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Abstract 
 
In this paper three-phase fiber-reinforced matrix is analyzed using analytical micromechanical model named simplified unit cell 

method (SUCM). The system consists of transversely isotropic elastic nanotube and viscoelastic matrix and interphase region. This inter-
phase region comprises considerable volume fraction of the system because of large surface area per unit volume of the nanotubes. How-
ever, volume fraction of the interphase in particular short fiber system is considerably small to contribute to the whole properties of it. 
The presented closed-form solutions are able to predict the effective response of the three-phase fiber-reinforced matrix in any combina-
tion of normal and shear loading conditions. To verify the results, creep compliance of Graphite/Epoxy in 10° and 45° and 90° off-axis 
conditions are compared with existing data. Nanotube/Polycarbonate is also examined to investigate the effect of interphase on viscoelas-
tic behaviors of nanocomposites.  
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1. Introduction 

Polymer materials are popular and used in many engineer-
ing applications. Comparing to the bulk polymer, mechanical 
and physical properties of nanocomposites are improved sig-
nificantly [1, 2]. The main advantage of these materials is the 
appropriate strength to weight ratio due to the low density of 
carbon nanotubes [3]. Recently, many studies have directed 
interest to the properties of nanomaterials [4-6]. A review of 
the literature provides many models which are developed to 
predict polymer nanocomposite properties [7, 8]. But investi-
gation of viscoelastic properties is less developed. Viscoelastic 
response of polymer is one of the most important characteris-
tic of nanocomposites. 

By adding nanotubes into bulk polymer, the mobility of 
polymer chains in the vicinity of nanotubes reduce and lead to 
create a special region which is called interphase with differ-
ent properties from that of bulk polymer [9]. Interphase is 
inhomogeneous region which affects the overall behavior of 
composite [10]. Interphase thickness is varied from 30 nm to 
3µm due to variation of the fiber’s size [11, 12].  

Therefore, it is important to understand the mechanism of 
nanocomposites fabrication. Bubble electrospinning is used 
generally to obtain appropriate fiber morphology especially 
for mass-production of nanomaterials [13] due to its simple 

methodology and low cost. [14]. The most important role of 
interphase region is transferring stress from the matrix to the 
fillers which lead to increase reinforcing parameter of polymer 
nanocomposites. In particular short fiber composites except 
for the role in load transfer, the interphase does not contribute 
to the whole properties of the composite [9]. The reason is 
small volume fraction of this region comparing to fiber and 
matrix. 

Several researchers have implemented micromechanical 
methods to analyze the viscoelastic properties of the compos-
ites. Fisher and Brinson have extended the micromechanical 
procedure for elastic materials to analyze a polymer with a 
viscoelastic interphase [10]. Brinson and Liu have used Mori-
Tanaka method together with finite element approach to 
model multiphase composites [9]. Odegard and Gate devel-
oped a viscoelastic modeling procedure to measure time- de-
pendent behavior of composites [15]. Falahatgar et al. used 
simplified unit cell method (SUCM) to investigate the nonlin-
ear viscoelastic response of composites [16]. SUCM is devel-
oped by Aghdam et al. and is the simplified version of Aboudi 
method of cells (MOC) [17, 18]. SUCM method assumes a 
periodical cell with rectangular fibers in the matrix. Continuity 
of displacement and traction between the fiber-matrix subcells 
and neighbor cells are assumed in this method. 

In the present study, closed-form expressions for the viscoe-
lastic response of unidirectional three-phase composites under 
normal and/or shear loading conditions are determined 
through a SUCM analysis. To verify the model, Graph-
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ite/Epoxy composite creep compliance of 10°, 45° and 90° 
off-axis are compared with existing data. Nanotube/Polycar- 
bonate is also examined to investigate the effect of interphase 
on viscoelastic behaviors of nanocomposites. In the next sec-
tion, the theoretical approach of this modeling technique will 
be presented. Result and discussions will follow. 

 
2. Micromechanical method (SUCM) 

Micromechanical approach has been widely applied to 
study polymer composites. Regarding the volume fraction and 
properties of the components, the overall behaviors of the 
composite are evaluated through micromechanics. The repre-
sentative volume element (RVE) is the smallest repeatable 
element of the cross section which presents the whole proper-
ties of the composite. Random distribution of fibers in matrix 
makes it difficult to simulate the composite. But in analytical 
micromechanics it is assumed that fibers are unidirectional 
aligned and ideally dispersed.  

 
2.1 Normal response of composite 

In this article, we evaluate the viscoelastic properties of 
nanocomposites using SUCM model. The RVE used in 
SUCM is shown in Fig. 1. 

Fig. 1 shows the RVE with rectangular fiber surrounded by 
interphase region, both embedded in continuous matrix. 
Thickness of the RVE is assumed to be unit. The unit cell is 
subdivided into seven subcells denoted by I for the fiber, V, 
VI for the interphase and II, III, VII for the matrix. The 
remaining part is pretty small and not considered in the 
following calculations. Before applying the normal and 
shear forces on the RVE, one should note that: 

 
1-The fiber is long and aligned the 3X  direction. 
2-Total area of the unit cell is equal to one. 
3-The displacement components are linear [19]. 
4-Normal stress on the RVE does not induce any shear 

stress inside the subcell [20]. 
5-Fiber is linear elastic and transversely isotropic, while 

matrix and interphase are viscoelasic. 
6-There exist a uniform stress and strain field. 
Our goal is to determine tensile and shear modulus of the 

composite by applying normal and shear loads on the RVE. 
The macro stresses 11 22 33, ,s s s  are applied in the normal 

directions, 1 2 3, , ,X X X respectively. 
In this case, the equilibrium equations of the RVE are: 
 

 (1a) 
. (1b) 

 
The equilibrium relations along the interphases are: 
 

. 
(2)

  
  
Considering prefect bonding between subcells, the strain 

compatibility equations are found to be: 
 

 (3a) 

 
(3b)

 

 
(3c)

 
 

where aae  denotes macro strains induced by aas  and K
aae  

is the normal strains within the subcell K. 
For isotropic materials, the stress-strain relation is: 
 

.
 

(4)
 

 

The superscript K indicates the subcell indices, 1K
m K

m

S
E

=  

and mn  is constant value.  
Substituting Eq. (4) into Eqs. (1) and (3), a system of 18 

equations is obtained. According to the equilibrium relations 
along the interfaces, only 12 equations with 12 unknown 
stresses remains. 

 
 (5) 

 
where s  and F are defined as: 

 

 
 
It is then straightforward to determine “σ” by solving Eq. 

(5). Matrices “A” contains the fiber, matrix and interphase 
compliance and RVE dimensions. For transversely isotropic 
materials, Young’s modulus and Poisson’s ratio in transverse 
and axial directions are found via Eqs. (6)-(8): 

 

 
(6)

 
. (7)  

 
 
Fig. 1. The RVE using in SUCM. 

 

. 
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One can show the above mentioned properties in the axial 
direction, along fiber, as: 

 

 
(8)

 
  

2.2 Shear response of composite 

In order to find shear response of composite, shear stresses 
are applied to the RVE. A similar procedure as that deter-
mined for normal response is required. The assumptions are 
valid for shear response, too. The equilibrium equations for 
shear stresses are found to be: 

  

 
(9a)

 

 
(9b)

 
 (9c)  

 
where abt  denotes a shear stress in the xb  direction on the 
plane which has normal in the xa  direction. Equilibrium 
equations along the interfaces are as follow: 
 

. 
(10)

 
 
Also compatibility condition must satisfy in this case: 
 

 
(11a)

 

 
(11b)

 

 
(11c)

 
 

where abg  is overall shear strain and K
abg  is shear strain in 

subcell K. Considering the matrix and the interphase as a lin-
ear viscoelastic region, the shear stress-strain relation is: 

 
. (12) 

  
Using Eq. (11) in conjunction with Eq. (9), Eqs. (10) and 

(12), it is then straightforward to determine the overall shear 
modulus of the composite, 23 13 12, , .G G G    

 
2.3 Time and frequency domain response 

The viscoelastic time dependent modulus of polymer mate-
rials can be specified by Prony series representation of the 
form: 

 (13)  

 
where E¥  is the rubbery asymptotic modulus, jE  is the 
Prony series coefficients and jt  is the relaxation time. Ap-
plying the Fourier transformer, Eq. (14), to Eq. (13), the vis-
coelastic time dependent modulus can be found via Eqs. (15) 
and (16). 

 

 
(14)

 

 
(15)

 

 
(16)

 
 

where ( )IE w   is the storage modulus and ( )IIE w  is loss 
modulus of the composite. The storage modulus indicates the 
energy recovered by a viscoelastic material while the loss 
modulus is the energy dissipated by the polymer [21]. The ratio 
of the loss modulus to the storage modulus is defined as the loss 
tangent, Eq. (17). In fact it is the ratio of energy loss to energy 
stored in the composite and is a dimensionless parameter. 

 

. 
(17)

 
 

3. Results and discussion 

For Graphite(T300)/Epoxy(934) composite, by considering 
the interphase region with different properties from those of 
bulk epoxy, three-phase SUCM method (fiber-interphase-
matrix) was compared with two-phase SUCM (fiber-matrix) 
and both validated by experimental results. Graphite fibers are 
elastic and transversely isotropic with no time-dependent 
properties. One can find the elastic properties of Graphite fiber 
(T300) in Ref. [22]. Isotropic Epoxy subcells have time-
dependent behaviors and creep compliance for viscoelastic 
materials is derived from power law: 

 
 (18)  

where 0
0

1S
E

=  is instant elastic compliance, C and n are 

constant parameters in Eq. (18). The power law constants 
which are derived from experiments are reported in Ref. [20]. 
Interphase region is also viscoelastic and its properties are 
uniform were derived by horizontally shifting bulk Epoxy 
curves in frequency domain toward lower frequency. The 

thickness of this region was set to 
2
a  as an appropriate. Note 

that the difference between the bulk and interphase lies only in 
the mobility of polymer chains. Figs. 2 and 3 show the axial 
and transverse creep compliance tensors in 10° off-axis load-

. 
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ing condition. Results evaluated in 2 hours for Graphite/ Ep-
oxy composite by using the method presented in this paper 
with and without considering interphase region. 

Results for axial creep compliance and transversely creep 
compliance have perfect agreement with experiment. Fig. 4 
shows SUCM theoretical method and experimental results for 
90° off-axis loading condition. 

Figs. 5 and 6 show the axial and transverse creep compli-
ance for 45° off-axis loading condition. The above mentioned 
curves indicate that there exists a good agreement between 
SUCM results and experimental results. 

However there is not much difference between the results of 
two-phase SUCM and three-phase one in this case. It means 
that interphase region does not contribute to the whole proper-
ties of common fiber composites. On the other hand, SUCM 
approach was implemented to probe the effects of interphase 
region on the viscoelastic responses of Nanotube/ Polycarbon-
ate nanocomposites. For Nanotube/PC nanocomposites, it was 
assumed that the nanotubes are linear elastic and ideally dis-
persed in the polymer with Young’s modulus of 1TPa and 

Poisson’s ratio of 0.3 [23]. The interphase considered 2 dec-
ades less mobile than the bulk PC. Its volume fraction was set 
to different quantities due to variation of interphase thickness. 

Fig. 7 shows that the storage modulus of the nanocomposite 
is higher than that of pure PC. It means that by adding nano-
tube into bulk polymer, the energy recovered by the composite 
increased. 

The loss modulus curves in Fig. 8 demonstrate that the loca-
tion of the loss peak is moved through lower frequency. The 
results for the case that the volume fraction of interphase was 
set to 8 vol%, 35 vol%, 65 vol% and 80 vol% is shown in Figs. 
7 and 8. It can be seen clearly that the predicted storage and 
loss moduli of the nanocomposite show a shift towards lower 
frequency, as the volume fraction of interphase increases. The 
results indicate the significant influence of the interphase on 
the viscoelastic properties of nanocomposites which occurs 

 
 
Fig. 2. Axial creep compliance in 100 off-axis loading condition. 

 

 
 
Fig. 3. Transverse creep compliances in 100 off-axis loading condition. 

 

 
 
Fig. 4. Creep compliance in 900 off-axis loading condition. 

 

 
 
Fig. 5. Axial creep compliance in 450 off-axis loading condition. 

 

 
 
Fig. 6. Transverse creep compliances in 450 off-axis loading condition. 

 

  
 
Fig. 7. Transverse storage modulus with different volume fraction of 
interphase. 
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due to strong interactions between nanotube and PC molecules. 
It leads to percolate the interphase through PC and alter the 
behavior of nanocomposite. 

 
4. Conclusion 

The simplest means to model the non-bulk polymer behav-
ior of interphase is to assume a distinct interphase region. This 
paper investigated the effect of interphase on the viscoelastic 
properties of composite by extending the SUCM approach for 
three-phase fiber-reinforced matrix using this assumption. The 
model discussed in the previous section used to predict the 
storage and loss moduli of nanotube/PC polymer as a function 
of the properties and volume fraction of the constituent mate-
rials. The effective behavior of Graphite (T300)/ Epoxy (934) 
is also studied in combination of normal and shear loading 
conditions. The main conclusions of this work are outlined 
below: 

• In conventional composites, interphase is involved in 
load transfer from matrix to fiber and it does not contrib-
ute to the overall properties of the composite.  

• By adding nanotubes into bulk polymer, viscoelastic 
moduli of the nanocomposite significantly increase. This 
increment is more visible in the points where the dis-
crepancy between bulk PC properties and corresponding 
interphase is larger. 

• As the volume fraction of the interphase region increases, 
storage and loss moduli of the nanocomposite shifted 
toward lower frequency. The location of the peak in loss 
moduli curves is also obeying this pattern. 

The developed model is able to analyze the three-phase 
composites including interphase in any combination of normal 
and shear loadings. This method provides satisfactory agree-
ment with experiments and can be adapted to simulate other 
behaviors of composite. 
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