different meshes from the bilat-
eral density filtering. 
 

Mesh ∆σ fsm 0/V V  gN  k (s)T  

120×60 -0.002 -2.2970 0.25 10 350 5.040x105 

 -0.005 -2.1951 0.25 13 150 1.889x105 

 -0.01 -1.9935 0.25 111 71 7.668x104 

180×90 -0.002 -2.2983 0.25 229 350 2.604x106 

 -0.005 -2.1781 0.25 7 148 1.101x106 

 -0.01 -1.9687 0.25 71 89 4.806x105 

(s)T : Total CPU time. 
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           (a)                (b)             (c) 
 
Fig. 11. The initial optimal topologies of freely vibrating thin-plate 
structures using the proposed approach with 40×40 mesh: (a) four 
edges clamped and m = 0.3 ms; (b) four corners supported and m = ms; 
(c) one edge clamped and m = ms. 
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in Fig. 12 and objective function values in Table 4 are rela-
tively consistent for the same boundary conditions and at-
tached masses. At the same time, the optimized topologies are 
also preserving the volume constraint. These all indicate that 
the present approach is competent in producing expected 
black-and-white and hinge-removal designs for eigenvalue 
problems.  

Moreover, one can still find that a large iteration number is 
required to achieve convergence due to the continuation on α 
for each boundary condition. The increase in the computa-
tional burden is however moderate, because only low compu-
tation cost is required by the proposed approach. 

Further, for the purpose of comparison, the example of 
freely vibrating thin-plate structures is tested using the power-
law OC-GSS algorithm proposed by Groenwold and Etman 
[19] again. The convergence criterion in Ref. [19], i.e. ||ρk+1-
ρk|| < 10-6 or k > 100, is adopted. Optimal topologies and nu-
merical results are respectively shown in Fig. 13 and Table 5, 
wherein notations p1 > 1 respectively q1 > 1 mean that con-
tinuation strategies described in Ref. [19] are employed. 
Comparing these results with Fig. 12 and Table 4, it can be 
seen that the power-law OC-GSS algorithm can also provide 
quasi 0-1 discrete solutions and is a bit more efficient in some 

cases than the present approach. However, topologies with 
different parameter values embody weak consistency for the 
same boundary condition. And one-point hinge connections 
are encountered in the topology layouts. From the latter, the 
proposed approach is slightly superior to the power-law OC-
GSS algorithm. 

 
9. Conclusions 

In this paper, an optimization approach for black-and-white 

Table 4. The numerical solutions of freely vibrating structures with 40×40 mesh from the proposed approach. 
 

Case α0 Δα αt ω1 ε V/V0 Ng k T(s) 

Four edges clamped 0.3 0.025 0.825 4506 1e-7 0.5 0 499 1.74x103 

 0.5 0.02 0.52 4487 1e-6 0.5 0 102 308 

Four corners supported 0.3 0.025 0.45 1058 1e-6 0.5 0 139 420 

 0.5 0.02 0.52 1049 1e-6 0.5 0 109 305 

One edge clamped 0.3 0.025 0.825 420 1e-10 0.5 0 519 4.811x103 

 0.5 0.02 0.5 418 1e-6 0.5 0 100 603 

αt: The terminal value of α; T(s): Total CPU time. 
 

 
Table 5. The numerical solutions of freely vibrating thin-plate struc-
tures with 40×40 mesh from OC-GSS algorithm. 
 

Case p1 q1 ω1 V/V0 Ng k T(s) 

>1 >1 4452 0.5 8 100 309 Four edges 
clamped 2 >1 4561 0.5 32 100 259 

>1 >1 1062 0.5 9 100 302 Four corners 
supported 2 >1 1063 0.5 27 100 318 

>1 >1 422 0.5 1 95 842 One edge 
clamped 2 >1 421 0.5 2 100 900 

T(s): Total CPU time. 
 

       
           (a)               (b)              (c) 
 

       
             (d)              (e)            (f) 

 
Fig. 13. Optimal topologies of freely vibrating thin-plate structures 
with 40×40 mesh using the power-law OC-GSS algorithm: (a) four 
edges clamped and m = 0.3ms, p1 > 1 and q1 > 1; (b) four edges 
clamped and m = 0.3ms, p1 = 2 and q1 > 1; (c) four corners supported 
and m = ms, p1 > 1 and q1 > 1; (d) four corners supported and m = ms, 
p1 = 2 and q1 > 1; (e) one edge clamped and m = ms, p1 > 1 and q1 > 1; 
(f) one edge clamped and m = ms, p1 = 2 and q1 > 1. 
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            (d)               (e)             (f) 
 
Fig. 12. Optimal topologies of freely vibrating thin-plate structures 
using the proposed approach with 40×40 mesh: (a) four edges clamped 
and m = 0.3ms, α = 0.3 and Δα = 0.025; (b) four edges clamped and m
= 0.3ms, α = 0.5 and Δα = 0.02; (c) four corners supported and m = ms, 
α = 0.3 and Δα = 0.025; (d) four corners supported and m = ms, α = 0.5
and Δα = 0.02; (e) one edge clamped and m = ms, α = 0.3 and Δα = 
0.025; (f) one edge clamped and m = ms, α = 0.5 and Δα = 0.02. 
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and hinge-removal topology designs is studied. To achieve 
this motive, an optimal topology allowing grey boundaries is 
found firstly. When a suitable design has been obtained, this 
solution is then used as a starting point for the follow-up opti-
mization with the goal to free unfavorable intermediate ele-
ments. For this purpose, an updated optimality criterion in 
which a threshold factor is introduced to gradually suppress 
elements with low density is proposed. The typical optimality 
method and new technique proposed are applied to the design 
procedure sequentially. Besides, to circumvent the one-point 
hinge connection problem producing in the process of freeing 
intermediate elements, the hinge-removal strategy is also pro-
posed. During the optimization, the binary constraints on de-
sign variables are relaxed based on the scheme of solid iso-
tropic material with penalization. Meanwhile, the mesh-
independency filter is employed to ensure the existence of a 
solution and remove well-known checkerboards. In this way, a 
solution that has few intermediate elements and is free of one-
point hinge connections is obtained. Finally, different numeri-
cal examples including the compliance minimization, compli-
ant mechanisms and vibration problems demonstrate the va-
lidity of the proposed approach. 
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