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Abstract 
 
In many engineering problems, sampling is often used to estimate and quantify the probability distribution of uncertain parameters dur-

ing the course of Bayesian framework, which is to draw proper samples that follow the probabilistic feature of the parameters. Among 

numerous approaches, Markov Chain Monte Carlo (MCMC) has gained the most popularity due to its efficiency and wide applicability. 

The MCMC, however, does not work well in the case of increased parameters and/or high correlations due to the difficulty of finding 

proper proposal distribution. In this paper, a method employing marginal probability density function (PDF) as a proposal distribution is 

proposed to overcome these problems. Several engineering problems which are formulated by Bayesian approach are addressed to dem-

onstrate the effectiveness of proposed method.   
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1. Introduction 

Parameter estimation is often an essential step in many en-

gineering problems such as in the structural analysis at the 

design stage or in the health management of the existing struc-

tures. At the design stage, material parameters of constitutive 

model, which significantly affect the validity of the numerical 

simulation, need to be correctly estimated based on the data by 

direct or indirect measurements. In the health prognosis for the 

existing structures, degradation parameters of underlying 

physical model in the deteriorating structures are to be esti-

mated using the monitored data over times to predict remain-

ing useful life (RUL). In the recent times, Bayesian approach 

has been widely used as a suitable means to quantify the un-

certainty of the parameters existent in the estimation process 

[1, 2]. The Bayesian approach can be summarized as follows: 

Construct posterior distribution of the unknown parameters 

based on the observed data which represents our degree of 

belief. Draw samples that follow the distribution of the pa-

rameters. Obtain the posterior predictive distribution of the 

responses in concern at the unobserved points or at the future 

time using the drawn samples of the parameters.  

In general, the posterior distribution is given by complex or 

implicit expression in terms of parameters, of which the sam-

ple drawing is cumbersome, and prohibiting the use of stan-

dard techniques of probability functions. Several methods 

have been developed in this direction. In the simplest practice, 

inverse cumulative distribution function (CDF) method is 

employed to draw samples after computing PDF values at a 

grid of points over an effective range [3]. This method, how-

ever, has drawbacks such as the difficulty in identifying the 

range, scaling of the grid points and costly computation when 

the number of parameters increases. The rejection sampling 

method is to repeat samples's 'acceptance' and 'rejection' by 

using an arbitrary proposal distribution multiplied by a weight 

factor [4]. This method cannot produce proper results if the 

proposal distribution is not wide enough or the weight is too 

small or too high. More numerous approaches are found in the 

literatures such as sampling importance resampling (SIR) 

method [5] and weighted likelihood bootstrap (WLB) method 

[6]. However, these methods have found only a limited suc-

cess, and not useful for the practical application.  

Recently, Markov Chain Monte Carlo (MCMC) method has 

been recognized as a computationally effective means in this 

area, which is based on a Markov chain model of random 

walk with the stationary distribution being the target distribu-

tion [7]. Metropolis-Hastings is the most common form within 

the variants of the MCMC algorithm. The examples of 

MCMC approaches are found in diverse fields of engineering, 

which ranges from the risk assessment [1], model validation 
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[8] and parameter estimation [9]. Within the approach, how-

ever, proper choice of proposal distribution still remains un-

clear and the success and failure are significantly affected by 

this distribution. This was also evidenced by the authors in our 

recent engineering studies. The algorithm failed due to the 

difficulty in the design of the proposal density particularly in 

the cases of increased parameters and high correlations. There 

have been many attempts to overcome this problem in the 

statistical literature [10], but the successful results in practice 

are found rare in the context of engineering application. In this 

study, an improved robust method is proposed that marginal 

PDF of each parameter from the joint posterior distribution is 

employed as a proposal distribution. Since the numerical inte-

gration to construct the marginal PDF is computationally ex-

pensive, latin hypercube sampling (LHS) is applied to obtain 

the PDF in discrete manner [11]. Several engineering prob-

lems that estimates uncertain parameters based on Bayesian 

framework are addressed to demonstrate the effectiveness of 

proposed method.  

 

2. Conventional MCMC sampling method 

MCMC is a strategy for generating samples using a Markov 

chain mechanism. Markov chain is a sequence of realizations 

of a random variable, and the probability of drawing a new 

value only depends on the realization of the one immediate 

before it. The Metropolis-Hastings (M-H) algorithm is a typi-

cal method of MCMC. In the case of a single parameter, the 

procedure is given in terms of the pseudo-code:  
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where 
( )0
x  is the initial value of an unknown parameter to 

estimate, nm  is the number of iterations or samples, U  is a 

uniform distribution, ( )p x  is the posterior distribution (tar-

get PDF), and 
( )( )* |
i

q x x  is an arbitrary chosen proposal 

distribution which is used when a new sample *x  is to be 

drawn conditional on the current point 
( )i
x . Common practice 

of the proposal distribution is to employ symmetric function, 

i.e., 
( )( ) ( )( )* *| |
i i

q x x q x x= . Uniform or Gaussian distribution 

at the current point with finite length or scale are the most 

common choices among others. As mentioned before, success 

and failure of MH algorithm relies heavily on a proper design 

of the proposal distribution. In order to illustrate this, a target 

distribution of x , which was addressed by Andrieu et al. [7], 

is revisited as follows.  

 

( ) ( ) ( )( )220.3exp 0.2 0.7exp 0.2 10 .p x x x∝ − + − −       (2) 

 

As candidates of proposal distribution, normal distributions 

with three different standard deviation, σ = 1, σ = 10 and 

σ = 100, are employed respectively. The shapes of each dis-

tribution are compared in Fig. 1 with the mean located at 5. 

The MCMC sampling results of each three proposal distribu-

tions with nm = 5000 are shown in Fig. 2. If the standard 
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Fig. 1. Target PDF given by Eq. (2) and the proposal PDFs. 
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(a) When σ =1 in the proposal PDF 
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(b) When σ =10 in the proposal PDF 
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(c) When σ =100 in the proposal PDF 
 

Fig. 2. MCMC sampling results of the target PDF given by Eq. (2). 
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deviation is too small, the proposal distribution does not cover 

the target PDF well enough. Then the samples are drawn in 

local region, and the result becomes Fig. 2(a). If the standard 

deviation is too large, another bad result is obtained like Fig. 

2(c) because the rejection rate can be very high. By using 

proper proposal distribution in between, acceptable result is 

obtained. This example has illustrated the importance of pro-

posal distribution in the case of single parameter. However, as 

the number of parameters increase along with the existence of 

correlation with each other, it is much harder to find out 

proper scale of proposal distribution that ensures convergent 

sampling sequence. In fact, the authors have found difficulties 

with this, and were often unable to obtain adequate samples in 

our engineering problems.  

It is well recognized that assessing convergence of MCMC 

is a difficult task. Unless the exact solution is available, in this 

study, the convergence is examined by running MCMC mul-

tiple times, from which the trace of Markov chain, histograms 

and the statistical quantities such as mean and confidence 

bounds are obtained, and check whether the same result is 

obtained. 

 

3. Improved MCMC sampling method 

An improved robust MCMC sampling method for multi-

dimensional parameters that ensures adequate sampling is 

proposed in this study, which is to employ a marginal PDF as 

a proposal distribution. Let us denote the parameters by 

{ }1 2, , , npx x x…  with the number of parameters being np . 

The marginal PDF of an arbitrary parameter 
ix  is defined by 

the integral of the target joint PDF with respect to all the other 

parameters except itself, which is given by 
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(3) 
 

Conventional way to compute this is to assume an effective 

range for each parameter, divide the range by an equal interval 

with the number nl , and calculate joint PDF at the entire 

points. Then, at an arbitrary point k

i
x , the PDF is given by the 

following expression. 
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In this approach, the total number of PDF calculations is npnl  

which becomes computationally expensive as the number of 

parameters increase. In this paper, a simpler approach, which 

employs latin hypercube sampling (LHS), is proposed to ac-

commodate efficiency. As an illustration, consider a joint PDF 

consisting of two parameters 
1x  and 

2x  which is repre-

sented by contours in Fig. 3(a). Divide both ranges by nl = 8 

to obtain 8× 8 = 64 cells, and generate points by the LHS so 

that only one sample is present at each row and column of the 

square. The points are indicated by the star marks. Let us 

compute, for example, the marginal PDF at 
1x = 0.5 as in the 

figure. Conventionally the value can be obtained by summing 

the PDF values at all the points along the vertical line. In LHS 

method, the value is summed at the points that have moved 

from the LHS points with the same 
2x . The movement is 

depicted in the figure as arrows. In this 2-D case, which is 

trivial, both conventional and LHS method are identical albeit 

explained differently. If the parameters are increased, however, 

this does not hold as is explained in the case of three parame-

ters. The LHS points are generated in Fig. 3(b) with the num-

ber of intervals nl = 8. In order to obtain the marginal PDF 

value at an arbitrary 
1x  as is illustrated in Fig. 3(c), conven-

tional method is to sum all the PDF values at 8× 8 = 64 points 

at the 
2 3x x−  plane given by the translucent grey. In the 

proposed method, however, only 8 points that have moved 

from the original LHS points with the same ( )2 3,x x  are used 

for the sake of efficiency. Based on this, the marginal PDF of 

a parameter 
ix  by the LHS method is given by the following 

expression. 
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(a) Case of 2 parameters and marginal PDF by LHS method 
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Fig. 3. Illustration of marginal PDF calculation. 
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At an arbitrary k

i
x , we need nl  number of computations, 

which should be repeated over 1,...,k nl= . Then we need 
2nl  computations for a single parameter 

ix , and 2nl np×  

numbers for the whole parameters, whereas the number is 
npnl  in the conventional method. Comparing these two, the 

LHS method requires much less computation.  

Although demonstrated using a small number nl = 8, the 

number in practice is often as large as more than ten thousands. 

For np , on the other hand, a few numbers less than 10 are 

normally considered. In most computing environments, the 

efficiency can be facilitated by computing all the nl  number 

of PDFs at an arbitrary k

i
x  in a single step. Furthermore in 

practical implementation, the marginal PDF is not computed 

at every , 1,...,k

i
x k nl= , which is still too costly. Instead of 

nl , the range of each parameter is divided by much less num-

ber 
mnl  as small as several tens, while all the nl  number of 

PDFs are obtained in a single step as noted above. After all, 

the total number of computations is reduced to 1 mnl np× × , 

which is much more tractable in view of computational effi-

ciency.  

The marginal PDF constructed by the LHS method is then 

employed as a proposal density in order to implement efficient 

and robust MCMC process. As an illustration, consider fol-

lowing target PDF consisting of two parameters [12]. 
 

( ) ( )
4

5

1 2

1

, 1
nn

BB

n n

n

p x x T T
−

=

∝ −∏                         (6) 

 

where  
 

( )
( )

[ ] [ ]

1 2

1 2

exp
,

1 exp

0.86, 0.3, 0.05,0.73 , 0,1,3,5 .

n

n

n

x x A
T

x x A

A B

+
=

+ +

= − − − =

  

 

The contours of this PDF is given in Fig. 3(a). The steps of the 

improved MCMC are explained using this example as follows. 

 

Step 1: Generate points by the LHS method 

Assuming the number of intervals nl = 8, the generated 8 

points are indicated as star marks in Fig. 3(a). 

 

Step 2: Construct marginal PDF and generate samples 

As was noted earlier, in the two parameters example, there 

is no difference in constructing the marginal PDF by the LHS 

and conventional method. Marginal PDFs are obtained over 

each grid of the parameters using Eq. (5). The resulting PDF 

shapes for the two parameters 
1x  and 

2x  are given in Fig. 4. 

Once the PDFs are available, samples that follow the marginal 

PDF can be drawn easily using the inverse CDF method. For 

more practical illustration, the marginal PDFs are constructed 

one more time with the number of interval nl = 100 as shown 

in Fig. 5(a). Due to the large number of intervals, the shapes of 

the marginal PDFs agree more closely to their exact solutions. 

Samples can be drawn from each marginal PDF respectively. 

5000 numbers of ( )1 2,x x  samples are generated, and the 

points are superposed with the exact joint PDF in Fig. 5(b). As 

expected, the result disagrees with the exact PDF because the 

samples are just obtained from each marginal PDF independ-

ently.  

 

Step 3: Implement the improved MCMC using the sam-

ples of marginal PDF 

As mentioned before, the samples of the marginal PDF are 

used as the proposal distribution of the MCMC method, that is, 

a new sample *x  is arbitrarily taken from the samples gener-

ated in the step 2. Since the samples distribution follow the 

marginal PDF as was noticed in Fig. 5(a), the proposal distri-

butions cover the target PDF well enough and much better 

accept/reject ratio can be expected than any other proposal 

distributions.  

In the improved MCMC, two important points should be 

remarked. In the conventional MCMC, if the new drawn sam-

ple *x  does not satisfy the MH criteria given in Eq. (1), the 
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Fig. 4. Marginal PDF illustration in case of nl = 8. 
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Fig. 5. Marginal PDF in case of nl = 100 and samples from the mar-
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sample is not updated, i.e., the new sample at 1i + 'th step is 

kept at the previous i 'th value. In the improved MCMC, 

however, if the new sample *x  is not accepted, the 1i + 'th 

sample is not assigned and the sampling is repeated until 

1i + 'th sample satisfies the MH criteria. Therefore, the com-

puting time to get the nm  number MCMC samples takes 

longer than the conventional method. The second point is that 

the uniform distribution, [ ]0,1
U  in Eq. (1) is replaced by [ ]0,c

U  

where c  is a constant less than 1. By the authors' experience, 

it was found that as c  gets smaller, the overall time was de-

creased dramatically, while the obtained samples distribution 

did not change much. For example, comparing the CPU times 

with c  being 0.2 and 1, the former is found 10 times faster 

than the latter. In fact, if c  becomes less than 1, the accep-

tance rate increases because new sample *x  having more 

than c  times PDF value comparing to 
( )( )i

p x  always ac-

cepted whereas if c  is unity the acceptant result depends on 

the randomness, which results in the increased efficiency. The 

reason for this efficiency may be attributed to the fact that the 

marginal PDF that is closer to the target PDF is employed for 

the proposal distribution. The improved MCMC is summa-

rized in Eq. (7). Compare this with the conventional MCMC 

in Eq. (1). 
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where ( )q x  is the marginal PDF of x . The final sampling 

results obtained by this method are shown in Fig. 6, which are 

very close to the exact joint PDF. 

 

4. Verification of the improved MCMC sampling 

method 

In this section, the efficiency of the improved MCMC is il-

lustrated by means of several engineering problems that are 

recently studied by the authors. As our focus is on the discus-

sion of sampling performance in view of engineering applica-

tion, only a brief outline is given to describe each problem. 

The results by the proposed method are compared with the 

conventional MCMC. The process is implemented with the 

number of LHS nl = 10000 and the number of MCMC itera-

tions nm = 5000 in all the problems. In the conventional 

MCMC, the uniform distribution with finite length is em-

ployed for the proposal density. 

 

4.1 Three parameters example: spring problem 

Although the finite element analysis (FEA) is a convenient 

means to examine the fatigue life of structural parts, it often 

fails to adequately predict the life due to the inherent uncer-

tainty of the fatigue parameters. By the way, in almost every 

company, life tests are conducted at the end of the develop-

ment process for the purpose of quality assurance (QA). Thus, 

the data are accumulated spontaneously. Motivated by this, a 

Bayesian procedure to inversely estimate the fatigue-life pa-

rameters which utilizes this test data, is developed. The poste-

rior distributions of the parameters are determined conditional 

on the life data routinely obtained from the QA tests. As more 

data are accumulated, the degree of uncertainty on the pa-

rameters may be further reduced. In this context, a high cycle 

fatigue problem of a vehicle suspension coil spring is consid-

ered [13]. Using the stress-life relation and Goodman formula, 

the life is predicted by 
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1/

/ 1 /
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a m ut
S S S
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where ,a b  are the stress-life coefficients, 
utS  are the ulti-

mate tensile strength, and 
mS  and 

aS  are the mean and 

alternating stresses occurring in the spring during the life test, 

respectively. For the purpose of illustration, the parameter b  

is assumed as constant at -0.0725 . Then the unknowns are 

a  and 
utS . Suppose we have total of 9 life test data for the 

three different springs with the same material as listed in Ta-

ble 1, which are normalized for convenience. Then the poste-

rior distribution of the unknown parameters is given as fol-

lows:  

Table 1. Tested life data and predicted B1·B10 life of the springs. 
 

 Test data Predicted life 

 
Actual 

life 1 

Actual 

life 2 

Actual 

life 3 
B1 B10 Method 

0.3087 0.4368 Conv. MCMC Spring 

type 1 
1.1438 0.8836 0.4213 

0.2500 0.3674 Imp. MCMC 

7.0116 9.2448 Conv. MCMC Spring 

type 2 
14.1138 9.9230 5.3832 

5.1564 7.2268 Imp. MCMC 

0.0631 0.0920 Conv. MCMC Spring 

type 3 
0.2879 0.1089 0.0954 

0.0543 0.0793 Imp. MCMC 
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Fig. 6. Sampling result of improved MCMC. 
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where E

k
y  and A

k
y  denote the real life obtained by the test 

and the predicted life by the FEA respectively. Note that the 

measurement error σ  is added to the unknown parameters. 

The sampling results of the posterior distribution of the un-

known parameters are obtained using the conventional and the 

improved MCMC. PDF shapes of each parameter and their 

correlations are given in Figs. 7 and 8, respectively. Percen-

tiles and the confidence interval (C.I.) of the parameters are 

also listed in Table 2. The posterior predictive distributions of 

the fatigue life using the obtained samples are given in Fig. 9. 

Comparing the two results, the PDF shapes are found to agree 

closely. The correlation feature between a  and 
utS  is also 

apparent with the same form as shown in Fig. 8. B1 and B10 

life are listed in Table 1, in which the two are in modest 

agreement. It is however remarked that the result by conven-

tional MCMC has been obtained after more than dozens of 

trial and error with respect to the length of proposal density 

which is uniform distribution in order to achieve convergence. 

This has taken more than hours. On the other hand, the im-

proved MCMC produces the same result in just 50 seconds at 

a single attempt. Moreover, as will be demonstrated in the 

following problems, the success of conventional MCMC is 

found only in this problem which is three parameters, and it 

fails when more than this number. On the other hand, the im-

proved MCMC provides convergent result stably in just a few 

attempts regardless of the number of parameters.  

 

4.2 Four parameters example: crack growth problem 

This example is to estimate damage growth parameters in 

Paris model based on the measured crack size over a number 

of cycles, which was addressed by Coppe et al. [14]. Due to 

many uncertainties, the parameters are often widely distrib-

Table 2. Percentile of posterior PDF of three parameters in the spring 

problem. 
 

Percentile 
Parame-

ters 
Method 5th 

prctile 
median 

95th 

prctile 
90% C.I. 

Conv. MCMC 3.1080 3.2527 3.3703 0.2622 
a 

Imp. MCMC 3.1297 3.2454 3.3267 0.1970 

Conv. MCMC 2.9855 3.0150 3.0698 0.0843 
Sut 

Imp. MCMC 2.9951 3.0166 3.0598 0.0647 

Conv. MCMC 0.1569 0.2267 0.3821 0.2252 
σ 

Imp. MCMC 0.1873 0.2811 0.4544 0.2672 
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Fig. 7. Posterior PDFs of three parameters in the spring problem. 
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(b) Improved MCMC 
 

Fig. 8. Correlations of three parameters in the spring problem. 
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(a) Conventional MCMC 
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(b) Improved MCMC 
 

Fig. 9. Posterior predictive distribution of fatigue life of the three 

springs. 
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uted between nominally identical structures. The Bayesian 

technique is employed to progressively update the distribution 

of these parameters. According to the Paris law, the crack size 

is expressed in terms of the cycle N as 
 

( ) ( )
2

21
21

2

m mm

i

m
a N NC aσ π

−−   = − ∆ +     
           (10) 

 

where C  and m  are the two damage growth parameters 

that should be estimated, 
ia  is the initial crack size which is 

assumed to be known, and σ∆  is the stress range due to the 

fatigue loading. Assume that we have 10 data set of crack size 

measurements at a number of different cycles. Then the poste-

rior distribution of the unknown parameters is given by  
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where  
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are the prior information of the two parameters. In Eq. (11), 

two parameters σ  and b  are added to the unknowns, which 

are the measurement errors due to the noise and bias, respec-

tively. Therefore the number of unknown parameters is four. 

In this problem, synthetic data is used in order to study the 

effect of noise and bias. Synthetic measurement data are gen-

erated by assuming that the true parameters, 
truem  and 

trueC  

are known, calculating the true crack sizes according to Eq. 

(10) for a given N , and adding a deterministic bias and ran-

dom noise intentionally to the true crack data. The true model 

and synthetic 10 data are plotted as curve and dots in Fig. 10 

respectively. The unknown parameters are to be estimated 

based on this data. Using the conventional MCMC, proper 

sampling could not be achieved in spite of lot of trials. One 

instance of such result is given in Fig. 11(a). On the other 

hand, the result of the improved MCMC is shown in Fig. 

11(b), which is obtained in about two minutes at one attempt.  

The obtained PDF shapes look quite plausible and the correla-

tion between m  and C  is also identified clearly. The poste-

rior predictive distribution of the crack growth obtained by the 

sampling results of the unknown parameters is shown in Fig. 

10. The solid curve is the true crack growth, the three dashed 

curves are the median and 90% predictive interval (PI) ob-

tained from the distribution and the green horizontal line de-

notes critical crack size. As was expected, conventional 

MCMC fails to predict the growth adequately. On the other 

hand, the improved MCMC predicts the crack growth quite 

well, following the true model by correcting the bias. 

 

4.3 Five parameters example: solder joint problem 

Last example is to inversely estimate viscoplastic material 

parameters of the solder joint in microelectronics package. A 

specimen of solder joint is devised as in Fig. 12(a) so that the 

joint undergoes similar deformation to the actual package. The 

specimen is subjected to a thermal cycle given in Fig. 12(b). 

The deformation is measured using Moire interferometry. 

Viscoplastic FEA is conducted for the specimen based on the 

Anand model. The model parameters are inversely determined 

so that the predicted deformation agrees with the experimental 

data at five instances of heating and cooling cycle which is 

depicted in Fig. 12(b). During the procedure, the uncertainties 

due to the experimental error and insufficient number of ex-

perimental data are addressed by using the likelihood estima-
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(b) Improved MCMC 
 

Fig. 10. Posterior prediction of the crack growth. 
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Fig. 11. Posterior PDFs of four parameters in the crack growth prob-

lem. 

 



1778 D. An and J. H. Choi / Journal of Mechanical Science and Technology 27 (6) (2013) 1771~1779 

 

 

tion. Though Anand model requires 9 parameters originally, 

the number of parameters is reduced to the most influencing 4 

after sensitivity study while the others are taken as the con-

stant values. More details can be found in the previous study 

[15]. After all, the posterior distribution is given as follows:  
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1 1
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E F

k k
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ξ σ
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       ∝ − −          
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where 
0 , / , ,S Q R A ξ  and σ  are the 4 Anand parameters and 

the experimental error respectively, which are to be deter-

mined based on the measured data. In the equation, Ey  and 

ˆ Fy  denote the displacement of solder obtained by experiment 

and analytic model respectively. Note that the hat symbol in 

ˆ Fy  denotes the response surface model that is given by sec-

ond order polynomial in terms of the four parameters to re-

place the costly FEA in the process. 

The sampling result of the unknown parameters obtained us-

ing the improved MCMC, and the PDFs are plotted in Fig. 

13(a). Also, the correlations between 
0S  and /Q R  and be-

tween A  and ξ  are identified in Fig. 13(b). The results are 

obtained in about eight minutes despite the existence of two 

pairs of complex correlations between the parameters which can 

make the sample drawing quite difficult. For this problem, the 

result by the conventional MCMC could not be obtained at all. 

The posterior predictive distributions obtained by the sampling 

results are shown Fig. 14. In the figures, the black line with star 

marks is the experimental result, the blue line with triangle is the 

FEA result using the material parameters given by Yeo et al. 

[16], and the red line with circle is the median of the predictive 

distribution obtained by the improved MCMC. The 90% pre-

dictive bounds are also plotted using vertical bars at each in-

stances. From the figures, it is found that the result by the FEA 

based on the existing literature is quite different from the ex-

perimental data. After inversely estimating the material pa-

rameters, the median of the predicted distribution gets much 

closer to the experimental data. 

 

5. Conclusions 

Although many sampling methods have been developed, 

there was no cost-effective and robust method that can handle 

practical problems in the engineering application. The conven-

 

(a) Specimen of solder joint 
 

 

(b) Thermal cycle 
 

Fig. 12. Illustration of solder joint problem. 
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Fig. 13. Posterior PDFs and correlations of five parameters in the sol-

der joint problem. 
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(a) Displacement 
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(b) Strain 
 

Fig. 14. Posterior prediction of displacement and strain in the solder 

joint problem. 
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tional MCMC is known as the most effective sampling meth-

od, but this has also a problem that it does not effectively work 

if the number of parameters increase and the parameters are 

highly correlated with each other. In this case, the sampled 

results vary under different proposal distributions or even the 

sampling is failed. In order to resolve this issue, an improved 

MCMC method is proposed by using marginal PDF as a pro-

posal distribution. In this method, additional computation is 

required for marginal PDF construction before the main 

MCMC procedure. The computing time increase for this, 

however, is marginal compared to the whole time of MCMC 

process. On the contrary, greater efficiency as well as robust-

ness is achieved by this method since we get always conver-

gent samples, i.e., the same samples whenever the method is 

undertaken, which was not possible using the conventional 

MCMC. In conclusion, the MCMC in conjunction with the 

marginal distribution is a very promising approach to tackle 

the parameter estimation in the case of increased parameters 

and correlations. The validity of the method is proved by the 

several practical engineering problems in which adequate 

samples are obtained for the posterior distribution. 
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