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Abstract 
 
The nonlinear vibration of a flexible hoisting rope with time-varying length is investigated. The governing equations of the flexible hoist-

ing rope are developed based on Hamilton’s principle. Experiments performed evaluated the theoretical model and found that the experi-
mental data agree well with the theoretical prediction, which validates the mathematical model of the flexible hoisting system. The results 
of the simulations and experiments show that the flexible hoisting system dissipates energy during downward movement (thus is stabilized) 
and gains energy during upward movement (thus is unstabilized). In addition, a passage through resonance in the hoisting system with 
periodic external excitation is analyzed. Due to the time-varying length of the hoisting rope the natural frequencies of the system vary 
slowly, and transient resonance may occur when one of the frequencies coincides with the frequency of an external excitation.  
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1. Introduction 

Ropes, which are extensively used as mine hoists, elevators, 
cranes etc, are subject to vibration due to their high flexibility 
and relatively low internal damping characteristics [1, 2]. 
Usually, these systems are modeled as either an axially mov-
ing tensioned beam or a string with time-varying length and a 
rigid body at its lower end [3, 4]. In general, the vibration 
energy of the rope changes during elongation and shortening 
[5, 6]. When the rope length is shortened, the vibration energy 
increases exponentially with time, causing dynamic instability 
[7]. Studies on rope vibration problems in flexible hoisting 
systems have attracted wide attention. For example, Chi and 
Shu [8] calculated the natural frequencies associated with the 
vertical vibration of a stationary cable coupled with an eleva-
tor car. Terumichi and Ohtsuka et al. [9] studied the transverse 
vibrations of a string with time-varying length by considering 
the velocity of the string as a constant and of a mass-spring 
system at the lower end with theoretical and experimental 
methods. By taking into account the inertia of the rotor, Fung 
and Lin [10] analyzed the transverse vibration of an elevator 
rope with time-varying length, and proposed a variable struc-
ture control scheme to suppress the transient amplitudes of   

vibrations. Kaczmarczyk and Ostachowicz [11] studied the 
coupled vibration of a deep mine hoisting cable and built a 
distributed-parameter model. They found that the response of 
the catenary-vertical rope system might represent a number of 
resonance phenomena. Zhang and Agrawal [12] derived the 
governing equations of the coupled vibration of a flexible 
cable transporter system with arbitrarily varying length. Zhu 
and Chen [13] investigated the control of an elevator cable 
with theoretical and experimental methods. A novel experi-
mental method was developed to validate the uncontrolled and 
controlled lateral responses of a moving cable in a high-rise 
elevator, which showed good agreement with the theoretical 
predictions. Chio and Hong et al. [14] investigated the vibra-
tion control of a translating tensioned steel strip in the zinc 
galvanizing line. A right boundary control law based upon the 
Lyapunov second method was derived. The results of simula-
tion show that a time-varying boundary force and a suitable 
passive damping at the right boundary can successfully sup-
press the transverse vibrations. Nguyen and Hong [15] studied 
transverse vibration control of axially moving membranes by 
regulation of axial velocity. A novel control algorithm that 
suppresses the transverse vibrations of an axially moving 
membrane system was developed. Ngo and Hong et al. [16] 
investigated the control of an axially moving system. The 
Lyapunov function taking the form of the total mechanical 
energy of the system was adopted to ensure the uniform stabil-
ity of the closed-loop system. The results of experiments show   
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the proposed control law was effective. Zhang [17] presented a 
systematic procedure for deriving the model of a cable trans-
porter system with arbitrarily varying cable length and pro-
posed a Lyapunov controller to dissipate the vibratory energy. 
Zhang and Zhu et al. [18] derived the governing equation and 
energy equations of the longitudinal vibration of a flexible 
hoisting system with arbitrarily varying length. 

Although extensive studies focus individually on vibration 
characteristics of a rope with time-varying length, the dynamic 
stability of the rope has also been studied by several groups. 
Kumaniecka and Niziol [19] investigated the longitudinal-
transverse vibration of a hoisting cable with slow variability of 
the parameters. The non-linearity of the cable material was 
considered and the unstable regions were identified by 
applying the harmonic balance method. General stability 
characteristics of the horizontally and vertically translating 
beams and strings with arbitrarily varying length and 
boundary conditions were studied by Zhu and Ni [20]. While 
the amplitude of the displacement can behave in a different 
manner depending on the boundary conditions, the amplitude 
of the vibratory energy of a translating medium decreases and 
increases in general during extension and retraction, respec-
tively. Lee [7] introduced a new technique to analyze the free 
vibration of a string with time-varying length by dealing with 
traveling waves. When the string length was shortened, free 
vibration energy increased exponentially with time, leading to 
dynamic instability. 

Despite numerous research efforts on the flexible hoisting 
rope with time-varying length in the last few decades, most 
studies have been restricted to cases with constant transport 
speed samples. The dynamic characteristics of a flexible 
hoisting rope with an arbitrarily varying length are the subject 
of this investigation. The governing equations are developed 
based on the extended Hamilton’s principle. The derived gov-
erning equations are shown to be nonlinear partial differential 
equations (PDEs) with variable coefficients. By choosing 
proper mode functions that satisfy the boundary conditions, 
the solutions of the governing equations are obtained using the 
Galerkin method. To evaluate the mathematical model, an 
experimental set-up is built and some experiments are con-
ducted. Comparing the experimental data to the simulation, a 
favorable result is obtained, which indicates that the proposed 
mathematical model is valid for the flexible hoisting rope. So 
the modeling methods can well represent the transverse vibra-
tion of flexible hoisting rope with time-varying length. The 
derived mathematical model may illustrate the true dynamic 
nature of a flexible hoisting rope system, and can be used to 
predict and analyze resonance phenomena. Based on the pro-
posed fundamental dynamic analyses, further vibration control 
can be adopted for such flexible hoisting systems in the near 
future. 

 
2. Model of the flexible hoisting system 

The flexible hoisting system can be simplified as an axially 

moving string with time-varying length and a rigid body m at 
its lower end, as shown in Fig. 1. The rail and the suspension 
of the rail are assumed to be rigid. The string has Young’s 
modulus E, diameter d and the mass per unit length ρ. The 
origin of the coordinate is set at the top end of the string and 
the instantaneous length of the string is l(t) at time t. The 
instantaneous axial velocity, acceleration and jerk of the string 
are ( ) ( )v t l t= & , ( ) ( )a t v t= &  and ( ) ( )j t a t= &  respectively, 
where the overdot denotes time differentiation. At any instant t, 
the transverse displacement of the string is described by y(x, t), 
at a spatial position x, where 0 ≤ x ≤ l(t). In an actual flexible 
hoisting system, the rotational unbalance of the traction motor 
or the abnormal off-track of the rope possibly causes vibration 
of the hoisting system. To reproduce this phenomenon, a 
transverse extrinsic disturbing excitation s(t) is applied at the 
upper end of the string. In this paper, all the equations and 
derivations are based on the following assumptions: 

(1) The parameters E, d and ρ of the string are always con-
stants; 

(2) Only transverse vibration is considered here. The elastic 
distortion of the string due to the transverse vibration is much 
less than the length of the string; 

(3) The bending stiffness of the string, all the damp and fric-
tion, and the influence of air current are ignored. 

 
2.1 Energy of the flexible hoisting system 

After the string is deformed, the position vector R of a point 
at x can be written as: 

 
( ) ( )R = x t i + y x,t j  (1) 

 
where i and j are the unit vectors along the x-axes and y-axes, 
respectively. The material derivative of R yields the velocity 
vector 
 

( ) ( )t xV = v t i + y + vy j  (2) 

 
 
Fig. 1. Schematic of flexible hoisting string with time-varying length. 
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where the subscript t denotes partial differentiation with re-
spect to time, and subscript x denotes partial differentiation 
with respect to space. Similarly, the position vector Rc and 
velocity vector Vc of the rigid body can be written as: 

 
( ) ( ( ), )cR l t i y l t t j= +  (3) 
( ) ( ( ), )c tV v t i y l t t j= + . (4) 

 
Then, the kinetic energy of the system is computed by 
 

( )
0( )( ) 0.5 0.5 l t

c ck x l tE t mV V V Vdxr== × + ×ò . (5) 

 
The first term on the right of Eq. (5) represents the kinetic 

energy of the rigid body, the second term represents the ki-
netic energy of the string. The elastic strain energy of the 
string is: 

 
( ) 2

0( ) ( 0.5 )l t
eE t T ES dxe e= +ò  (6) 

 
where T(x, t) is the quasi-static tension at spatial position x of 
the string at time t due to gravity. Since the string is acted 
upon not only by the weight of the concentrated mass at the 
lowest end but also its own weight, the tension T(x, t) is 
expressed as: 

 
[ ( ( ) )]T m l t x gr= + - . (7) 

 
And ε represents the strain at spatial position x of the string 
and can be expressed as: 

 
( ) /ds dx dxe = - . (8) 

 
As shown in Fig. 2, ds can be expressed as: 
 

2 21 ( / ) (1 0.5 )xds dy dx dx y dx» + » + . (9) 
 
Substituting Eq. (9) into Eq. (8) yields 
 

20.5 xye = . (10) 
 

2.2 Free vibration equations 

According to the characteristics of top restriction of the 
string, the boundary conditions at x(t) = 0 are 

 
(0, ) 0y t = . (11) 

 
Substitute Eqs. (5) and (6) into Hamilton’s Principle, 
 

2
1

( ( ) ( )) 0t
ekt E t E t dtd d- =ò  (12) 

 
and apply the variational operation. Because the length of the 

string l(t) changes with time, the standard procedure for 
integration by parts with respect to the temporal variable 
cannot apply. Applying Leibniz’s rule and partial integration 
results in the following expressions: 

 

[ ]

( ) ( )
0 0

( )
0( )

.

( ) ( )

( ) ( )

l t l t
t x t t x

l t
t x t xl t

y vy y dx y vy ydx
t

v y vy y y vy ydx
t

r d r d

r d r d

¶+ = + -ò ò¶
¶+ - +ò ¶

 (13) 

 
Following the standard procedure for integration by parts 

with respect to the spatial variable and invoking Eq. (13), one 
obtains from Eq. (12), 

 
2

1

2
1

2
1

3

( )
0

( ) 3
0

( , ) 0.5 ( , )

( ) ( )

( ) (0.5 ) 0 .

t
t x xt

t l t
t x t xt

t l t
x xt

m y l t Ty ESy y l t dt
t

y vy v y vy ydxdt
t x

Ty ES y ydxdt
x x

d

r r d

d

é ù
ê úë û
é ù
ê úë û
é ù
ê úë û

¶- + + -ò ¶
¶ ¶+ + + +ò ò ¶ ¶

¶ ¶+ =ò ò ¶ ¶

  (14) 

 
Setting the coefficients of δy in Eq. (14) to zero yields the 

governing equations in the forms 
 

2

2

( 2 )
1.5 0

tt xt x xx x x

xx x xx

y vy vy v y T y
Ty ESy y
r + + + - -

- =

&
, 0 < x < l(t). (15) 

 
The first four terms in Eq. (15) correspond to the local, 

Coriolis, tangential and centripetal acceleration, respectively. 
The resulting boundary condition from Eq. (14) at x = l(t) is 

 
30.5 0tt x xmy Ty ESy+ + = , x = l(t). (16) 

 
The energy associated with the transverse vibration of the 

system is 
 

( )2 2
0

( ) 2 4
0

( ) 0.5 ( , ) 0.5 ( )

0.5 ( 0.25 )

l t
v t t x

l t
x x

E t my l t y vy dx

Ty ESy dx

r= + + +ò

+ò
. (17) 

 
 
Fig. 2. A small element of the string in a deformed position. 

 



460 J. Bao et al. / Journal of Mechanical Science and Technology 28 (2) (2014) 457~466 
 

 

2.3 Forced vibration equations 

When external excitation occurs at the upper end of the 
string, the governing Eq. (15) must be adjusted. Compared 
with Eq. (11), the corresponding boundary conditions are 
changed into 

 
(0, ) ( )y t s t= , ( , ) 0y l t = . (18) 

 
Obviously, the boundary conditions are nonhomogeneous 

and difficult to apply directly. Here, the procedure described 
in Ref. [5] is used to transfer the governing Eq. (15) with non-
homogeneous boundary conditions into the equation of mo-
tion with homogeneous boundary conditions. The transverse 
displacement is expressed in the form of 

 
( , ) ( , ) ( , )y x t w x t h x t= +  (19) 

 
where w(x, t) is the part that satisfies the homogeneous bound-
ary conditions and h(x, t) is the part that satisfies the nonho-
mogeneous boundary conditions. Substituting Eq. (19) into Eq. 
(15) yields 

 
2

2 2

2 2

( 2 )
1.5 ( 2 )

(3 1.5 )
(1.5 3 1.5 ) 0

tt xt x xx x x xx

x xx tt xt x xx

x x xx xx x x x

xx x x x x

w vw vw v w T w Tw
ESw w h vh vh v h

T h Th ESw h w h
ESh w w h h

r
r

+ + + - - -

+ + + + -
- - + -

+ + =

&
&

 

0 < x < l(t), (20) 
 

where w(x, t) represents displacements. Eq. (20) describes the 
transverse vibration of the flexible hoisting system under ex-
trinsic disturbing excitation. The corresponding boundary 
condition is 

 
3

2 2 3

0.5
0.5 (3 3 ) 0

tt x x tt

x x x x x x

mw Tw ESw mh
Th ES w h w h h

+ + + +

+ + + =
, x = l(t). (21) 

 
Setting the function h(x, t) to the first-order polynomial, 
 

0 1( , ) ( ) ( ) ( )h x t a t a t x l t= + . (22) 
 
Then, when x(t) = 0 and x(t) = l(t) 
 

(0, ) ( )h t s t= , ( ( ), ) 0h l t t = . (23) 
 
Substituting Eq. (23) into Eq. (22), the coefficients a0(t) and 

a1(t) can be obtained as: 
 

0( ) ( )a t s t= , 1( ) ( )a t s t= - . (24) 
 
Therefore, 
 

( , ) ( ) ( ) ( )h x t s t s t x l t= - . (25) 

Once h(x, t) is known, the solution for w(x, t) is sought from 
Eq. (20). y(x, t) is obtained subsequently from Eq. (19). Eq. 
(20) is a partial differential equation which describes the dy-
namics of the flexible hoisting string. The equation is defined 
over time-dependent spatial domain rendering the problem 
non-stationary. Hence, the exact solution to this problem is not 
available, and recourse must be made to an approximate 
analysis. In what follows, numerical techniques are employed 
to obtain approximate solution for the governing equation. 

 
3. Discretization of the governing equation 

Eq. (20) is a partial differential equation with infinite di-
mensions and many parameters are time-variant. It is impossi-
ble to obtain an exact analytical solution from Eq. (20). In this 
section, Galerkin’s method is applied to truncate the infinite-
dimensional partial differential equation into a nonlinear fi-
nite-dimensional ordinary differential equation with time-
variant coefficients. Then, Eq. (20) can be solved with nu-
merical methods. To map Eq. (20) onto the fixed domain, a 
new independent variable ζ = x/[l(t)] is introduced and the 
time-variant domain [0, l(t)] for x is converted to a fixed do-
main [0, 1] for ζ. According to the characteristics of a taut 
translating string, the solution of the transverse vibration w(x, 
t) is assumed in the form [12, 13] 

 

1 1( , ) ( ) ( ) ( ) ( )n n
i ii i i iw x t q t x l q tj z j= == =å å  (26) 

 
where qi(t) (i = 1, 2, 3,…, n) are the generalized coordinates 
respect to w(x, t), n is the number of modes included and φi(ζ) 
is the trial function [12, 13], 

 
( ) 2sini ij z pz= . (27) 

 
Consequently, expansion of Eq. (26) results in the expres-

sions for partial derivatives of the transverse displacement 
function: 

 

1
1 n

ix i iw q
l

j= ¢= å , 12
1 n

ixx i iw q
l

j= ¢¢= å  

1 1 12 2
1n n n

i i ixt i i i i i i
v vw q q q

l l l
zj j j= = =- -¢ ¢¢ ¢= å å å& , 

1 1

2 2

1 1 1

2

2[ ] .

n n
i itt i i i i

n n n
i i ii i i i i i

vw q q
l

v vq a q q
l l l

zj j

z zj j j

= =

= = =

¢= - +å å

¢ ¢ ¢¢- +å å å

&& &
 (28) 

 
Substituting Eq. (28) into Eq. (20), multiplying the govern-

ing equation by φj(ζ) (j = 1, 2, 3 ,…, n), integrating it from ζ = 
0 to 1, and using the boundary conditions and the orthonor-
mality relation for φi(ζ) yields the discretized equation of 
transverse vibration for the flexible hoisting system 



 J. Bao et al. / Journal of Mechanical Science and Technology 28 (2) (2014) 457~466 461 
 

  

( )MQ+CQ+ KQ+ P Q = F&& &  (29) 
 
where Q(t) = [q1(t), q2(t), …, qn(t)]T is the vector of general-
ized coordinates, M, C, K and F are matrixes of mass, damp, 
stiffness and generalized force respect to Q, respectively. P(Q) 
is a higher order item of generalized coordinate. The matrices 
are expressed as follows: 

 

ij ijM rd= , 1
0

2 (1 )ij i j
vC d
l

z jj z¢= -ò  

2
1 21

20 0

1 12
2 40 0

(1 ) (1 )

3(1 )
2

ij i j i j

i j i j

a vK d d
l l

g mg ESd s d
l l l

r rz jj z z jj z

r z jj z jj zæ ö
ç ÷
è ø

¢ ¢ ¢= - - - +ò ò

¢ ¢ ¢¢- - +ò ò
 

1 2
1 14 0

1
1 14 0

3 ( )
2

3

n n
i ij i i i i j

n n
i ii i i i j

ESP q q d
l

ES s q q d
l

j j j z

j j j z

= =

= =

¢ ¢¢= - -å åò

¢ ¢å åò
 

2
1

2 0

1
0

2 2 (1 )j j

j

v a vF s s s s d
l l l

g s d
l

r z j z

r j z

æ ö
ç ÷
è ø

= - + + - - -ò

- ò

&& &
 (30) 

 
where the superscript “'” denotes partial differentiation for 
normalized variable ζ, δij is the Kronecker delta defined by δij 
= 1 if i = j and δij = 0 if i ≠ j (i = 1, 2, 3, …, n, j = 1, 2, 3, …, n). 
Solving the ordinary differential Eq. (29) with numerical 
methods may yield the instantaneous values of Q. Substituting 
these values into Eq. (26) may yield the instantaneous values 
of the transverse vibration of the string w(x, t). The mathe-
matical model defined by Eq. (29) illustrates the true dynamic 
nature of the flexible hoisting string, and can be used to pre-
dict and analyze the dynamic characteristics of the flexible 
hoisting string. 

 
4. Natural frequencies of the system 

To obtain the natural frequencies of the flexible hoisting 
rope with time-varying length, the methods suggested by 
Stylianou [21] are used to reduce the system of governing Eq. 
(29) to a set of first-order differential equations. The set of 
reduced equations takes the form 

 
AU + BU = 0&  (31) 
 

where A and B are matrix differential operators, and 
 

M 0
A=

0 K
ì ü
í ý
î þ

, 
C K

B =
-K 0
ì ü
í ý
î þ

. (32) 

 
U is the state vector, and 
 

QU =
Q
ì üï ï
í ý
ï ïî þ

&
. (33) 

 
Eq. (31) is the canonical form of the equation of motion and 

its solution satisfies the appropriate boundary conditions and 
initial conditions. Substituting Eqs. (32) and (33) into Eq. (31) 
yields 

 
U + DU = 0&  (34) 
 

where 
 

-1 -1
-1 M C M KD = A B =

-I 0
ì ü
í ý
î þ

. (35) 

 
Here I is an n×n identity matrix. To obtain the natural fre-

quencies and mode shapes for the flexible hoisting rope with 
time-varying length, consider the eigenvalue problem of Eq. 
(34). Assuming that U is periodic, i.e., 

 
λtU = Λe  (36) 

 
where 

 
λ = ξ +iω  (37) 
 

is the eigenvalue which is a complex number, ξ(t) = [ζ1(t), ζ2(t), 
…, ζ2n(t)]T and ω(t) = [ω1(t), ω2(t), …, ω2n(t)]T are the real and 
imaginary parts of λ(t) = [λ1(t), λ2(t), …, λ2n(t)]T, and ω is also 
the natural frequency of the flexible hoisting rope. The real 
and imaginary parts of the eigenvalue are related to the modal 
damping coefficients and the natural frequencies of the flexi-
ble hoisting rope. Substituting Eq. (36) into Eq. (34) leads to 
an eigenvalue equation 

 
( )λI + D Λ= 0  (38) 
 

where Λ is the corresponding eigenvector. The eigenvalues 
can be obtained from 

 
( )det λI + D = 0 . (39) 

 
5. Simulation and experiment 

5.1 Experiment setup 

To validate the mathematical model, an experimental setup 
of the flexible hoisting system was designed and built as 
shown in Fig. 3. The setup, simulating the hoisting system of 
traction elevator, consists of a traction system, a guide system, 
an excitation system and data acquisition system (PC-
OPTIPLEX755 and Charge Amplifier-B&K2635). A fre-
quency conversion motor DC415 (manufactured by Suntous 
Shanghai Electromechanical Co., Ltd.) is used in the flexible 
hoisting system. The rotation speed of the motor may be con-
trolled by adjusting the output of transducer to obtain the an-
ticipant motion curve of the hoisting system. A thin steel rope 
with a diameter of 3.2 mm was chosen as the hoisting rope. 
The model car and counterweight are made up of many 
weights. The mass of the car and the counterweight can be  
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changed by adding or reducing the number of weight. The 
hoisting rope at the car side in this set-up is the main research 
object, whose dynamic behavior was studied. To simulate the 
extrinsic disturbing excitation in an actual hoisting system, a 
transverse vibration exciter is applied at the top of the objec-
tive rope. The output of the exciter is decided by an adjustable 
signal generator. The exciter is a KDJ-20C. A micro-sensor 
8791A250 (KISTLER) with a mass of 4 g is attached at a 
certain position of the objective rope to acquire the transverse 
vibration acceleration of the rope. The sensitivity of the sensor 
is 20 mV/g. The frequency range of the sensor is 0-300 Hz. 
The signals from the micro-sensor are transmitted to a com-
puter and saved. Fig. 3(a) shows the schematic diagram of the 
experiment setup and Fig. 3(b) shows the actual experimental 
setup. The main parameters of the test are shown in Table 1. 

 
5.2 Experiment procedure 

The transverse vibration of the flexible hoisting rope can be 
calculated with theoretical equation and tested with experi-

mental setup, respectively. All the parameters used in the cal-
culation and the test are the same. A downward or upward car 
movement is prescribed to be the input of the theoretical equa-
tions and experimental set-up. At the beginning, the car starts 
at the top of the flexible hoisting system and goes down. 
When arriving at the bottom, the car pauses for a moment and 
turns back to the starting point. Fig. 4 displays the prescribed 
displacement, velocity, acceleration curves of the flexible 
hoisting system, where the processes of acceleration, decelera-
tion and uniform speed downwards and upwards are included. 

In an actual flexible hoisting system such as in elevators, a 
rotational unbalance of traction motor or the abnormal off-
track of traction rope possibly occurs because of the improper 
installation or the abrasion of correlative components. To re-
produce this phenomenon, a transverse extrinsic disturbing 
excitation s(t) is applied at the top of the rope. The excitation 
signal is expressed as: 

 
4( ) 5 10 sin(18 )s t tp-= ´ . (40) 

 
The extrinsic disturbing excitation disturbs the dynamic be-

havior of the flexible hoisting rope only when the rope is mov-
ing. They are applied to the theoretical equations and experi-
mental set-up. In following calculation, the number of modes 
included in w(x, t) n is set to 4, which has been proved to be a 
proper value with many calculation results and comparisons. 
When n = 4, less calculation time and satisfactory veracity of 
results may be simultaneously obtained. However, the ex-
periment results can validate the mathematical model and the 
computer simulation if the simulated cases agree with the 
experimental conditions. 

 
5.3 Free vibration responses 

If the initial displacement and velocity of the string are given 
by y(x, 0) and yt(x, 0), respectively, where 0 < x < l(t), the ini-
tial conditions for the generalized coordinate can be obtained 
from Eqs. (26) and (28), 

 
(a) 

 

 
(b) 

 
Fig. 3. Experimental setup: (a) schematic diagram of the experimental 
set-up; (b) actual picture of the experimental setup. 

 

Table 1. Parameters of experimental setup of flexible hoisting system. 
 

Items Data values 

Mass per unit length ρ (kg/m) 0.042 

Young’s modulus E (N/m2) 1×1012 

Rope diameter d (m) 3.2×103 

Hoisting mass m (kg) 15 

Excitation s(t) (m) 5×10-4sin(18πt) 
Minimum length of the string lmin(t) (m) 0.8 

Maximum length of the string lmax(t) (m) 4.8 

Maximum velocity vmax (m/s) 0.55 

Maximum acceleration amax (m/s2) 0.4 

Total travel time t (s) 8 

Number of transverse modes n 4 
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1
0 0

(0) ( ,0)i i t
q y l dz j z

=
= ò  (41) 

1 1
10 0

0
(0) ( ,0) n

ii t i i i j
t

vq y l d q d
l

z j z zjj z=
=

¢= + åò ò& . (42) 

 
Solving the ordinary differential Eq. (29) with numerical 

methods and setting s(t) = 0 may yield the instantaneous val-
ues of Q. Substituting these values into Eq. (26) may yield the 
free vibration responses of the string y(x, t). 

The numerical simulations with the exact experiment pa-
rameters are conducted to compare with the experiments, and 
the experimental results compare favorably with the simula-
tions, as seen in Figs. 5 (downward movement) and 6 (upward 
movement). Comparing the results of tests with calculations in 
Figs. 5 and 6, the extent and trend of vibration curves are simi-
lar. Therefore, the theoretical equations, proposed in this paper, 
may be used to evaluate the vibration of the flexible hoisting 
rope. 

Fig. 5 displays reducing vibration amplitudes with increas-
ing length of the rope during downward movement. This is 
due to the energy of the flexible hoisting system transfers from 
the transverse vibration to the axial motion by bringing some 
mass into the domain of effective length, i.e., the axially hoist-
ing rope is dissipative during downward movement, thus lead-
ing to a stabilized transverse dynamic response, as shown in 
Fig. 7(a). A possible physical interpretation of the result is as 
follows: during downward movement negative external work 
is required to maintain the prescribed axial motion which, in 
turn, brings about a convection of mass in the domain of effec-
tive length. At the same time, frequencies of the transverse 
vibration are reduced with increasing length of the rope. This 
is because the mass of the rope increases and the stiffness of 
the rope decreases, i.e., the rope becomes somewhat “softer” 
as shown in Fig. 8(a). 

However, in Fig. 6, vibration amplitudes of the rope in-
crease with decreasing length of the rope during upward 
movement. This is due to the energy of the system transfers 
from the axial motion to the transverse vibration by leaving 
some mass out of the domain of effective length, i.e., the axi-
ally hoisting rope gains energy during upward movement, thus 
leading to an unstabilized transverse dynamic response, as 
shown in Fig. 7(b). A possible physical interpretation of the 
result is that during upward movement positive external work 
is required to maintain the prescribed axial motion which, in   
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Fig. 5. Free vibration responses of the flexible hoisting rope at 0.5 m 
above the car during downward movement: (a) displacement curve; (b) 
acceleration curve (simulation); (c) acceleration curve (experiment). 
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Fig. 6. Free vibration responses of the flexible hoisting rope at 0.5 m 
above the car during upward movement: (a) displacement curve; (b) 
acceleration curve (simulation); (c) acceleration curve (experiment). 
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turn, brings about a convection of mass out of the domain of 
effective length. In the meantime, frequencies of the trans-
verse vibration increase with decreasing length of the rope. 
This is because the mass of the rope decreases and the stiff-
ness of the rope increases, i.e., the rope becomes somewhat 
“stiffer” as shown in Fig. 8(b). 

 
5.4 Forced vibration responses 

During movement, the flexible hoisting system is subjected 
to vibration caused by various sources of excitation, which 

include excitations due to the irregularities of the guiding sys-
tem and rotational unbalance of the traction motor as well as 
environmental phenomena such as air current. The system 
parameters are changing due to the time-varying length of the 
rope. The rate of variation of the length is, however, slow, and 
the vibrations represent waves in a slowly varying domain. 
Hence, the hoisting rope is essentially a nonstationary vibra-
tion system with slowly varying frequencies. Therefore, a 
passage through resonance may occur when one of the slowly 
varying frequencies coincides with the frequency of the 
extrinsic disturbing excitation at some critical time instant. 

Forced vibration responses for the hoisting rope with 
extrinsic disturbing excitation are illustrated in Figs. 9 (down-
ward movement) and 10 (upward movement). From Figs. 9 
and 10, it can be seen that transient resonance occurs during 
movement of the hoisting system. The amplitudes exhibit 
oscillatory behavior before the resonance, and near the reso-
nance the amplitudes increase rapidly and decline afterwards 
due to damping, developing damped beat phenomena. This is 
because one of the time-varying frequencies of the hoisting 
rope coincides with the frequency (9Hz) of the extrinsic 
disturbing excitation during the movement of the hoisting 
system. Coordinate values [5.3, 9] and [2.7, 9] represent the 
point of transient resonance in Fig. 8. Note that the adverse 
dynamic response in the hoisting system promotes large 
oscillations in rope tension. The phenomenon cannot be ig-
nored, as the high amplitude in the tension contributes directly 
to rope fatigue. Fatigue often results in the hoisting ropes be-
ing discarded after lower working cycles. Therefore, suitable 
strategy can be sought to minimize the effects of adverse 
dynamic response of the system. 
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Fig. 9. Forced vibration responses of the flexible hoisting rope at 0.5 m 
above the car during downward movement: (a) displacement curve; (b) 
acceleration curve (simulation); (c) acceleration curve (experiment). 
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6. Conclusions 

The nonlinear dynamic characteristics for a flexible hoist 
rope with time-varying length considering coupling of axial 
movement and flexural deformation are analyzed in this paper. 
The flexible hoisting system is modeled as an axially moving 
string with time-varying length and a rigid body at its lower 
end. The governing equations are derived by using Leibniz’s 
rule and Hamilton’s principle. The Galerkin method is used to 
truncate the infinite-dimensional partial differential equations 
into a set of nonlinear finite-dimensional ordinary differential 
equations with time-variant coefficients. To validate the theo-
retical model, an experimental setup of a flexible hoisting 
system was built and experiments were performed. By com-
paring the experimental results with the numerical simulation, 
a good agreement between the simulation and experiment is 
obtained, thus validating the mathematical model of the flexi-
ble hoisting system. Based on the simulations and experiments, 
the following conclusions can be obtained: 

(1) A flexible hoisting rope with time-varying length ex-
periences instability during upward movement, the natural 
frequencies increase because of the reduction of mass and the 
increase of stiffness of the rope, and the energy is transformed 
from the axial movement into the flexible deformation. By 
contrast, it is stable during downward movement, the natural 
frequencies decrease because of the increase of mass and the 
reduction of stiffness of the rope, and the energy is converted 
from flexible deformation into axial movement. 

(2) The flexible hoisting rope is a nonstationary oscillatory 
system with slowly varying frequencies. Transient resonance 
may occur when one of the time-varying frequencies of the 
hoisting rope coincides with the frequency of the extrinsic 
disturbing excitation. 

(3) The proposed theoretical model and analyses on the dy-
namic characteristics of the flexible hoisting system in this 
paper will be helpful for researchers to comprehend the dy-
namic behavior and to develop the proper method to suppress 
vibration in practice. 
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