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Abstract 
 
Tool wear prediction plays an important role in guaranteeing the workpiece quality and improving the production efficiency. However, 

because of the uncertainty and complexity of tool wear process, it is hard to ensure that the samples related to all tool wear values can be 
collected during the training stage. Therefore, the accuracy of tool wear prediction for these uncovered data will deteriorate severely. In 
this paper, partial least square regression is presented to realize the tool wear prediction based on force signal. The main characteristic of 
this method is that the regression analysis is in the principal component space so that the multicollinearity between explanatory variables 
can be avoided effectively. Side milling experiment was carried out to validate the effectiveness of the proposed model. The analysis and 
comparison under different number of uncovered data show that the partial least square regression based tool wear prediction is more 
accurate.  
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1. Introduction 

During the machining process, the cutting tool will gradu-
ally wear out and become blunt due to the friction, collision, 
thermal fracture and chemical reaction. The blunt tool will 
inevitably affect the surface quality of the workpiece. There-
fore, it is essential to develop a monitoring system based on 
sensory signal to predict the tool wear status so as to avoid 
undesirable consequences. Indirect monitoring method which 
correlates the sensory signal with the tool wear process is pre-
ferred because the information can be obtained more easily 
and economically in comparison with the direct method [1]. 

Currently, there are two main methods to realize the predic-
tion of the tool wear. One commonly used is articial neural 
networks based method. Ghosh et al. used the back propaga-
tion (BP) neural network to realize the estimation of the aver-
age ank wear of the main cutting edge by using cutting force, 
vibration and spindle current signal [2]. Using the features 
extracted from average milling force as input, Dong et al. real-
ized the estimation of tool wear by the combination of the 
Bayesian inference and neural network [3]. Srinivasa et al. 
realized the estimation of the ank wear in face milling by 
using the xed randomly hidden layer with batch fuzzy C-
means algorithm [4]. They claimed that the proposed model 

can be used to realize more accurate tool wear estimation. Čuš 
et al. utilized a multilayer perceptron neural network to detect 
the tool wear [5]. It can be proved that BP neural network is 
capable of predicting tool wear with high accuracy [5]. Kuo 
developed a tool wear estimation system through the integra-
tion of radial basis function (RBF) neural network with fuzzy 
neural network [6]. Ozel et al. realized the flank wear predic-
tion of the cutting tools under various conditions by utilizing 
back propagation neural network model [7]. The main advan-
tage of the neural network method is that there is no need to 
build the analytic model to describe the complex internal 
mechanism of the tool wear because the information of the 
tool wear status can be memorized by the weight value of the 
neural network. However, this characteristic also results in 
that the prediction accuracy depends on the training samples 
greatly. If the new input data is not covered by the training 
samples, which is called “uncovered data”, the prediction 
accuracy will deteriorate greatly. Another approach which has 
been adopted by some researchers is the statistics based 
method. This method is realized by firstly supposing a statisti-
cal model and then calculating the model coefficients based on 
the training samples. Chen [8] and Zeng [9] adopted the mul-
tiple linear regression (MLR) model to predict the tool wear 
based on features extracted from sensory signals and the re-
sults showed that this method can get acceptable prognostic 
results. Bhattacharyya et al. proposed a new method by inte-
grating simple time domain features from the cutting force 
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signal and MLR model [10]. Kaya et al. also built a MLR 
model in which the cutting force and torque were used as the 
explanatory variables and maximum ank wear as response 
variable [11]. The experimental analysis showed that the MLR 
model can reflect the relationship between the tool wear status 
and sensory signal accurately. 

In comparison with neural network based method, the MLR 
analysis above can get stronger generalization ability because 
it exerts an analytic model on the training data in advance. 
However, it is hard to get rid of the collinearity between these 
variables because the variation of the selected feature vari-
ables is commonly influenced by the tool wear. Therefore, if 
this model is used for the uncovered data, the variance of the 
response variables will increase and the tool wear prediction 
accuracy will deteriorate obviously [12, 13]. 

In this paper, a partial least square regression (PLSR) model 
is presented. The main characteristic of this method is that the 
regression coefficients are calculated within the principal 
component space so that the collinearity phenomenon between 
the explanatory variables can be eliminated. Therefore, the 
generalization ability can be enhanced and the prediction ac-
curacy can be improved greatly even some data are missing in 
the case of real industrial application. In order to validate the 
effectiveness of the presented method, the side milling ex-
periment of Titanium alloy was carried out and six features 
extracted from the cutting force were utilized as explanatory 
variables to realize tool wear prediction. To verify the effec-
tiveness of the PLSR model for the uncovered data, the pre-
diction is carried out under different number of the missing 
data. At the same time, BP, RBF neural network and MLR are 
adopted simultaneously to make comparison. The analysis and 
comparison show that the PLSR method can get higher pre-
diction accuracy with the increase of uncovered data. 

This paper is organized as follows: in section 2, the princi-
ple of the PLSR is introduced and a performance criterion is 
presented to analyze and compare the prediction accuracy. In 
Section 3, the experiment setup is described in details and six 
features are extracted from the force signals of different direc-
tions to depict the relationship between the sensory informa-
tion and the tool wear value. In section 4, the comparison of 
the PLSR with BP, RBF and MLR under different number of 
the uncovered data is realized and the results show that the 
PLSR outperforms the other methods obviously with the in-
crease of the uncovered data. Some useful conclusions are 
presented in section 5. 

 
2. Principle of PLSR modeling and model validation  

2.1 Principle of PLSR based prediction  

PLSR is a multivariate calibration technique which is 
proposed to find the relationship between a set of explanatory 
variables X(m×N) (m is the dimension of the input data and N 
is the sample number ) and a set of response variable Y(1×N). 
The main difference between PLSR and MLR is that the 
PLSR model is built in the principal component space so that 

it can give stable predictions even when X contains highly 
correlated variables. The PLSR model is obtained by a pre-
specified maximum number of iterations [14] and the 
procedure can be described in the following four steps for the 
hth iteration.  

(1) The input matrix Eh(m×N) is decomposed into score 
vector th and a loading vector ph 

 
0

h h h hE t p E= +  (1) 
 

where the superscript h represents the transpose and 
0
hE (m×N) denotes the matrix of the residual data. The output 

matrix Fh(1×N) is decomposed in a similar manner 
 

0( ) .h h h T hF u q F= +  (2) 
 
In Eq. (2), uh and qh are the score vector and the loading 

vector for the hth iteration, 0
hF (1×N) is the residual matrix. 

Where th and uh are (m×k) matrices of the k extracted score 
vectors; ph and qh are (N×k) matrices that represent matrices 
of loadings (k denotes the number of extracted score vectors). 
Eh and Fh are the standardized input and output matrices 
whose initial values are calculated from X and Y, respectively. 
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,X Y are the mean value of X and Y, respectively. SX and SY 

correspond to their variance. 
(2) A linear relationship is established between the Eh score 

vector th and Fh score vector uh: 
 

h h h hu b t d= +  (5) 
 

where bh is the (k×k) regression diagnose coefficients, dh is the 
regression residual. 

(3) A new model of Fh is built on Th, Qh, and Bh to obtain (Fh)* 
 

*( ) ( )h h h T h hF T Q B F= +  (6) 
 

where Th = [t1,...,th], Qh = [q1,...,qh], and Bh = [b1,...,bh] are the 
regression coefficients. 

(4) Eh and Fh in Eqs. (1) and (2) are replaced by 0
hE  (Eq. 

(1)) and (Fh)* (Eq. (6)) respectively and another iteration starts 
from the first step. 

After all iterations are completed, the regression coefficient 
vector B in the principle component space is obtained and 
coefficients in the original data are calculated correspondingly 
by linear transformation. 
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where, iW is the eigenvector calculated from score matrices 
Ph and Qh. The prediction equation based on input variable 
(x1,x2,…xm) is given as. 
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2.2 Evaluation criteria of the prediction accuracy 

The performance of the PLSR model can be evaluated 
using the root mean square error of prediction (RMSEP). The 
RMSEP represents the error associated with the model and 
can be computed by [15] 
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where, '

iy and iy  represent the model computed and 
measured values of the variable, and N represents the number 
of observations. As a measure of the goodness of t, it can 
best describe an average measure of the error in predicting the 
response variable. 

 
3. Experiment setup and feature extraction  

To validate the necessity and effectiveness of the proposed 
method, a series of milling experiments were conducted in a 
Makino vertical machining center. The schematic diagram of 
the experiment setup is illustrated in Fig. 1. The workpiece 
was Titanium alloy Ti-6Al-4V which was clamped on a three-
axis piezoelectric dynamometer (Kistler, type 9257A) and a 
Mitsubishi cutter with VP15TF coating was used for side-
milling operation. The geometric parameters and type of the 
cutter is listed in Table 1. Cutting speed (vc), axial depth of cut 
(ap) and radial depth of cut (ae) and feed per tooth (fz) were 
kept constant at 40 m/min, 0.4 mm, 6 mm and 0.1 mm/tooth 
respectively. The length of each cutting pass was 150 mm. 
The main wear [16] appeared around the flank face (as shown 
in Fig. 2) and maximal length of this zone was measured after 
every cutting pass by an optical microscope. The cutting force 
signal was initially pre-amplified by a multi-channel charge 
amplifier (Kistler 5070), and then directly collected by a data 
acquisition card with the sampling frequency of 10 kHz. The 
experiment was performed until the value of the flank wear 
(VB) exceeded 0.3 mm. Because when the wear value 
exceeds 0.3 mm, the cutting tool usually has to be replaced 
[17]. The tool wear values under thirty-eight cutting passes 
were measured during the milling process and given in Fig. 2. 
To show the proceeding progress of the tool wear morphology, 
the pictures corresponding to some cutting passes (painted in 
blue dot) are also selected and demonstrated. 

To demonstrate the force variation trend with the change of 
the tool wear status, the force signals along the direction of 
transverse feed x and longitudinal feed y under different tool 

wear values are illustrated in Figs. 3 and 4. The peak value Pk 
is also listed simutaneously. It can be seen that the peak value 
of the dynamic force signal in both directions increase with 
the growth of VB value. To depict the relationship between 
cutting force and tool wear value effectively and completely, 
root mean square (RMS) and standard deviation [5, 18] are 
also extracted from the cutting force in both x and y direction 
and combined with the peak value feature to construct the 
explanatory variables. The mathematical expressions of these 
indicators are listed in Table 2. For each tool wear state, the 
cutting force signal is first divided into two datasets. One is 
used for training and another is for test. Each dataset includes 
20 segments with the length of 2000 and six time domain 
based features are extracted correspondingly. The mean values 
of these features are finally used as the explanatory variables 
to characterize the current wear status. 

Table 1. Geometric parameters and type of the cutter. 
 
Tool nose 

radius 
Cutter 

diameter 
Clearance 

angle 
Inclination 

angle Insert type Tool holder 
type 

0.8 mm 12 mm 11º 90º 
APMT1135 
PDER-H2 
VP15TF 

DEREK 
300RC 

 
 

 
 
Fig. 1. Schematic diagram of the experiment setup. 

 
 

 
 
Fig. 2. Tool wear curve and morphology (vc = 40 m/min, ap = 0.4 mm, 
ae = 6 mm and fz = 0.1 mm/tooth). 
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4. Tool wear prediction based on the PLSR  

4.1 Simply description of BP, RBF and MLR model  

Based on the features extracted above, PLSR is utilized for 
tool wear prediction in this section. At the same time, MLR, 
BP [7] and RBF [4] network are adopted simutaneously to 
compare the prediction accuracy with PLSR. MLR is a 
statistical model in which the relationship between the input 

features and the tool wear value is described by a linear 
equation. The estimation of regression coefficients can be 
obtained by least square fitting method. BP and RBF neural 
network are feedforward models which usually comprise three 
layers: input layer, hidden layer and output layer [4, 7]. The 
input layer takes feature vectors as the input and the output 
layer calculates the tool wear value accordingly. In this paper, 
the structure of the BP network is selected 6-10-1. The 
mapping function between the input layer and hidden layer is 
Sigmoid type and the linear transfer function is adopted in the 
output layer to predict the tool wear value. The Levenberg-
Marquardt algorithm is used to realize the training of the 
network [19]. For RBF neural network, Gaussian function is 
used to realize nonlinear mapping in the hidden layer and the 
linear transfer function is used to map the output of the hidden 
layer into the tool wear value. To enhance the flexibility of the 
network, the hidden neuron of RBF network is added 
automatically during the training process. Therefore, the final 
number of the hidden layer depends on the training samples. 

 
4.2 Comparison of PLSR with other methods  

To show the influence of the uncovered data on the 
prediction accuracy, the data corresponding to some tool wear 
values are missed deliberately in the training dataset. In this 
paper, the number of the training data is selected as two to 
thirty-eight respectively. Based on each training data, the 
prediction model can be built using these four methods 
correspondingly. Then, thirty-eight test data are inputted into 
each model to predict the tool wear value. The prediction 
curves of these four methods under different number of 
uncovered data can be drawn out and compared with the 
measured value. Some of the results are demonstrated in Fig. 
5. It can be seen that the missing of the training data results in 
severe deterioration of the prediction accuracy. Moreover, the 
error becomes larger with the increase of the missing data. 
Among these models, RBF gets the worst results and PLSR 
can achieve the best results. Because different position of the 
uncovered data usually results in different prediction results, it 
is hard to get a robust conclusion only by observing the 
prediction curve intuitively. Therefore, the RMSEP for each 
kind of position under different number of uncovered data are 
calculated and utilized as an index to reflect the prediction 
accuracy. The variation of RMSEP under different number of 
the uncovered data are illustrated in Fig. 6. It can be seen that 
the prediction error of RBF is the largest among these models 
for any number of the uncovered data. When the number of 
the uncovered data is small, the prediction accuracy of MLR, 
BP and PLSR is the same more or less. However, the 
prediction errors of BP and MLR tend to be larger than PLSR 
with the increase of the uncovered data, which testify that the 
PLSR model has stronger stability. By combining with Fig. 5, 
it can be concluded that PLSR outperforms the other methods 
if the uncovered data appears during the monitoring process. 

 

Table 2. Mathematical expression of the extracted time domain indica-
tors. 
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Fig. 3. Waveform of the cutting force under different tool wear value 
in x direction: (a) VB = 0 mm, Pk = 151 N; (b) VB = 0.09 mm, Pk = 
217 N; (c) VB = 0.16 mm, Pk = 269 N; (d) VB = 0.31 mm, Pk = 317 N. 

 

 
 
Fig. 4. Waveform of the cutting force under different tool wear value 
in y direction: (a) VB = 0 mm, Pk = 195 N; (b) VB = 0.09 mm, Pk = 
215 N; (c) VB = 0.16 mm, Pk = 255 N; (d) VB = 0.31 mm, Pk = 376 N. 
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5. Conclusions 

In this paper, the PLSR model is presented to realize the 
accurate tool wear prediction. The main characteristic is that 
the multicollinearity between the explanatory variables can be 
avoided because the regression coefficients are not calculated 
in the original variable space but the principal component 
space. Therefore, the prediction accuracy for the uncovered 
data can be improved greatly. The analysis of the tool wear 
prediction for the milling process shows that, with the increase 
of the number of the uncovered data, the PLSR model can 
achieve more accurate results in comparison with the neural 
network and MLR based models. This method casts a new 
light on the prediction of the tool wear in real industrial 
environment. However, it should be noted that the current 

model can only be used to predict the tool wear value for the 
predefined cutting parameters. If the cutting parameters are 
changed, the prediction model should be rebuilt according to 
the new collected data correspondingly. In the future work, the 
factorial design of the experiments should be carried out to 
reflect the tool wear variation under different levels of the 
cutting parameters. 
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Nomenclature------------------------------------------------------------------------ 

X (m×N)    : Input variables, m is the dimension of the 
input data and N is the sample number 

Y(1×N)      : Response variable 
h    : The hth iteration 
Eh (m×N)  : Input matrix 
Fh (1×N)     : Output matrix 
th ,uh       : Score vector 
ph ,qh       : Loading vector 

0
hE , 0

hF       : Residual matrix 
,X Y         : Mean value 

SX , SY       : Variance 
bh           : Regression diagnose coffecient 
dh           : Regression residual 
Th, Qh, Bh     : Regression coefficients 
Ph ,Qh        : Score matrices 

 
                       (a)                                   (b)                                  (c) 
 

 
                       (d)                                   (e)                                  (f) 
 
Fig. 5. Prediction curve of different models under different number of uncovered data: (a) 35 uncovered data; (b) 30 uncovered data; (c) 23 uncov-
ered data; (d) 16 uncovered data; (e) 8 uncovered data; (f) 0 uncovered data. 

 
 

 
 
Fig. 6. Comparison of prediction error under different number of un-
covered data. 
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iW           : Eigenvector 
a           : Regression coefficients 
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