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Abstract 
 
An artificial-neural-network (ANN) model was developed to estimate the crystalline size of ZnO nanopowder as a function on the 

milling parameters such as milling times and balls to powder ratio. This nanopowder was synthesized by high energy mechanical milling 
and the required data for training were collected from the experimental results. The synthesized ZnO nanoparticles are characterized by 
X-ray diffraction (XRD) and scanning electron microcopy (SEM). It was found that artificial neural network was very effective provid-
ing a perfect agreement between the outcomes of ANN modeling and experimental results with an error by far better than multiple linear 
regressions. An optimization model and this experimental validation of the ball milling process for producing the nanopowder ZnO are 
carried out.  

 
Keywords: Mechanical milling; Nanoparticles; Neural network; Optimization; Simulation     
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

In general, nanocrystalline semiconductors with dimension 
less than 100 nm represent a relatively new class of materials. 
Their short-range structures are essentially the same as bulk 
semiconductors but their optical and electronic properties are 
dramatically different. In particular, they have been inten-
sively studied because of the nano-effects, and quantum-like 
effects which can change several properties such as, photo 
catalysis, nonlinear optical properties and photoconductivity. 
It interesting also to notice that there are some recent re-
searches show that ZnO nanomaterials has an applied aspects 
such as in solar energy conversion, photocatalysis, light-
emitting materials [1], transparent UV protection films and 
chemical sensors [2], etc. Various techniques have been used 
to synthesize ZnO nanoparticles and can be categorized into 
either chemical or physical methods [3]. For example, hydro-
thermal [4], solvothermal [5], sol-gel [6], direct chemical syn-
thesis [7] and ball milling [8], bubble electrospinning [22], etc. 
Among these synthetic routes, mechanical milling has proved 
to be an effective and simple technique to produce nanocrys-
talline powders and the possibility of obtaining large quanti-
ties of materials. However, properties of nanopowders ob-
tained by milling method are affected by various parameters 

such as milling time, ball to powder mass ratio, rotation speed, 
balls diameters, etc. Several groups were interested by ball 
milling process modeling, mainly based on the mechanistic 
[9-13] and thermodynamic [14-16] approaches to achieve a 
general understanding at the atomic and phenomenological 
level. Recently, artificial neural network (ANN) becomes one 
of the most powerful modelling techniques in conjunction 
with the statistical approach. It is suitable for simulations of 
the correlations which are hard to be described by physical 
models [17]. The advantages of ANN modeling are reduction 
of time and cost in all the required experimental activities. 
Nguyen et al. [20] used artificial neural network for the pre-
diction of deformations of steel plate. Ramakrishnan et al. [21] 
used similar approach for the optimization of operating pa-
rameters and performance evaluation of forced draft cooling 
tower. ANN can be used for the prediction of the mechanical 
milling outputs. However, there only limited work on the ap-
plication of neural networks in the field of mechanical milling 
[18, 19]. Dashtbayazi et al. [18] have developed an artificial-
neural-network model for modeling of mechanical alloying 
(MA) process. Their research mainly discussed the effects of 
ball milling parameters on the characteristics of the as-milled 
metallic powders. Some property predictions of the powders 
can be achieved through the model. Ma et al. [19] have stud-
ied the artificial-neural-network modeling of the mechanical 
alloying (MA) process. They used an artificial neural network 
model for modeling the effects of mechanical alloying pa-
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rameters including milling time, milling speed and ball to 
powder weight ratio on the characteristics of WC-18at.%MgO 
nanocomposite powders. Their model can be used for the 
prediction of properties of composite WC-MgO powders at 
various milling parameters.  

The aim of this work is to develop a neural network model 
to the prediction and optimization of the ball milling process 
for synthesizing ZnO nanocrystalline. The process parameters, 
including milling times and ball-to-powder weight ratio are 
applied to the neural network inputs to provide information 
relating to particles size. The network is then trained to output 
the prediction on the powders particles size. An optimization 
model is then developed to find the best parameters producing 
the minimal average grain size. 

 
2. Experimental  

2.1 Samples preparation  

Commercially obtained ZnO powders with average particle 
size of about 1 μm and 99.9% of purity, were introduced into a 
stainless steel vials with stainless steel balls (12 mm and 6 mm 
in diameter) in a SPEX 8000 mixer mill. The milling time and 
mass ratio of ball to powder were varied in the range of 1-5 h 
and 10-20, respectively. 

 
2.2 Structural characterisation 

X-ray powder diffraction (XRD) measurements were per-
formed using Shimadzu diffractometer (θ-2θ) equipped with 
Cu-Kα radiation (λ = 1.5418 Å). It is known that X-ray dif-
fraction line broadening is influenced by the particles size and 
the internal strains.  

The crystalline size was calculated from the Schererrer for-
mula:  

 

q
l

cosB
KD = . (1) 

 
In this case, the width peak B (in radians) was determined 

as full width at half-maximum (FWHM) by Gaussian fitting.  
Particles morphology was investigated using Nova 200 

NanoLab field emission scanning electron microscope (FE-
SEM). 

 
3. Neural networks modeling procedure 

Artificial neural networks provide a mapping of inputs to 
outputs and consist of computer programs based on the struc-
ture of brain. As such, they can be trained to recognize pat-
terns within data. In the human brain, a neuron is a nerve cell 
which processes incoming information and outputs a signal to 
the relevant part of the body accordingly. Some inputs are 
stronger than the others, i.e. they are ‘weighted’. The total 
effect of the inputs is the sum of the weighted signals, and, if 
this exceeds the neuron threshold, a response is produced. By 

comparison, in an artificial neural network, a number of inputs 
are applied simultaneously, via weighted links, and the node 
calculates a combined total input. The relation between the 
input and output is specified by a transfer or activation func-
tion, which describes the threshold for deciding on the state of 
the output of that particular node. A number of nodes may be 
combined to form a layer, and layers may be interconnected to 
form a complete network. The procedure of designing the 
neural network architecture is described in detail as follows. 

 
4. Results and discussion 

Fig. 1 summarized the different steps used in this study. A 
series of samples were prepared by using different milling 
parameters and the X-ray diffraction were used to determine 
the crystalline size. The process parameters, including milling 
times and ball-to-powder weight ratio are applied to the neural 
network inputs to provide information relating to particles size. 
The network is then trained to output the prediction on the 
powders particles size. An optimization model is then devel-
oped to find the best parameters producing the minimal aver-
age grain size and the last steps were the experimental valida-
tion. 

Fig. 2 represents the evolution of XRD patterns of ZnO 
powder for the samples prepared under different milling con-
dition. The pattern of un-milled ZnO powder shows a series of 
strong and narrow peaks characteristic for high quality ZnO 
crystals. With increasing the milling time, the diffraction 
peaks became broader and their relative intensity decreases. 
This effect is typical behavior of materials after milling and 
attributed usually to the presence of particles with small size 
and internal strain induced by mechanical deformation. In 
addition, all Bragg peaks of the XRD patterns showed only 
the ZnO reflections, indicating that there is no phase transfor-
mation during the milling have occurred. Table 1 summarized 
the particle size values calculated by Scherrer formula for all 

 
 
Fig. 1. Flowchart of the different steps. 
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samples.  
Fig. 3 shows the evolution of crystalline size with milling 

time and the mass ratio of ball to powder obtained by Scherrer 
formula. For increasing milling time and for different mass 
ratio of ball to powder, the crystalline size decreases.  

SEM micrographs of the samples before and after milling 
are shown in Fig. 4. It is clear that un-milled powder shows an 
inhomogeneities regarding particle size distribution (Fig. 4(a)). 
After one hour milling and for different mass ratio of balls to 
powder, a reduction of the particle size can be observed with 
relatively better homogeneity (Figs. 4(b) and 4(c)). It is clear 
that large particles are in fact agglomerates of much smaller 
particles.  

An artificial neural network simulator has been developed 
to find out the relationship between the experience's inputs 
(the mass ratio of ball to powder and the milling time) and the 
experience's output (the average particles size). A multi-layer 
perceptron with backpropagation training has been imple-
mented on MATLAB. The network is composed of 3 layers. 
There are 6 nodes in the input layer corresponding respec-

tively to Ratio (R), Time (T), R*R, T*T, R*T, and the con-
stant coefficient, which is set equals to one. There is only one 
node in the output layer corresponding to the particles size (S). 
There is one hidden layer composed of 6 nodes. The tanh is 
used as activation function for the hidden layer. Fig. 5 illus-
trate this network's architecture. 

This artificial neural network was trained using the retro-
propagation algorithm that minimizes the mean squared error 

Table 1. Experimental Particle size obtained by Scherer formula. 
 
Balls to powder ratio: R Times milling (h): T Particles size (nm): PS 

1 104 

3 98 10 

5 95 

1 95 

3 69 15 

5 66 

1 103 

3 93 20 

5 89 
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Fig. 2. X-ray diffraction patterns of ZnO prepared by milling under 
different condition. 

 

 
 
Fig. 3. Particles size as function milling time and mass ratio of ball to 
powder. 
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Fig. 4. SEM micrographs of ZnO powder: (a) as -received; (b) one 
hour milling and ratio = 10, (c) one hour milling and ratio = 15. 
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Fig. 5. The artificial neural network. 
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over a training set of 8 experiences as given in Table 2. 
This training algorithm was efficient. In few seconds, the 

Mean squared error has reached almost zero. The steady state 
is given by two matrixes. The first 2-dimension matrix, repre-
senting the input weights that connect the input layer to the 
hidden layer. The second 1-dimension matrix, representing the 
hidden weights that connect the hidden layer to the output 
node. 

The particle size is then given by the following formula: 
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where wi and wh are respectively the input and hidden 
wheights. The inputs xi are R, T, R*R, T*T, R*T, and 1. The 
obtained value is the multiplied by the standard deviation and 
added to the mean, as input data were normalized in order to 
speed up the training algorithm.  

In order to assess the validity of the networks and their ac-
curacy, it is often useful to perform regression analysis be-
tween the network response and the corresponding target. 

In fact, using MINITAB software, we find the following 
multiple regression coefficients: 

 

RTTRTR 1.023.128.5.104.24281.5regPS -++--=
 

 
The mean absolute deviation and the mean absolute percent 

error obtained with this regression are respectively 5.65 and 
6.64%. Our artificial neural network was very effective pro-
viding a perfect link between the inputs and the outputs, with 
an error by far better than multiple linear regressions. 

Table 2 provides a comparison between the performances 
of Regression and the multi-layer network described above. 
Fig. 6 shows that there is a consistence agreement between the 
outcomes of ANN modeling and experimental results as well 
as the current knowledge of mechanical milling process exists. 

This agreement between the outcomes of ANN and experi-
ments was obtained by Dashtbayazi et al. [18] and J. Maa et al. 
[19] but in our model the relative errors was better. The differ-
ence in the errors between ours models can be explained by 
the numbers of output parameters. In our model we were only 
interested by the crystallite size parameters. For their models 
the output was strain and crystallite size.   

After constructing the ANN model and evaluating its accu-
racy and modeling error by regression analysis and total error 
estimation of the ANN network, one can use this network for 
prediction and optimization of the planetary mechanical mill-
ing process for synthesizing of ZnO nanopowders. A LINGO 
model is then developed to find the optimal ratio and milling 
time. The global optimal solution is found after a total of 2293 
solver iterations. The minimal size is 61. The optimal values 
are 15.82832 for the ratio and 8.5 for the milling time. Further 
milling experiment is implemented using the above analysis 
results. 

Table 2. Comparison between neural network and linear regression. 
  
Experimental particles 

size (nm) Network estimations Regression estimation 

104 103.9996094 110.161 

98 98.00000517 97.409 

95 95.00006589 95.321 

95 95.00006589 91.536 

69 68.99986047 77.534 

66 65.99964682 74.196 

103 102.9999497 114.561 

93 93.00006064 99.309 

89 88.99999527 94.721 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 6. Comparison between the performances of linear regression and 
artificial neural network: (a) balls to powder ratio: R = 10; (b) balls to 
powder ratio: R = 15; (c) balls to powder ratio: R = 20. 
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5. Experimental validation 

According to the optimization model a time milling of 8.5 
hours and balls to powder ratio of 15.8 are the best milling 
parameters that can produce a minimum crystalline size. A 
new milling experiment is implanted using these milling pa-
rameters. X-ray diffraction pattern is shown in Fig. 7. By us-
ing Scherrer formula, the crystalline size is about 63 nm. This 
value is close to that predicted by the optimization mode (61 
nm). 

 
6. Conclusions 

An artificial-neural-network was developed to estimate the 
average crystalline size as a function on the milling parame-
ters. The input parameters of the neural network are milling 
time and ball-to-powder weight ratio. It was found that the 
results from the neural network prediction perform a good 
coherence with the experimental data. The viability of the 
model is confirmed by the network prediction errors analysis. 
An optimization model and this experimental validation of the 
ball milling process for producing the nanopowder ZnO are 
carried out. 
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Nomenclature------------------------------------------------------------------------ 

XRD  : X-ray diffraction    
SEM  : Scanning electron microscopy 
ANN   : Artificial neural networks 
PS : Particles size 
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