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Abstract 
 
In this study, optimal balancing of a planar articulated mechanism is investigated to minimize the shaking force and moment fluctua-

tions. Balancing of a four-bar mechanism is formulated as an optimization problem. On the other hand, an objective function based on 
the sub-components of shaking force and moment is constituted, and design variables consisting of kinematic and dynamic parameters 
are defined. Genetic algorithm is used to solve the optimization problem under the appropriate constraints. By using commercial simula-
tion software, optimized values of design variables are also tested to evaluate the effectiveness of the proposed optimization process. This 
work provides a practical method for reducing the shaking force and moment fluctuations. The results show that both the structure of 
objective function and particularly the selection of weighting factors have a crucial role to obtain the optimum values of design parame-
ters. By adjusting the value of weighting factor according to the relative sensitivity of the related term, there is a certain decrease at the 
shaking force and moment fluctuations. Moreover, these arrangements also decrease the initiative of mechanism designer on choosing 
the values of weighting factors.   
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1. Introduction 

Balancing of the mechanism is an old problem both reduc-
ing the amplitude of vibration on the frame and obtaining 
nearly constant drive speed. Since any vibration leads to noise, 
wear, fatigue, etc., in the mechanism, its reduction improves 
several aspects of mechanical design as well. Over the last two 
decades, the balancing problem has been faced with new chal-
lenges, namely, the balancing of shaking force, shaking mo-
ment, and input-torque fluctuations together. Once the balanc-
ing problem is formulated as a mathematical optimization 
problem, it is possible to solve it by using any existing optimi-
zation tool (global and local methods such as genetic algo-
rithms, constrained or unconstrained minimizations etc.). Since 
the dynamic performance characteristics such as shaking force, 
shaking moment, input-torque, etc., depend on the mass and 
inertia of each moving link, and its mass center location, it is 
required to optimally distribute the link masses for dynamic 
balancing. Minimization both shaking force and shaking mo-
ment fluctuations is important for improving the mechanism’s 
fatigue life by reducing vibration, noise and wear. 

Many machine designers have paid an attention to solve the 
balancing problems by using either classical methods or opti-
mal approaches. Assuming that both linear and rotary inertia, 

Feng [1] presented a method for the complete shaking force 
and moment balancing of eight-bar linkages having only revo-
lute joints. In study of Ye and Smith [2], a logical extension to 
the concept of mass flow was developed in which the effects 
of inertia moment as well as inertia force of a link were mod-
eled by equivalent simple links. Li [3] presented sensitivity 
formulation of the shaking force and moment for planar ar-
ticulating mechanisms. The sensitivity analysis and a robust 
balancing method, which was sensitive to the processing er-
rors in manufacture, were presented. Objective function was 
composed of shaking force and shaking moment, and the val-
ues of weighting factor were selected as equal to each other. 
For reducing the shaking force and moment of mechanical 
presses, Chiou et al. [4] proposed optimum designs by adding 
disk counterweights. Two-phase optimization technique was 
presented for the multi-objective optimization. Arakelian and 
Smith [5] proposed a new solution, considering a pantograph 
with the crank and coupler, to the problem of complete shak-
ing force and shaking moment balancing of linkages. By using 
counterweights, complete force balancing of planar linkages 
was presented by Tepper and Lowen [6]. Esat and Bahai [7] 
also showed if a linkage can be fully force balanced using the 
criterion of Tepper and Lowen, then it can be fully force and 
moment balanced using geared counter-inertias. Feng et al. [8] 
analyzed the joint forces of planar linkage with joint clearance 
and presented a new optimization method, which was based 
on optimizing mass distribution of links to decrease the   
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change of joint forces. A critical review of complete shaking 
moment balancing was implemented in the study of Kochev 
[9]. 

Guo et al. [10] proposed a new mixed mass redistribution 
method to investigate the optimum dynamic design. By using 
genetic algorithms, optimum dynamic characteristics were 
obtained more efficiently than the traditional nonlinear opti-
mization techniques. Arakelian et al. [11, 12] presented a solu-
tion of the shaking force and shaking moment balancing of 
planar and spatial linkages. Arakelian [13] also formulated the 
conditions of shaking moment balancing by using the copying 
properties of the pantograph linkage and the method of dy-
namic substitution of distributed masses by concentrated point 
masses. Alici and Shirinzadeh [14] presented optimum dy-
namic balancing of planar 2-DOF parallel manipulators. By 
using an objective function based on the sensitivity analysis of 
shaking moment with respect to the position, velocity and 
acceleration of the links, the dynamic balancing was formu-
lated as an optimization problem. Chaudhary and Saha [15] 
proposed a method based on the maximum recursiveness of 
the dynamic equations to evaluate the bearing forces. Balanc-
ing problem of four-bar linkages was considered as an optimi-
zation problem, and mass distribution of linkage was embed-
ded in the constraints to obtain the new linkage. Also, they 
[16] presented a general mathematical formulation of optimi-
zation problem for balancing of planar mechanisms to im-
prove the dynamic performances. Erkaya and Uzmay [17] 
investigated dynamic behavior of a four-bar mechanism with 
joint clearances. They used an objective function based on 
shaking force and shaking moment. Also, they proposed a 
neural-genetic (NN-GA) approach to minimize the additional 
effects of joint clearances on shaking force and moment under 
related constraints. By using a novel and simplified approach, 
Ilia and Sinatra [18] studied the derivation of design equations 
and techniques for the dynamic balancing of a five-bar linkage. 
Balancing of the mechanism was formulated and solved as an 
optimization problem under equality constraints. Park et al. 
[19] studied for minimizing the moments excited in a four-
stroke seven-cylinder vehicle engine and reducing the forces 
transmitted to the engine mounts. A computer program was 
developed to predict the excitation forces and moments. 

Former balancing studies, which particularly consider this 
problem as an optimization problem, have usually chosen the 
values of weighting factors equal to each other. This arrange-
ment obviously affects the results of optimization. Further-
more, the initiative of the mechanism designer has a crucial 
role on choosing the values of weighting factors and defining 
the structure of objective function. The focus of this study is to 
present a simple approach to constitute the structure of objec-
tive function for decreasing the shaking force and shaking 
moment fluctuations. On the other hand, a simple method is 
also proposed to reduce the initiative of the mechanism de-
signer on choosing the values of weighting factors. An objec-
tive function based on the sub-components of shaking force 
and shaking moment is constituted. Genetic algorithm is used 

for solving the optimization problem. Three case studies are 
implemented to show the effectiveness of the proposed ap-
proach. This paper is organized as follows; section 2 outlines 
the kinematics and dynamics of model mechanism. Optimiza-
tion process is given in section 3. Results and conclusions are 
summarized in sections 4 and 5, respectively. 

 

2. Analysis of the model mechanism 

A four-bar mechanism, which is frequently used in the for-
mer balancing problems, is considered as an example to inves-
tigate the effects of shaking force and shaking moment exerted 
in the frame (Fig. 1).  

Kinematic analysis of the model mechanism comprises de-
termining of displacements, velocities and accelerations of 
moving links. Mass center positions of the moving links rela-
tive to the crank pivot (Ao) are given in the following form, 
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where Li denote the lengths of corresponding links. xGi and yGi 
are the displacements at the x and y directions for mass center 
of ith moving link, respectively. θ3 and θ4 define the angular 
positions of coupler and follower links relative to x direction, 
respectively (see appendix). Mass center velocities and accel-
erations can also be defined as the time-derivatives of Eqs. 
(1)-(3). 

Dynamic analysis of the model mechanism provides to de-
fine the joint forces and torque as a function of input link’s 
position. Dynamic force analysis was carried out considering 
the inertial effects of the links for determining the joint forces 
and torque. Force analysis for the model mechanism is given 
in Eq. (4). 

 
Fig. 1. Force representation of four-bar mechanism. 
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 (4) 
 
Position vectors from the gravity center of link i to joint j 

are read from the Fig. 1 as: 
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where β2, β3 and β4 define the acute angles for G2AA0, G3BA 
and G4BB0, respectively (see appendix). According to theorem, 
the shaking force is considered as the reaction of the vector 
sum of all the inertia forces of moving links associated with 
the mechanism, and the shaking moment is also the reaction 
of the resultant of the inertia moment and the moment of the 
inertia forces. The design algorithm used in this study aims at 
minimizing the shaking force and shaking moment. Therefore, 
this force components and the relevant moment relative to the 
crank pivot can be defined as: 
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where 

41
F  and 

21
F  denote the forces at the joints of fol-

lower-frame and crank-frame, respectively. 

 

3. Optimization process  

In the optimization process, genetic algorithm (GA) ap-
proach was used to solve the optimization problem and it was 
performed on optimization toolbox of MATLAB [20]. Ge-
netic algorithm, or any evolutionary method, differs from 
classical optimization methods in that there is a non-zero 
probability of attaining the global optimum [21]. Many gradi-
ent-based methods, which are very efficient local optimization 
methods for parameter optimization, are available. However, 
these conventional algorithms need the gradient information 
of the objective function with respect to the design variables 
and cannot get out of local optimum points when they fall into 
a false peak (local optimum point). Also, they may miss a 

global optimum solution because they are dependent on the 
starting point of searching and converge on the optimum solu-
tion that is nearest to the starting point, and cannot find all the 
global optimum solutions [22]. Genetic algorithms, on the 
other hand, are simple to implement and involve evaluations 
of only the objective function and the use of certain genetic 
operators such as selection, crossover, mutation and reproduc-
tion to explore the design space [23]. Moreover, a population 
of optimum points is obtained that will allow the designer to 
select a design that satisfies all subjective constraints as well. 
These characteristics make this approach well suited for find-
ing the optimal solutions. GA operations in a typical optimiza-
tion procedure are outlined in Fig. 2. In this study, stochastic 
uniform was applied as selection function for choosing the 
next generation, and the crossover probability was adjusted as 
0,8. The solving of optimization problem using genetic algo-
rithm was performed on a PIV processor with a CPU speed of 
3.2 MHz and 1024 Mb Ram. 

In order to balance a mechanism completely, it is necessary 
to eliminate both the shaking force and the shaking moment.  

 
 
Fig. 2. Flow chart of design study and genetic algorithm. 
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However, complete balancing of any one may result in an 
increased unbalance in the other one. The shaking force can be 
eliminated completely by attaching counterweights to the 
moving links of mechanism. But, this increases overall mass 
and inertia of the mechanism. Also, this leads to increasing in 
shaking moment, required driving torque, and reactions at the 
joints. An alternative way to reduce the shaking force and 
shaking moment together with other dynamic quantities such 
as driving torque, bearing reactions, etc., is to optimize all the 
dynamic quantities. Hence, for improving the overall per-
formance of mechanism, the balancing problem should be 
treated as an optimization problem [24].  

In this study, objective function in the optimization process 
was constituted as given in Eq. (9) by considering the shaking 
force and shaking moment [3, 15-17]. This function comprises 
each sub-component of shaking force and shaking moment: 
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where Wh are weighting factors, s is the number of the consid-
ered points during the one cycle of crank link. gk are the con-
straints arising from the condition satisfies the crank-rocker 
motion. The objective function minimizes the related shaking 
force and shaking moment provided that the generated solu-
tion satisfies a set of constraints. These constraints are neces-
sary to have a functional mechanism, although they increase 
solution complexity. X is a vector comprising the sixteen in-
dependent design variables (xr). These variables are given as: 
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where Li denote the link lengths as L1, L2, L3 and L4. λi consist 
of structural angles of moving links as λ2, λ3 and λ4. mi and IGi 
are the masses and inertial moments of moving links, respec-
tively, that is, m2, m3, m4, IG2, IG3 and IG4. r21, r32 and r44 are the 
position vectors of crank, coupler and follower links, respec-
tively. xmin and xmax are lower and upper bounds of design vari-
ables. These bounds have to be arranged by considering the 
working space of the mechanism. For the verification of the 
proposed approach, lower bounds of link lengths were ar-
ranged as Li-0.1*Li. Similarly, upper bounds of link lengths 
were arranged as Li+0.1*Li. Also, lower and upper bounds for 
λi were considered 0-360 degrees, respectively. Lower and 
upper bounds for mi, IGi, r21, r32 and r44 were arranged by con-

sidering the link geometries. Depth, thickness and length of 
each moving link were used for these definitions. The weight-
ing factor’s value has an important effect on the optimum 
adjusting of design variables. Since the selecting criterion is 
not obvious, it is always difficult to make the decision on 
choosing the values of weighting factors [4, 25]. In general, 
initiative of mechanism designer has a crucial role upon the 
definition of these values. Each weighting factor must satisfy 
the condition: 
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In this study, by using the total value of the shaking force at 

the main support, the relative importance of each sub-
component inside the shaking force was calculated. These 
calculated values were considered as weighting factors. In the 
proposed optimization process, the values of the weighting 
factors were adjusted as 0.40, 0.24, 0.16, 0.1 and 0.1 for W1, 
W2, W3, W4 and W5, respectively. 

 
4. Results 

In the present study, a theoretical model was used to inves-
tigate the effects of shaking force and moment. The operation 
speed of the mechanism was constant and it was adjusted as 
300 rpm. Assuming that an objective function based on the 
sub-components of shaking force and shaking moment, ge-
netic algorithm was used to solve the optimization problem. 
Design variables which consisted of kinematic and dynamic 
parameters of the mechanism were also defined. Three case 
studies were implemented. Proposed structure of objective 
function and values of weighting factors, which were defined 
in Section 3, were considered in the first case. By using the 
different values of weighting factors, second and third cases 
were also performed. Dimensions and inertial parameters of 
the original (unbalanced) and optimized (balanced) mecha-
nisms for three case studies are given in Table 1. 

By using the optimized values of each case study, dynamic 
analysis of the mechanism was performed to obtain the force 
and moment results. The convergence history for Case I is 
given in Fig. 3. The algorithm shows good convergence. After 
111 generations, the best individual fitness stays as 5711.4096 
and the average fitness occurs as 5711.6292. 

Fig. 4 gives the crank-frame and follower-frame joint forces, 
which are also the sub-component of shaking force. After the 
optimization, there is a certain decrease at the force values. X 
and y components of the crank-frame joint force decrease by 
95.52% and 77.18%, respectively. The decreasing ratios for 
the maximum values are observed as 97.51% and 95.97% for 
x and y components of the crank-frame joint force, respec-
tively. In the case of minimum values, the decreasing ratios 
occur as 96.23% and 71.56% for x and y components of that 
force, respectively. 

For the case of follower-frame joint, the force components  
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for x and y directions decrease by 84.69% and 74.95%, re-
spectively. Maximum values for x and y components of the 
follower-frame joint force are reduced as 93.45% and 89.81%, 
respectively. The decreasing ratios for the minimum values 
are also obtained as 79.07% and 80.96% for x and y compo-
nents of that force, respectively. 

As a natural result of the optimization, shaking force and 
shaking moment at the optimized mechanism are more close 
to zero than that of the original mechanism. As shown in Figs. 
5(a) and (b), shaking force decreases by 90.96% and 77.54% 
for x and y directions, respectively. During the one period of 
the crank link, the maximum values of this force components 

decrease 91.11% and 97.78% for x and y directions, respec-
tively. In the case of minimum values, the decreasing ratios 
occur as 85.36% and 76.25% for x and y directions, respec-
tively. As seen from Fig. 5(c), shaking moment decreases by 
76.21% as well. This ratio is better than that of Ref. [3]. The 
decreasing ratios for the maximum and minimum values occur 
as 90.32% and 81.91%, respectively. 

After the optimum adjusting of design variables, driving 
torque decreases by 73.46%. Decreasing ratios for the maxi-
mum and minimum values are read from Fig. 5(d) as 76.76%  

Table 1. Original and optimized parameters of four-bar mechanism (Case I: W1=0.40, W2=0.24, W3=0.16, W4=0.1, W5=0.1, Case II: W1=0.45, 
W2=0.27, W3=0.18, W4=0.1, W5=0, Case III: W1=0.2, W2=0.2, W3=0.2, W4=0.2, W5=0.2). 
 

Optimized values 
Parameter Description 

Original 
value  Case I Case II Case III 

L1 (mm) Length of fixed link 600 570 570 570.2 

L2 (mm) Length of crank link 100 95 95 95 

r21 (mm) Position vector of crank link 50 66.7 66.7 72.54 

m2 (kg) Mass of crank link 0.360 2.027 3.470 1.755 

IG2 (kgm
2) Inertial moment of crank link 4.13 10-4 42.30 10-4 98.2810-4 48.93 10-4 

λ2 (Radian) Structural angle of crank link 0 3.0332 3.065 3.032 

L3 (mm) Length of coupler link 400 420 420 420 

r32 (mm) Position vector of coupler link 200 77.5 88.73 87.98 

m3 (kg) Mass of coupler link 1.296 1.264 2.06 1.23 

IG3 (kgm
2) Inertial moment of coupler link 1.87 10-2 4.87 10-2 9.96 10-2 4.43 10-2 

λ3 (Radian) Structural angle of coupler link 0 0.1275 0.417 0.1619 

L4 (mm) Length of follower link 320 329.8 313.9 330 

r44 (mm) Position vector of follower link 160 100.4 128 97 

m4 (kg) Mass of follower link 1.046 0.866 1.425 1.22 

IG4 (kgm
2) Inertial moment of follower link 9.85 10-3 14.30 10-3 16 10-3 15 10-3 

λ4 (Radian) Structural angle of follower link 0 0.0002 0.0013 0.0023 
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Fig. 3. Convergence history of GA evolution for Case I. 

  
Fig. 4. Original and optimized values of joint forces for Case I; (a) and 
(b) Crank-frame joint, (c) and (d) Follower-frame joint. 
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and 82.48%, respectively. The commercial simulation soft-
ware is also used to model the mechanism and to test the op-
timized values of design variables [26]. Simulation results for 
original and optimized values of forces and moments are 
given in appendix. Force and moment results of Case II and 
III are also given in Figs. 6 and 7. 

By using the different values of weighting factors, decreas-
ing ratios at the total values of forces and moments are out-
lined in Table 2 to evaluate the results of three case studies. 

Case I shows the decreasing ratios for the proposed struc-
ture of the objective function and the values of weighting fac-
tors in section 3. Contrary to Case I, objective function of 
Case II is constituted by using only sub-components of shak-
ing force, that is, shaking moment is eliminated due to the 

values of the fifth weighting factor (W5=0). The evaluations of 
Case II with respect to Case I show that the objective function 
should comprise both shaking force and shaking moment 
while their dimensions do not match. When the values of 
weighting factors are selected equals to each other as in Case 
III [3, 14], the decreasing ratios are smaller than that of Case I. 
So, the weighting factor’s value has to be defined by consider-
ing the relative sensitivity of the related term. 

In addition to three case studies, if the objective function 
only consists of Fshx, Fshy and Msh, that is, not comprising their 
sub-components, the obtained decreasing ratios are worse than 
that of the proposed Case I. So, this proves that the proposed 
structure of the objective function is very effective for the 
optimum balancing. 

 

5. Conclusions 

The focus of this study is to minimize the shaking force and 
moment fluctuations at the planar mechanism. This phenome-
non is considered as an optimization problem. In addition to  

Table 2. Decreasing ratios for three case studies. 
 

 Decreasing ratio (%) 

 Case I Case II Case III 

F21x 95.52 88.04 93.50 

F21y 77.18 31.66 59.10 

F41x 84.69 51.48 78.28 

F41y 74.95 21.59 56.58 

Fshx 90.96 69.35 86.30 

Fshy 77.54 37.61 61.54 

Msh 76.21 25.51 58.73 

M21 73.46 57.65 70.49 

 
 

 
 
Fig. 7. Original and optimized values for Case II and III: (a) and (b) 
Shaking force components; (c) Shaking moment; (d) Driving torque. 

 

 
Fig. 5. Original and optimized values for Case I; (a) and (b) Shaking 
force components, (c) Shaking moment, (d) Driving torque. 

 

 
Fig. 6. Original and optimized values of joint forces for Case II and III; 
(a) and (b) Crank-frame joint, (c) and (d) Follower-frame joint. 
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the similar studies in literature, the sub-components of shaking 
force and shaking moment are considered together to consti-
tute the objective function. Also, relative importance of the 
force component inside the total shaking force is evaluated to 
define the value of related weighting factor. Therefore, it is 
possible to reduce the negative reflection on the optimization 
process arising from mechanism designer’s initiative. 

Three case studies indicate that both the structure of the ob-
jective function and the value of the weighting factor have a 
crucial role to minimize the shaking force and moment fluc-
tuations. Objective function should comprise both shaking 
force and shaking moment while their dimensions do not 
match. Although the objective functions have the same struc-
ture, definition of the weighting factors’ values is very impor-
tant for the optimization process. By using the shaking force 
and moment in objective function, and evaluating the values 
of weighting factors according to their relative importance of 
the related forces, Case I gives the better results for solving the 
present optimization problem than that of the other cases. The 
obtained results show that the proposed structure of the objec-
tive function and the values of weighting factors are very ef-
fective to decrease the force and moment fluctuations, and 
power consumption for driving torque. Due to the flexibility 
of the proposed approach, mechanism designer can individu-
ally decrease each sub-component of force, and this approach 
can also be applied to other planar and spatial mechanisms. 
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Appendix 

Angular positions of coupler and follower links in Eqs. (2-
3) are defined as: 
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1 2
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where A, B and C are given as: 
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β2, β3 and β4 angles in Eq. (5) are given as: 
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Simulation results of force and moment characteristics for 

Case I are given in Figs. A1 and A2. 
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Fig. A1. Simulation results for Case I; (a) and (b) Crank-frame joint 
force, (c) and (d) Follower-frame joint force. 

 

 
Fig. A2. Simulation results for Case I: (a) and (b) Shaking force com-
ponents; (c) Shaking moment; (d) Driving torque. 


