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Abstract 
 
The quality of the sheet metal forming product is determined by defects such as wrinkling, springback, etc. Optimization techniques 

can avoid such defects while the desired final shape is obtained. The design variables of the optimization process consist of the structural 
parameters and process parameters. The structural parameters are the initial blank shape, geometry, etc. and the process parameters are 
the blank holding force (BHF), the drawbead restraining force (DBRF), etc. In this paper, the two groups of parameters are separately 
optimized. The structural parameters are optimized by the equivalent static loads method for non linear static response structural optimi-
zation (ESLSO) and the process parameters are optimized by the response surface method (RSM). A couple of examples are solved by 
the iterative use of ESLSO and RSM, and the solutions are discussed.  
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ing; ESLs for the nonlinear strains; Response surface method (RSM)   
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1. Introduction 

The product of the desired shape is made by the plastic de-
formation of the material in the sheet metal forming process. 
However, the defects of a workpiece occur due to wrinkling, 
springback, material failure and others [1]. The problems of 
the defects can be improved by optimization of the metal 
forming process. Two kinds of design variable groups exist in 
this optimization; one is the structural parameter group and the 
other is the process parameter group. The structural parame-
ters are the initial size, shape of the blank, etc. which are the 
geometries of the workpiece. The process parameters are the 
working conditions such as the punch velocity, the blank hold-
ing force (BHF), the drawbead restraining force (DBRF), the 
drawbead length (DBL), the friction factor, etc. 

A different optimization method is employed for each group 
of the parameters. Researches on the optimization of structural 
parameters are typically based on an interpolation method [2-
5], an inverse finite element method [6-8] and others [9-12]. 
The research goal using these methods is to determine the 
initial blank shape for the desired final shape. When the plastic 
deformation path of metal and other parameters are not con-
sidered exactly, these researches have the disadvantages of 

increasing errors and overlooking material failure. Researches 
on the optimization of the process parameters are typically 
based on a probabilistic (design of experiments (DOE)) or an 
approximation method (response surface method (RSM)) [13, 
14]. These methods are not mathematically complicated and 
are easier than the conventional method using gradient infor-
mation. Optimization of the process parameters is employed 
when the wrinkling and springback phenomena should be 
improved and material failure is considered [13-16].  

Researches on optimization considering both groups of pa-
rameters are not studied much. DOE or RSM can be used 
when the structural and process parameters are simultaneously 
considered. Many design variables, which can control the 
blank shape, are typically involved in determining the detailed 
shape. Therefore, these methods are quite expensive because 
many nonlinear analyses are required when the number of 
design variables is large.  

In this research, the sheet metal forming process is opti-
mized considering both the structural and the process parame-
ters. Two groups of parameters are separately optimized by 
structural optimization and RSM, respectively. The two opti-
mization processes iteratively proceeds until the convergence 
criteria are satisfied. The initial blank shape, which is the 
structural parameter, is determined as the desired final shape 
after the forming process by using structural optimization 
under the given process parameters. The process parameters 
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such as BHF, DBRF and DBL are optimized by using RSM. 
Because BHF, DBRF and DBL are the input in conventional 
structural optimization, they cannot be used as design vari-
ables. On the other hand, they can be used as the design vari-
ables in RSM. Moreover, since the number of process vari-
ables is small, RSM can be exploited to determine the process 
variables. Finite element analysis is utilized to evaluate the 
sheet metal forming process in optimization [1-16]. 

An optimization problem is formulated and solved with the 
structural and the process parameters as the design variables. 
In optimization using structural optimization, the structural 
parameters are only used as the design variables. In optimiza-
tion using RSM, only the process parameters are used as the 
design variables. Wrinkling, springback and material failure 
are considered in the optimization formulation. A new ap-
proach is required when the structural parameters are opti-
mized. This is because the formulated optimization is nonlin-
ear dynamic response optimization and considers some phe-
nomena. The equivalent static loads method for non linear 
static response structural optimization (ESLSO), which is a 
structural optimization method, is adopted for this formulated 
optimization [17-19]. An existing method is utilized for RSM. 

Equivalent static loads (ESLs) are defined as the loads for 
linear analysis, which generate the same response field as that 
of nonlinear analysis. In ESLSO, nonlinear dynamic loads are 
transformed to ESLs and the ESLs are used as the loading 
conditions in linear static response optimization. The design is 
updated in linear static response optimization. Nonlinear anal-
ysis is performed with the updated design and the process 
proceeds in a cyclic manner until the convergence criterion is 
satisfied. An advantage of ESLSO is that the finite element 
nodes in the design domain can be controlled easily and ex-
actly in the shape optimization process. However, some de-
sign variables cannot be used because only the design vari-
ables, which can be defined in linear static response optimiza-
tion, can be used in optimization using ESLSO [17-23]. New 
ESLs are proposed to solve the metal forming optimization. 
Some optimization examples of the sheet metal forming proc-
ess are defined and solved using the proposed ESLs. Nonlin-
ear dynamic analysis of the sheet metal forming process is 
performed using the commercial software LS-DYNA [24]. 
Commercial software NASTRAN [25] is used for the compu-
tation of the linear stiffness matrix, which is utilized in the 
calculation of the ESLs, linear static response analysis and 
optimization. Commercial software LS-OPT [26] is used for 
optimization using the RSM. A program is developed to cal-
culate the proposed ESLs, and is interfaced with LS-DYNA 
and NASTRAN. 

 
2. Metal forming analysis and optimization 

2.1 Metal forming analysis 

The general tools in the sheet metal forming process are the 
blank holder, the die and the punch as illustrated in Fig. 1. 
Generally, the sheet metal is plastically deformed when the 

blank holder and the punch are pressed into the sheet metal. 
The deformation of a metal depends on the plastic deformation 
path which is dependent on the strain rate and material proper-
ties. The yield strength of a specific area of the sheet metal is 
reduced by the effects of bending and unbending during the 
forming process and these effects are called the Bauschinger 
effect [1, 27, 28]. The used material has a nonlinear stress-
strain curve, which is an exponential function for work harden-
ing. Moreover, the material is normal anisotropic material or 
planar anisotropic material. In forming analysis, the normal 
anisotropic material is analyzed based on the Hill’s theory and 
that of planar anisotropic material is analyzed by Barlat’s yield 
criterion. In this research, Barlat’s yield criterion is adopted. In 
Barlat’s yield criterion, the strain in the 0°  direction (the roll-
ing direction), the strain in the 45°  direction, the strain in the 
90°  direction (the transverse direction) and the strain in the 
thickness direction are not the same [1, 24, 29].  

Deformation of the material is generally quite large in the 
sheet metal forming process, whereas the strains are not rela-
tively large because the change of the surface area and the 
thickness are not very large. Therefore, the sheet metal form-
ing process is a large deformation and small strain process, 
and this is a sufficient condition for geometric nonlinearity in 
analysis. Contact between the metal and the blank holder, the 
die or the punch occurs, and these contacts are the sources for 
boundary nonlinearity in analysis. Therefore, computational 
analysis of the sheet metal forming process depends on time 
and requires nonlinear dynamic analysis. Finite element anal-
ysis is typically employed for the analysis [1, 24, 28].  

The sheet metal forming analysis consists of two analyses. 
They are the forming process analysis and the springback 
analysis. The springback phenomenon is the elastic restoration 
of a material after the forming process. When the springback 
phenomenon occurs, the residual stresses are reduced in each 
element and the strains and displacements are changed by the 
reduced stress. For this reason, the dimensions of the product 
before springback are not the same as those after springback. 
This phenomenon occurs quite often when the yield strength 
is large or the stiffness modulus is small. In this research, the 
forming process and the springback analysis are performed 

 

 
(a) The shape of the blank and 

the position of the tooling 
before forming 

(b) The shape of the blank and 
the position of the tooling 
after forming 

 
Fig. 1. Schematic view of the tooling when forming the sheet metal. 
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using a commercial finite element software system called LS-
DYNA [1, 24]. 

The failure of a metal can be checked at each element by 
using the forming limit diagram (FLD) and the FLD is made 
using the major strain and the minor strain of each element as 
illustrated in Fig. 2. In FLD, the forming limit curve (FLC) is 
the failure criterion of the used material. The shape of the FLC 
is changed by the characteristics of the used metals and the 
FLC is generally obtained by experiment. The FLC utilized in 
this research is provided by a commercial software system and 
is calculated using the thickness and the work hardening coef-
ficient [1, 24]. The used material in Fig. 2 is equal to that of 
the examples in this research. The material properties of the 
used sheet metal are summarized in Table 1. The detailed 
explanation of this material is written in Sec. 4. 

 
2.2 Metal forming optimization 

The purpose of the sheet metal forming process is to manu-
facture the final product which has the desired shape and does 
not have defects. Optimized structural and process parameters 
are needed to manufacture the desired final product. The struc-
tural parameters such as the initial blank shape can be deter-
mined by using various methods. They are the slip line field 
[2-5], the geometric mapping [9, 10], the plastic deformation 
theory [11, 12] and the inverse finite element method [6-8]. 
The process parameters such as BHF, DBRF and DBL can be 
generally determined by using a probabilistic method (DOE) 
or an approximation method (RSM) [13, 14].  

The slip line field method has some errors because the me-

thod is based on an approximation method. The initial blank 
shape is determined using the velocities of the nodes. The 
velocities of the nodes are interpolated from the initial velocity 
of the punch and the slip line field using an approximation 
method [2-5]. In the geometric mapping method, the initial 
blank shape can be obtained through the mapping process, 
where the desired final shape is projected onto the plane. 
However, this method has some errors because the plastic 
deformation of a metal and the geometric constraints cannot 
be considered exactly [9, 10]. The plastic deformation theory 
method can determine a more accurate initial blank shape 
compared to the previous methods and can estimate the strains 
of the elements in the blank. However, the plastic deformation 
path of a material is not considered exactly and the Bausch-
inger effect is ignored in this method [11, 12].  

The inverse analysis method is a combination method, 
which is made by geometric mapping and the plastic deforma-
tion theory. If the plastic deformation path of the forming 
process is complicated, the errors increase when the one-step 
inverse analysis is used because the plastic deformation path 
and the blank shape at the mid-step are not estimated exactly. 
Therefore, the multi-step inverse analysis is typically used to 
decrease the errors. However, this analysis requires a lot of 
time and cost compared to the one-step inverse analysis. Also, 
the multi-step analysis needs the blank shapes at the mid-step 
because an accurate initial blank shape cannot be determined 
when the shapes are not expressed exactly [6-8].  

In this research, the initial blank shape (structural parame-
ters) is determined using ESLSO. ESLSO is a nonlinear dy-
namic response optimization method. Nonlinear dynamic 
analysis and linear static response optimization are involved in 
ESLSO. It is well known that the process parameters cannot 
be used as design variables in linear static response optimiza-
tion. In other words, the design variables must exist in a de-
sign object but the process parameters do not exist on the 
blank. The process parameters should be optimized as well 
because the desired final forming product is also determined 
by some process parameters. General researches to optimize 
the process parameters are conducted by using a probabilistic 
method or an approximation method. Whereas these methods 
are not mathematically complicated, they have some errors 
and require quite a large amount of nonlinear analyses. It is 
noted that these methods are easier than the conventional op-
timization method using gradient information and all kinds of 
design variables can be used. Therefore, the process parame-
ters can be used as design variables in these methods. More-
over, since the number of process parameters is small, these 
methods can be utilized to determine the process parameters.  

Optimization of the sheet metal forming process uses nonli-
near dynamic response, so it is nonlinear dynamic response 
optimization. To overcome the disadvantages of the above 
mentioned methods, ESLSO is used to optimize the structural 
parameters in this research. Formulation of the optimization is 
as follows: 

Table 1. Material properties. 
 

Young’s modulus (GPa) E 207=  

Poisson’s ratio 0.28n =  

Stress-strain curve (MPa) 0.223648(0.006 )s e= +  

Lankford value 
0 1.87R =  
45 1.27R =  
90 2.17R =  

Initial sheet thickness (mm) 0.8  

 

 
 
Fig. 2. Forming limit diagram (FLD). 
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Find R nb∈                 (1a) 
( )to minimize f b                   (1b) 

( )subject to ( ) 0 1, 2, , .ig i q=b L≤    (1c) 

 
Eq. (1) is a formulation to determine the initial blank shape 

for the final desired shape. b  is the design variable vector for 
the structural parameters and n  is the number of design vari-
ables. The design variables are the scale factors for the pertur-
bation vectors, which control the blank shape. The objective 
function in Eq. (1b) is expressed by the function for the de-
formed final shape, which can be the mean of radii or the 
standard deviation of displacements of the selected nodes. The 
constraints are design specifications including the conditions 
of the FLD and the desired final shape. The FLD condition is 
obtained by the characteristics of the used material. The con-
straints for the desired shape are expressed by the function and 
they are the standard deviation of radii and the distances be-
tween a reference line and the selected nodes. The reference 
line means the boundary shape of the desired final shape. As 
mentioned earlier, RSM is used for optimization of the proc-
ess parameters. The optimization formulation for the process 
parameters are the same as the one in Eq. (1). Details will be 
explained later. 

 
3. Optimization methods 

As mentioned earlier, the structural parameters are opti-
mized by ESLSO while the process parameters are optimized 
by RSM. A flow is created to efficiently use the two methods 
as illustrated in Fig. 3. First, optimization is conducted to de-
termine the structural parameters while the process parameters 
are set to constants with the current values. Second, the proc-
ess parameters are optimized with the optimum structural 
parameters determined in the previous process. The two op-
timizations are sequentially carried out until the convergence 
parameters are satisfied as illustrated in Fig. 3. The conver-
gence parameters are defined by the norm of the change of the 
design variables. It is well known that the optimum solution is 
a local minimum. At this moment, there is no mathematical 
optimization method which can find the global minimum 
point. The only remedy for this is to use many initial design 
points. The solution in this paper is obtained by many trials of 
the initial points. 

 
3.1 Non linear static response structural optimization (ESLSO) 

ESLSO is made up of two domains which are the analysis 
domain and the design domain as illustrated in Fig. 4. In the 
analysis domain, nonlinear analysis such as the metal forming 
analysis is simulated and the actual nonlinear responses are 
obtained from this analysis. ESLs are calculated from the non-
linear response vector and the linear stiffness matrix. In the 
design domain, linear static response optimization is carried 
out using the calculated ESLs. When linear response analysis 
is carried out using the ESLs, the nonlinear responses are 

equal to the linear responses. Therefore, if the ESLs are used 
as the loading conditions in linear static response optimization, 
the same responses as the nonlinear responses can be consid-
ered at the beginning of linear response optimization. The 
structural design is updated from linear static response optimi-
zation, and nonlinear analysis is performed again using the 
updated design in the analysis domain. This ESLSO process is 
repeated until the convergence criterion of the design variables 
are satisfied [17, 18]. 

The ESLs for the displacement, which are the static loads, 
are used to consider the nonlinear dynamic response in linear 
analysis. When these ESLs are used in linear analysis, the 
nodal displacement fields from linear analysis are equal to 
those at the arbitrary time in nonlinear dynamic analysis. In 
the finite element method, the governing equation of a struc-
ture considering nonlinearity in the time domain is  

 

0 1

( ) ( ) ( ) ( ) ( , ( )) ( ) ( )
( , , , )

N N N N

l

t t t t t
t t t t
+ + =

=

M b z C b z K b z z f&& &
L

   (2) 

 
where M  is the mass matrix and C  is the damping matrix. 
These matrices are the functions of the design variable vector 
b . K  is the stiffness matrix which is the function of the 
design variable vector b  and the nodal displacement vector 
z . z&&  is the nodal acceleration vector and z&  is the nodal 

 
 
Fig. 3. Optimization process using ESLSO and RSM. 

 
 

 
 
Fig. 4. Schematic process between the analysis domain and the design 
domain. 
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velocity vector. ( )tf  is the external load vector and t means 
the time. The constant l  is the total number of the time steps 
for the numerical integration points. The subscript N means 
nonlinear dynamic response analysis. Nz  at all the time steps 
is obtained from Eq. (2). 

The equivalent static load vector for the displacement is de-
fined as follows: 

 
( ) ( ) ( )eq L Ns s=zf K b z    ( 1, 2, , )s l= L  (3) 

 
where ( )eq szf  is the equivalent static load vector for the dis-
placement at each time step. LK  is the linear stiffness matrix 
and ( )N sz  is the nodal displacement vector from Eq. (2). 
The subscript L means linear static analysis. The new notation 
s  is used because the equivalent static load vector is not de-
fined in the time domain and exactly matches with time t . 
Therefore, the total number of s  is l  and l  equivalent 
static load vectors are obtained from Eq. (3). ( )eq szf  is used in 
linear static analysis as follows: 

 
( ) ( ) ( )L L eqs s= zK b z f             (4) 

 
where the linear nodal displacement vector ( )L sz , which is 
obtained from the linear static analysis using ( )eq szf , has the 
same values as the nonlinear nodal displacement vector 

( )N tz  in Eq. (3). Therefore, if linear static response optimiza-
tion is performed using a loading condition of ( )eq szf , the 
same nodal displacements as those of the nonlinear dynamic 
response analysis can be considered in linear static optimiza-
tion. To consider the time steps of the nonlinear dynamic re-
sponse analysis, the ESLs sets are calculated for each time 
step and these sets are used as multiple loading conditions in 
linear static response optimization. It is well known that many 
loading conditions can be easily treated in linear static re-
sponse optimization [24, 25]. Optimization with ESLs for the 
displacement for metal forming has been proposed by Lee and 
Park [19]. 

 
3.2 Definition of the equivalent static loads for the nonlinear 

strains 

When ESLs for the displacement are used in linear static 
analysis, the displacement field of nonlinear analysis is the 
same as that of linear analysis. However, other responses such 
as stresses and strains do not have the same values in the two 
analyses. Thus, ESLs for such responses should be newly 
defined [30]. Since the FLD conditions, which need major and 
minor strains, are utilized for constraints, ESLs for the strain 
are made. In other words, ESLs, which can generate the same 
response field as the strain field of nonlinear analysis, are de-
rived. In ESLSO of the sheet metal forming process, only the 
final step of the process is considered because the desired 
shape and the nonlinear strains, which are used the objective 
function or the constraints in optimization, are the shape and 
the strains of the final product after the forming process. In 

other words, ft  is only considered among the l  time steps 
of Eq. (2) where f  means the final time step [19, 27]. 

In linear static analysis, the linear von-Mises stress and von-
Mises strain of an element are expressed as follows [25, 31]: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

1
2 2 2 22 2 2

2 2 2

2

1 6
2

3
2

L x y y z z x xy yz zx

x y y z z x
xy

σ σ σ σ σ σ σ τ τ τ

σ σ σ σ σ σ
τ

é ù= - + - + - + + +ê úë û

- + - + -
= +

 

  (5) 

( ) ( ) ( ) ( )

( )

1
2 2 2 22 2 2

2 2 2

2 6
3

4
.

9 3

L x y y z z x xy yz zx

x y xy xy

ε ε ε ε ε ε ε γ γ γ

ε ε ε γ

é ù= - + - + - + + +ê úë û

+ -
= +

 

 (6) 
 
The stress-strain relationship of the isotropic elastic material 

is expressed from the generalized Hook’s law as follows [31]: 
 

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0
0 0 0σ ε
0 0 0σ ε

( )σ ε0 0 0 0 0
2τ γ

( )τ γ0 0 0 0 0
2τ γ( )0 0 0 0 0

2

x x

y y

z z

xy xy

yz yz

zx zx

C C C
C C C
C C C

C C

C C

C C

é ù
ê ú

ì ü ì üê ú
ï ï ï ïê ú
ï ï ï ïê ú

-ï ï ï ïê úï ï ï ï=í ý í ýê ú
ï ï ï ïê ú-ï ï ï ïê ú
ï ï ï ïê ú
ï ï ï ïê úî þ î þ-ê ú

ë û

 

  (7a) 

11
E E

1 (1 )(1 2 )
C n

n n n
é ù

= +ê ú+ + -ë û
     (7b) 

12
E

(1 )(1 2 )
C n

n n
=

+ -
       (7c) 

 
where E  is the Young’s modulus and n  is the Poisson’s 
ratio. 

The linear von-Mises stress is rewritten using Eq. (7) as fol-
lows: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 22 2
2

11 12
11 12 2

2 2 2

11 12

3
2 4

43 3 E .
2 9 3 2 1

x y y z z x

L xy

x y xy xy
L

C C C C

C C

e e e e e e
s g

e e e g
e

n

é ù- - + - + - -ê úë û= +

+ -
= - + =

+

 

 (8) 
 
From Eq. (8), we have the linear von-Mises stress of the ith 

finite element as follows: 
 

, ,
3 1 E .
2 1L i L iσ ε

n
=

+
            (9) 

   
The new ESLs are made by modifying the Young’s 

modulus E to E*. With E*, the stiffness matrix is changed 
from K to K*. If we conduct linear static analyses with K and 
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K*, then the two results have the characteristics in Table 2. As 
shown in Table 2, the two results have different ESLs sets, the 
same displacement fields, the same von-Mises strain fields 
and different von-Mises stress fields. Therefore, with E* we 
have  

 

, , ,
3 1 3 1E E
2 1 2 1L i i L i i L iσ ε ε

n n
* * * *= =

+ +
 ( ), ,L i L iε ε*=Q   (10) 

 
where Ei

*  is the modified Young’s modulus for the ith finite 
element. It is noted that the von-Mises stress ,L iσ*  of each 
element depends on the each Young’s modulus Ei

* . 

Suppose Ei
*  is defined by ,

,

EN i

L iσ
e

 where ,N ie  is the 

nonlinear strain of each element from the nonlinear dynamic 
analysis. ,N ie  can be any major strain or minor strain in 

nonlinear analysis. Then the modified linear von-Mises stress 
,L iσ*  and the nonlinear strain ,N ie  are the same because 
 

, , ,

, , ,
,

,

3 1 3 1 1E E E
2 1 2 1 E

E E .
E E

L i i L i i L i

L i N i L i
i N i

L i

σ ε ε

σ σ
σ

n n
e

e

* * *

*

= =
+ +

= = =
   (11) 

 
In other words, the values of the nonlinear strains are equal 

to the values of the modified linear von-Mises stresses when 
Ei

*  is used in linear static analysis. Therefore, the constraints 
with the nonlinear strains can be replaced by the von-Mises 
stresses in linear static response optimization. 

As mentioned earlier, the ESLs for the displacement should 
be calculated using the displacement at the final step of the 
nonlinear dynamic analysis. The equivalent static load vector 
for the displacement f

eqf  can be calculated from Eq. (3) and 
f

eqf  is used as a loading condition in linear static response 
optimization. The modified Young’s moduli are calculated by 
the nonlinear strains, the linear von-Mises stresses and the 
Young’s modulus of the workpiece as follows: 

,

E E .
f

N, i
i

L iσ
e* =               (12) 

 
The modified linear stiffness L

*K  is based on the modified 
Young’s modulus of each element Ei

* . 
In the same way, the modified equivalent static load vector 

for the displacement f
eq

*f  can be calculated using the modi-
fied stiffness matrix L

*K  and the nonlinear nodal displace-
ment vector 

N

fz  at the final step as follows:  
 

.
L N

f f
eq

* *=f K z              (13) 
 

f
eq

*f  is used as a loading condition in linear static optimiza-
tion. The modified linear von-Mises stress ,L iσ*  and the mod-
ified linear von-Mises strain ,L iε*  are calculated from Eq. 
(13). Two linear von-Mises strain ,L iε  and ,L iε*  are the 
same and two linear von-Mises stress ,L iσ  and ,L iσ*  are 
different due to the characteristic of the ESLs for the dis-
placements as shown in Table 2. However, the modified linear 
von-Mises stress ,L iσ*  is equal to the nonlinear strains ,

f
N iε  

from Eq. (11). For this reason, f
eq

*f  is called the equivalent 
static load vector for the nonlinear strain. 

 
3.3 Optimization using the equivalent static loads for the 

nonlinear strain 

Optimization of the sheet metal forming requires two kinds 
of nonlinear strain: the major strain and the minor strain. The 
FLD is defined by the two strains and the failure of the mate-
rial can be found from the FLD. To consider the two strains in 
the linear static optimization of ESLSO, two linear finite ele-
ment models are required because one linear finite element 
model has one kind of linear von-Mises stress. That is, one 
finite element model expresses the nonlinear major strain and 
the other finite element model expresses the nonlinear minor 
strain as illustrated in Fig. 5. Fig. 6 shows the optimization 
process of the sheet metal forming process using the ESLs for 
the nonlinear strains. 1e  is the major strain and 2e  is the 
minor strain, and the steps of this process are as follows: 

Step 1 Set values of the initial design variables and parame-
ters (design variables: ( ) (0)k =b b , cycle number: 0k = , con-
vergence parameter: a small number e ). 

Step 2 Perform nonlinear dynamic response analysis. In this 
step, the linear stiffness matrix and nonlinear responses such 
as displacements, major strains and minor strains are obtained. 

Step 3 Calculate the equivalent static load vector for the dis-
placements at the final step lt  of nonlinear dynamic analysis 
as follows: 

 
.

N

f f
eq L=f K z              (14) 

 
Step 4 Solve the linear static analysis as follows: 
 

.f f
L L eq=K z f              (15) 

 

Table 2. Comparison of the results of two linear analyses with different 
stiffness matrices. 
 

 Stiffness matrix LK  Stiffness matrix *
LK  

Calculation the ESLs for 
the displacements eq L N=f K z  B B

eq L N=f K z  

Linear static analysis using 
these ESLs L L eq=K z f  * * *

L L eq=K z f  

N L=z z  *
N L=z z  Comparison of displace-

ment vectors *
L L=z z∴  

Comparison of linear von-
Mises strains 

*
, ,L i L iε ε=  ( )*

L L=z zQ  

Comparison of linear von-
Mises stresses 

*
, ,L i L iσ σ≠  ( )*

L LK KQ ≠  
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The linear nodal displacement vector f
Lz , the linear von-

Mises stresses ,L iσ ’s and the linear von-Mises strains ,L iε  
are the results of the linear static analysis using f

eqf .  
Step 5 Calculate the modified Young’s moduli for the two 

kinds of nonlinear strains as follows: 
 

11

,

E E
f
N, i

i
L iσ

e
=            (16a) 

22

,

E E
f
N, i

i
L iσ

e
=            (16b) 

 
where i  is the element number. 1Ei  is the modified Young’s 
modulus for the nonlinear major strain of each element and 

2Ei  is the modified Young’s modulus for the nonlinear minor 
strain of each element. The nonlinear major strain of each 
element is 1

f
N, ie  and the nonlinear minor strain of each ele-

ment is 2
f
N, ie  from the nonlinear analysis in Step 2. The 

linear von-Mises stress of each element ,L iσ  is the result of 
the linear static analysis in Step 4. 

Step 6 Calculate the equivalent static load vector for the two 
kinds of nonlinear strains at the final step lt  of nonlinear 
dynamic analysis as follows: 

 
1

1
f f
eq L N=f K z              (17a) 

2
2

f f
eq L N=f K z              (17b) 

 
1

f
eqf  and 1

LK  are the equivalent static load vector and the 
modified stiffness matrix for the nonlinear major strains, and 

2
f
eqf  and 2

LK  are the equivalent static load vector and the 
modified stiffness matrix for the nonlinear minor strains. 1

LK  
and 2

LK  are based on 1Ei  and 2Ei . 
Step 7 Solve the following linear static response optimiza-

tion problem: 
 
Find       ( 1)k nR+ Îb                   (18a) 
to minimize  ( 1)( )kf +b                 (18b) 
subject to   1 ( 1)

1
k f f

L L eq
+ =K (b )z f  ( )f l=     (18c) 

 2 ( 1)
2

k f f
L L eq

+ =K (b )z f  ( )f l=     (18d) 

 ( 1) , 0f k f
u Lg + £(b z )  ( 1, 2, , )u m= L  (18e) 

 L U
v v vb b b≤ ≤     ( 1, 2, , ) .v n= L   (18f) 

 
The external load 1

f
eqf  and 2

f
eqf  are the equivalent static 

load vectors for the nonlinear strains. These vectors are used 
as the loading conditions during the linear static response op-
timization process. g  means the constraint and m  is the 
number of constraints. The superscript L  and U  represent 
the lower and upper bounds, respectively.  

Step 8 Update the design results. 
Step 9 If  
 

( 1) ( )k k+ - £b b            (19) 

 
 
Fig. 5. Schematic process between the analysis domain and the design 
domain using two kinds of ESLs for the nonlinear strains. 

 

 
 
Fig. 6. Optimization process using two kinds of ESLs for the nonlinear 
strains. 



612 J.-J. Lee and G.-J. Park / Journal of Mechanical Science and Technology 28 (2) (2014) 605~619 
 

 

then terminate the process. Otherwise, set 1k k= +  and go to 
Step 2. 

 
3.4 Optimization process considering both the structural and 

the process parameters 

In the optimization using ESLSO, the structural parameters 
can only be used because the process parameters cannot be 
used as the design variables in linear static response optimiza-
tion. However, process parameters are important variables to 
obtain the desired final product. In the previous researches, the 
process parameters are determined using RSM [9, 13, 14].  

RSM is an approximation method and used in optimization. 
The objective function and constraints are approximated to 
explicit functions and the approximated functions are used in 
the optimization process. A response surface is interpolated 
(approximated) by the information of sampled points. The 
general selection methods of data points are the factorial, 
composite, D-optimal and Latin Hypercube design [32]. An 
approximated response surface is generated by using the re-
gression analysis, and the general type of the surface is the 
linear or the linear with interaction or the quadratic model. 
The optimum point of RSM is that one point has the best val-
ue after comparing the result value of data points and points in 
the generated surface. This comparing process is necessary 
because the approximation method has some errors, which are 
residual between the real data points and the response surface 
[17, 26]. In this research, an existing RSM in a commercial 
software system is utilized [26]. 

When the number of the design variables is small, this me-
thod is usefully employed because the number of data points 
is relatively small. Thus, the process parameters such as BHF, 
DBRF and DBL can be easily determined using this method. 
However, using this method is unsuitable in the optimization 
of the structural parameters because many design variables are 
required for the desired shape. Therefore, in this research, the 
structural parameters are optimized using ESLSO and the 
process parameters are optimized using RSM. The optimiza-
tion method using both ESLSO and RSM in Fig. 3 is a new 
optimization concept which is to consider the characteristics 
of the design variables. 

 
4. Optimization of the proposed method with examples 

Two example problems for the sheet metal forming process 
are solved by using the proposed method. One is shape opti-
mization of the blank and the other is optimization for both the 
blank shape and process conditions. The first example has 
only structural parameters and the second one has structural 
and process parameters. The objective functions are the de-
sired shapes after the forming process, and they are expressed 
by the functions of the displacements. The material properties 
of the used sheet metal are summarized in Table 1. The util-
ized metal is a planer anisotropic material under plane stress 
conditions and the used yield criterion is Barlat’s yield crite-

rion [1, 24]. As mentioned earlier, LS-DYNA is employed for 
nonlinear dynamic analysis [24] and NASTRAN is employed 
for linear static response optimization at each cycle in ESLSO. 
The optimization algorithm in NASTRAN is based on the 
feasible directions method [25, 33]. 

 
4.1 Optimization of the circular cup 

This example is shape optimization of the sheet metal form-
ing of the circular cup. The parameters, which are used as the 
design variables in ESLSO, are the curvature and radii of the 
initial blank. The parameters are the structural parameters 
because the blank shape is expressed by the values of the cur-
vature and radii. The tooling for the sheet metal forming of the 
circular cup consists of the die, the punch and the blank holder 
as illustrated in Fig. 7. The punch velocity and the blank hold-
ing force are constant. The die is fixed and the stroke of the 
punch is 40 mm. The static friction factor is set to 0.125 and 
the dynamic friction factor is set to 0.12. A quarter of the cir-
cular cup is used for the shape of the used model in nonlinear 
dynamic analysis and linear static response optimization.  

Nonlinear dynamic analysis includes the manufacturing 
process and the springback [24]. The used nonlinear responses 
are at the final step of nonlinear analysis after the springback 
phenomenon for the elastic recovery of the material [1]. In this 
example, the ESLs for the nonlinear strain are made in 
ESLSO and these ESLs are generated by the major strains, 
minor strains and displacements from the nonlinear dynamic 
analysis. 

Fig. 8 is the results of the nonlinear dynamic analysis when 
the radius of the initial blank is 64 mm. Fig. 8(a) is the maxi-
mum major strain contour for the forming limit curve (FLC) 
and Fig. 8(b) is the forming limit diagram (FLD). The failure 
criterion is 1.0 and failure of the material occurs at the bottom 
of the wall as illustrated in Fig. 8(a). The failure parts are 
shown in Fig. 8(b) [1, 7, 24]. 

The objective function is maximization of the radius at the 
edge of the flange. The constraints are the FLD conditions of 
all the finite elements and the shape of the flange edge. The 
radius of the used initial blank is 50mm. The formulation of 
the optimization is as follows: 

 
1 2 3Find , ,b b b                      (20a) 

 
 
Fig. 7. Tooling of the circular cup. 
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1to minimize m-                        (20b) 
2

1 2 2

2

subject to 0.626 0.552 0.312
( 0.1)if

e e e
e

< + +
³

-
   (20c) 

 1 2 0.312e e< - +     2( 0.1)if e £ -    (20d) 
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1 2 2
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2 2

2

0.312 0.236 14.237

2.348 970.0

39.125 29100.0
( 0.1 0.1)if

e e e

e e

e e
e

< +

+ +
< <

-

- -

-

     (20e) 

 10.0 0.5s≤ ≤                  (20f) 
 

where, 1 2,b b  and 3b  are the scale factors of the perturbation 
vectors (shape variables) as illustrated in Fig. 9. The radii and 
curvature of the design domain in the blank are controlled by 
the perturbation vectors. The vectors are determined based on 
the Lankford value because the used material is a planner 
anisotropic material and has a different strain at each direc-

tion; the base directions of the Lankford value are 0° , 45°  
and 90°  for the rolling direction. The used Lankford value is 
expressed in Table 1. 1m  is the expected value of the radii of 
the sampled nodes in the flange edge after deformation. The 
constraint 1m  is defined as follows: 

 
46

1
1

1
46 r

r
m R

=

= å               (21) 

 
where 46 for r  is the number of sampled nodes of the flange 
edge and rR  is the radius of the r th sampled node.  

The reason why the expected value of the radii is maxi-
mized is that a large flange can have a failure at the wall of the 
cup while a large flange is sometimes required to attach acces-
sories on it. Although a large flange is desirable, it is difficult 
for a designer to identify how large it can be. We can define 
the objective function with a desirable target for the magni-
tude of the flange, however, this work has already been done 
in other research [19, 34]. 

1e  is the major strain and 2e  is the minor strain from 
nonlinear dynamic analysis. The original FLC cannot be di-
rectly used in linear static response optimization because the 
point where the minor strain is zero is a non-differentiable 
point as illustrated in Fig. 8(b). So the FLC is interpolated to 
be differentiable at all the points. The interpolated curve is 
expressed by three conditions in the constraints, which are Eqs. 
(20c)-(20e). These constraints for the nonlinear strains are 
used for the von-Mises stresses of linear static analysis in the 
design domain when the ESL for the nonlinear strains is used 
in ESLSO. 1s  is the standard deviation of the radii of the 
sampled nodes and defined as: 

 

( )
46

2
1 1

1

1 .
45 r

r
s R m

=

= -∑            (22) 

 
The convergence criterion is 0.001. The optimization proc-

ess converges at the 29th cycle. The infinite norm of the de-
sign variables is 0.0. Table 3 shows the shape comparison of 
the initial model and the optimum model. The radii of the 
sampled nodes in the optimum model are not the same be-
cause the strain in each direction is not the same due to Bar-
lat’s yield criterion. Fig. 10 shows the nonlinear analysis re-
sults of the optimum model. Fig. 10(a) is the maximum major 
strain contour for the FLC and Fig. 10(b) is the FLD. The 
objective function decreases from -40.033 to -57.088 and the 
history of the objective function is illustrated in Fig. 11. The 
constraint violation decreases from 19.3% to 0.0%. The initial 
blank shape, which can be deformed to the desired shape 
without failure, is determined. 

The friction factor is an important parameter determining 
the optimum blank shape in the sheet metal forming process. 
The optimum models are changed according to the friction 
factors. Table 4 shows the comparison of the optimum shapes 
of each friction factor. When friction is large, the area of the  

 
(a) The maximum major strain contour for the forming limit curve 

 

 
(b) Forming limit diagram 

 
Fig. 8. Results of nonlinear dynamic response analysis of the circular 
cup (initial blank radius: 64 mm). 

 
 

 
 
Fig. 9. The initial blank shape and design variables of the circular cup. 
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initial blank and the radius of the flange edge of the deformed 
shape become smaller because the strains are large and the 
necking occurrence probability is high. The friction factor is 
not used as the design variable in this research. Further in-
depth research on the friction factor is required. 

 
4.2 Optimization of the square cup 

This example, which is an optimization of the square cup, 
consists of an optimization for the structural parameters using 
ESLSO and an optimization for the process parameters using 
RSM. The structural parameters are curvatures, angles and 
radii of the initial blank and the process parameters are BHF, 
DBRF and DBL [1, 14-16, 26]. The two optimization proc-
esses iteratively proceeds until the convergence criteria are 
satisfied as illustrated in Fig. 3.  

Sequential response surface method (SRSM), which is one 
of the RSMs, is used in this example. SRSM uses the region 
of interest, which is a subspace of the design space, to deter-
mine an approximate optimum value. The initial size of the 
region is made by the lower and upper bounds of the design 
variables. After the optimization process, the center of the 
region is moved and the size of the region is reduced. This 
process is repeated until the convergence criteria are satisfied. 
The used selection method of data points is the D-optimal 
method and the order of the used model is quadratic in this 
example [26].  

Table 3. Shape comparison of the circular cup between the initial 
model and the optimum model. 
 

 

 
(a) The maximum major strain contour for the forming limit curve 

 

 
(b) Forming limit diagram 

 
Fig. 10. Results of nonlinear dynamic response analysis using the 
optimum model of the circular cup. 

 

 
 
Fig. 11. History of the objective function of the circular cup. 

 

Table 4. The comparison of the optimum shapes of each friction factor. 
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The tooling for the sheet metal forming of the square cup 
consists of the die, the punch and the blank holder as illus-
trated in Fig. 12(a). The punch velocity is constant. The die is 
fixed and the stroke of the punch is 40 mm. The static friction 
factor is 0.125 and the dynamic friction factor is 0.12. The 
used model, which is used in nonlinear dynamic analysis and 
linear static response optimization, is a quarter of a square cup. 
Nonlinear dynamic analysis includes the manufacturing proc-
ess and the springback. The ESLs for the nonlinear strain are 
employed in linear static optimization of ESLSO [1, 7, 24].  

The objective function is wrinkling reduction at the edge of 
the flange. The constraints are the FLD conditions and the 
shape of the flange edge. The radius of the initial blank is 
90mm. The optimization formulation for the structural pa-
rameters is as follows: 

 
Find ib           ( 1, 2, 3, ,15)i = L   (23a) 

2to minimize s                          (23b) 
subject to 0.3 0.3 ( 1, 2, 3, , 51)wD w- £ £ = L   (23c) 
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where 1 2 15, , ,b b bL  are the scale factors of the perturbation 
vectors as illustrated in Fig. 12(b) and these design variables 
are used in linear static optimization of ESLSO. The radii and 
curvature of the design domain in the blank are controlled by 
the perturbation vectors. 2s  is the standard deviation and is 
used to reduce wrinkling. It is calculated from the displace-
ment in the z-direction of the sampled nodes at the flange part. 
The standard deviation is minimized to make the edge flat. 2s  
is defined as follows: 

 

( )
153

2
2

1

1
152 k

k
s z z

=

æ ö
= -ç ÷

è ø
å            (24) 

 
where kz  is the displacement in the z-direction of the kth 
sampled node and z  is the expected value of z ’s.  

The constraint wD  is the distance between the target line 
and the deformed position at the wth edge node as illustrated 
in Fig. 14. The target line is the desired final shape of the 
flange edge, which is desired radius at the sampled node. The 
target means the nodal coordinate of the desired shape. The 
constraint wD  is defined as follows: 

 
2 2 ( 1, 2, 3, ,51)w T w wD R x y w= + = L-     (25) 

where TR  is the target radius of the flange edge after the 
forming process. wx  is the coordinate of the deformed posi-
tion in the x-direction and wy  is the coordinate of the de-
formed position in the y-direction at the wth edge node after 
the forming process. This constraint is used to obtain the de-
sired planar shape of the final product. Eqs. (23d)-(23f) are the 
interpolated FLD condition.  

Wrinkling generally occurs when BHF is weak, and Fig. 13 

 
(a) The tooling and the process parameters 

 

 
(b) The initial blank shape and the structural parameter 

 
Fig. 12. Model of the sheet metal forming of the straight square cup. 

 
 

 
 
Fig. 13. Deformed shape of a wrinkled square cup. 

 
 

 
 
Fig. 14. The constraint of the straight square cup. 
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shows the deformed shape of a wrinkled square cup. Then, the 
wrinkling can be controlled by BHF. If BHF is too large, the 
wrinkling is reduced but necking may occur in the wall of the 
forming product. Therefore, when BHF is fixed, wrinkling can 
be controlled by the blank shape in the first stage of Fig. 3 
although the impact is not very large. In the second stage, 
RSM is used to determine BHF and DBRF and the objective 
is to minimize the wrinkle. As illustrated in Fig. 3, the two 
stages are repeatedly used until the convergence criterion is 
satisfied. It is noted that BHF and DBRF are coupled. They 
are independently considered in this research. Since those 
variables are simultaneously considered as design variables in 
the second stage (RSM), the decision of a variable is depend-
ent on the decision of the other variable. Therefore, they are 
not independently determined. 

The formulation of the RSM to optimize the process pa-
rameters is as follows: 

 
Find hb            ( 16, 17, 18)h =     (26a) 

2to minimize s                          (26b) 
subject to 0.3 0.3 ( 1, 2, 3, , 51)wD w- £ £ = L   (26c) 
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2

0.626 0.552 0.312
( 0.0)if

e e e
e
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³

-
   (26d) 

 1 2 0.312e e< - +   2( 0.0)if e <      (26e) 

 
where 16 17,b b  and 18b  are the design variables of the proc-
ess parameter and they are BHF, DBRF and DBL, respec-
tively. As mentioned earlier, the commercial software LS-
OPT is utilized to solve the problem of Eq. (26) [26]. The 
FLD constraint in LS-OPT uses real FLC of material. There-
fore, the interpolated curves, which are used in ESLSO, are 
not used in RSM. The objective function and the constraint for 
the plane shape are equal to those of ESLSO. 

The convergence criterion of ESLSO is defined as 0.01 and 
the convergence criterion of RSM is defined as 0.03. The total 
optimization process converges in the 3rd cycle. The history 
of the optimization results is shown in Table 5. The objective 
function decreases from -40.033 to -57.088 and the constraint 
violation decreases from 18343.0% to 0.0%. Figs. 16 and 17 
show the results of the initial model and the optimum model. 
Fig. 16 presents the initial and deformed blank shapes of the 

initial and the optimum models. Fig. 17 illustrates the maxi-
mum major strain contour for the FLC and the FLD of each 
model. 

 
5. Conclusions 

The optimization process of sheet metal forming, which has 

 
 
Fig. 15. Schematic view of the drawbead. 

 
 

Table 5. History of the optimization results of the square cup. 
 

 
 

 
(a) Initial model 

 

 
(b) Optimum model 

 
Fig. 16. The initial blank shape and the deformed blank shape of the
square cup. 
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geometric, material and boundary nonlinearities in finite ele-
ment analysis, is nonlinear dynamic response optimization. 
The final shape after the forming process is affected by the 
structural and the process parameters. These parameters have 
been generally optimized using an interpolation method, a 
probabilistic method, an approximation method, etc. However, 
it is quite difficult to optimize both the structural and the proc-
ess parameters simultaneously because the number of design 
variables is large and errors may increase. A design method is 
proposed to optimize both parameters by using ESLSO and 
RSM. 

ESLSO can be applied to nonlinear dynamic response op-
timization using the linear static response optimization tech-
nique. The design variables, which can be used in linear static 
response optimization, can only be considered in ESLSO. 
Typically, structural parameters are such variables. On the 
other hand, the process variables, which cannot be used in 
linear static response optimization, are optimized using RSM. 
That is, ESLSO is used to optimize the structural parameters 
and RSM is used to optimize the process parameters. The two 
optimization processes proceeds iteratively until the conver-
gence criteria are satisfied. 

Material failure, which influences the quality of the final 
product, is considered in the optimization of the sheet metal 
forming process. However, ESLSO using the ESLs for the 
displacement cannot be directly utilized because material fail-
ure is the function of the nonlinear strain. Therefore, the ESLs 
for the nonlinear strain are proposed and the nonlinear strains 
from nonlinear dynamic analysis are considered using these 
ESLs in linear static response optimization of ESLSO. Two 
examples are successfully solved by using the proposed me-

thod. However, various nonlinear conditions are not yet con-
sidered. Also, the objective and constraint functions which 
have practical meanings should be considered later. Extension 
of the current research is required to solve such problems. 
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Nomenclature------------------------------------------------------------------------ 

b   : Design variable vector 
C   : Damping matrix 

wD   : Distance between the target line and the deformed 
position at the wth edge node 

E   : Young’s modulus 
*E   : Modified Young’s modulus 

Ei
*   : Modified Young’s modulus for the ith finite element 

f   : External load vector 
f   : Final step (superscript) 
eq
zf   : Equivalent static load vector for the displacement 
f

eq
*f   : Equivalent static load vector for the nonlinear strain 

at the final step 
g   : Constraint  
K   : Stiffness matrix 

LK   : Linear stiffness matrix 
*K   : Modified stiffness matrix 

k   : Cycle number 
L   : Linear static analysis 
L   : Lower bound (Superscript) 
l   : Total number of the time steps for the numerical 

integration points 
M   : Mass matrix 
m   : Number of constraints 

1m   : Expected value of the radii of the sampled nodes 
N   : Nonlinear dynamic response analysis 
n   : Number of design variables 
R   : Lankford value 

rR   : Radius of the r th sampled node 
TR   : Target radius of the flange edge after the forming 

process 
1s   : Standard deviation of the radii of the sampled nodes 
2s   : Standard deviation of the z-direction displacement of 

the sampled nodes 
t   : Time 
U   : Upper bound (Superscript) 

wx   : Coordinate of the deformed position in the x-
direction at the wth edge node after the forming 
process 

wy   : Coordinate of the deformed position in the y-

 
(a) The maximum major strain 

contour for the forming 
limit curve of the initial 
model  

(b) The maximum major strain 
contour for the forming 
limit curve of the optimum 
model  

 

 
(c) Forming limit diagram of 

the initial model 
(d) Forming limit diagram of 

the optimum model 
 
Fig. 17. The result contours and FLD of the initial model and the opti-
mum model. 
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direction at the wth edge node after the forming 
process 

z   : Nodal displacement vector 
z&   : Nodal velocity vector 
z&&   : Nodal acceleration vector  
z   : Expected value of the sampled nodes 

kz   : Displacement in the z-direction of the kth sampled 
node  

e   : Effective strain 
Le   : Linear von-Mises strain 
1e   : Major strain  
2e   : Minor strain 

  : Convergence parameter 
n   : Poisson’s ratio 
s   : Effective stress 

Ls   : Linear von-Mises stress 

 
References 

[1] W. F. Hosford and R. M. Caddell, Metal forming: Mechan-
ics and metallurgy, Cambridge University Press, New York, 
USA (2011). 

[2] M. Karima, Blank development and tooling design for 
drawn parts using a modified slip line field based approach, 
Journal of Engineering for Industry, 111 (1989) 345-350. 

[3] M. S. Kim, J. H. Shin and D. G. Seo, Formability of sheet 
metal in noncircular cup ( II ) – for arbitrary cross section, 
Transactions of the Korea Society of Mechanical Engineers, 
17 (12) (1993) 3074-3104 (in Korean). 

[4] J. H. Shin, M. S. Kim and D. K. Seo, Formability of sheet 
metal in noncircular cup drawing ( I ) – for rectangular cross 
section, Transactions of the Korean Society of Automotive 
Engineers, 2 (1) (1994) 84-95 (in Korean). 

[5] X. Chen and R. Sowerby, Blank development and the pre-
diction of earing in cup drawing, Journal of Mechanical Sci-
ences, 38 (5) (1996) 509-516. 

[6] C. H. Lee and H. Huh, Blank design and strain prediction of 
automobile stamping parts by an inverse finite element ap-
proach, Journal of Materials Processing Technology, 63 
(1997) 645-650. 

[7] C. H. Lee and H. Huh, Three-dimensional multi-step inverse 
analysis for the optimum blank design in sheet metal form-
ing processes, Journal of Materials Processing Technology, 
80-81 (1998) 76-82. 

[8] C. Lee and J. Cao, Shell element formulation of multi-step 
inverse analysis for axisymmetric deep drawing process, In-
ternational Journal for Numerical Method in Engineering, 
50 (2001) 681-706. 

[9] J. H. Vogel and D. Lee, An analysis method for deep draw-
ing process design, International Journal of Mechanical Sci-
ences, 32 (1990) 891-907. 

[10]   X. Chen and R. Sowerby, The development of ideal blank 
shapes by the method of plane stress characteristics, Journal 
of Mechanical Sciences, 34 (2) (1992) 159-166. 

[11]   R. Sowerby, J. L. Duncan and E. Chu, The modeling of 

sheet metal stamping, Journal of Mechanical Sciences, 28 
(7) (1986) 415-430. 

[12]   G. N. Blount and P. R. Stevens, Blank shape analysis for 
heavy gauge metal forming, Journal of Materials Processing 
Technology, 24 (1990) 65-74. 

[13]   S. Chengzhi, C. Guanlong and L. Zhongqin, Determining 
the optimum variable blank-holder forces using adaptive re-
sponse surface methodology (ARSM), International Journal 
of Advanced Manufacturing Technology, 26 (2005) 23-29. 

[14]   W. Zhang and R. Shivpuri, Probabilistic design of aluminum 
sheet drawing for reduced risk of wrinkling and fracture, Reli-
ability Engineering and System Safety, 94 (2009) 152-161. 

[15]   X. Wang and J. Cao, Stress-based prediction for the straight 
side-wall wrinkling in deep drawing process, Transactions of 
NAMRI/SME, 27 (1999) 55-60. 

[16]  R. Shivpuri and W. Zhang, Robust design of spatially 
distributed friction for reduced wrinkling and thinning fail-
ure in sheet drawing, Material and Design, 30 (6) (2009) 
2043-2055. 

[17]   G. J. Park, Analytical methods for design practice, Sprin-
ger-Verlag, Berlin, Germany (2007). 

[18]   W. S. Choi and G. J. Park, Structural optimization using 
equivalent static loads at all the time intervals, Computer 
Methods in Applied Mechanics and Engineering, 191 (19) 
(2002) 2077-2094. 

[19]   J. J. Lee and G. J. Park, Shape optimization of the initial 
blank in the sheet metal forming process using equivalent 
static loads, International Journal for Numerical Methods in 
Engineering, 85 (2) (2011) 247-268. 

[20]   G. J. Park and B. S. Kang, Validation of a structural opti-
mization algorithm transforming dynamic loads into equiva-
lent static loads, Journal of Optimization Theory Application, 
118 (1) (2003) 191-200. 

[21]   B. S. Kang, G. J. Park and J. S. Arora, Optimization of 
flexible multibody dynamic systems using the equivalent 
static load, AIAA Journal, 43 (4) (2005) 846-852. 

[22]   M. K. Shin, K. J. Park and G. J. Park, Optimization of 
structures with nonlinear behavior using equivalent loads, 
Computer Methods in Applied Mechanics and Engineering, 
196 (4) (2007) 1154-1167. 

[23]   Y. I. Kim and G. J. Park, Nonlinear dynamic response 
structural optimization using equivalent static loads, Com-
puter Methods in Applied Mechanics and Engineering, 199 
(2010) 660-676. 

[24]   LS-DYNA, LS-DYNA User’s Manual Version 971, Liver-
more Software Technology Corporation, Livermore, Cali-
fornia, USA (2013). 

[25]   NASTRAN, MD R3 NASTRAN User’s Guide, MSC Soft-
ware Corporation, Santa Ana, California, USA (2012). 

[26]   LS-OPT, LS-OPT User’s Manual Version 4.2, Livermore 
Software Technology Corporation, Livermore, California, 
USA (2012). 

[27]   J. H. Lim, S. B. Kim, J. S. Kim, H. Huh, J. D. Lim and S. H. 
Park, High speed tensile tests of steel sheets for an auto-body 
at the intermediate strain rate, Transactions of the Korea So-



 J.-J. Lee and G.-J. Park / Journal of Mechanical Science and Technology 28 (2) (2014) 605~619 619 
 

  

ciety of Automotive Engineers, 13 (2) (2005) 127-134 (in 
Korean). 

[28]   R. W. Cahn and P. Haasen, Physical Metallurgy, North-
Holland, Amsterdam, Netherlands (1996).  

[29]   J. N. Reddy, An introduction to nonlinear finite element 
analysis, Oxford University Press, New York, USA (2005). 

[30]   J. J. Lee, U. J. Jung and G. J. Park, A preliminary study on 
the optimal preform design in the forging process using 
equivalent static loads, 13th AIAA/ISSMO Multidisciplinary 
Analysis and Optimization Conference, Fort Worth, Texas, 
USA (2010). 

[31]   A. C. Ugural and S. K. Fenster, Advanced strength and 
applied elasticity, Prentice Hall, Upper Saddle River, New 
Jersey, USA (2003). 

[32]   R. H. Myers and D. C. Mongomery, Response surface 
methodology, John Wiley and Sons. Inc., Hoboken, New 
Jersey, USA (2009). 

[33]   A. D. Belegundu and T. R. Chandrupatla, Optimization 
Concepts and Applications in Engineering, Cambridge Uni-
versity Press, New York, USA (2011). 

[34]   J. J. Lee, U. J. Jung and G. J. Park, Shape optimization of the 
workpiece in the forging process using equivalent static loads, 
Finite Element in Analysis and Design, 69 (2013) 1-18. 

 

Jae-Jun Lee received the B.S. degree in 
mechanical engineering from Yeung-
nam University, Korea, in 2004, M.S. 
degree from Hanyang University, Korea, 
in 2006, and the Ph.D. from Hanyang 
University, Korea, in 2011. In 2006-
2007, he worked as an engineer at 
Hyundai DYMOS, Korea. He is cur-

rently a senior researcher in the Nuclear Fuel Engineering 
Dept. at KEPCO Nuclear Fuel, Daejeon, Korea. 
 

Gyung-Jin Park received the B.S. de-
gree from Hanyang University, Korea in 
1980, M.S. degree from KAIST, Korea, 
in 1982, and the Ph.D. from the Univer-
sity of Iowa, USA, in 1986. In 1986-
1988, he worked as an assistant profes-
sor at Purdue University at Indianapolis, 
USA. His research focuses on Structural 

Optimization, machine design, design theory and MDO. His 
work has yielded over 4 books and 360 technical papers. He is 
currently a professor in the Department of Mechanical Engi-
neering at Hanyang University, Ansan City, Korea. 

 
 


