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Abstract 
 

The use of a graphics processing unit (GPU) is an ideal solution for problems on data-parallel computations. The serial CPU-based 

program for collision analysis between a multi-body system and numerous particles is rebuilt as a parallel program that uses the advan-

tages of a GPU. In this study, a GPU is used to effectively perform multi-body dynamic simulation with particle dynamics. The multi-

body system has 20 circular objects, 19 spring-damper force elements, and 2 revolute joints. The motion equations are formulated using 

the Cartesian coordinate system, and the implicit Hilber-Hughes-Taylor integration algorithm is used for the integral equation. To detect 

collisions between a multi-body system and particles or between particles, a spatial subdivision algorithm and a discrete element model-

ing are used. The developed program is verified by comparing the results with ADAMS. The numerical efficiencies of the serial program 

using CPU and the parallel program using GPU are compared according to the number of particles. The results show that the greater the 

number of particles, the more computing time can be saved. For example, when the number of particles is 900, the computing speed of 

the parallel analysis program is about five times faster than that of the serial analysis program.    
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1. Introduction 

A graphics processing unit (GPU) is an arithmetic unit that 

specializes in computer graphics. GPU makes the CPU proc-

ess computer data faster by dealing with the three-dimensional 

(3D) computer graphics by itself. As each graphics card com-

prises a board, memory, and GPU, the performance and size 

of the graphics card can be freely upgraded. However, in the 

CPU, the main board and memory are produced by other 

manufacturers. Thus, changing CPU performance is not easy. 

To address this problem, GPUs have been developed by in-

creasing the quantity of their cores to make them capable of 

processing massive computer data, which in turn allows them 

to generate more gorgeous and natural 3D images. The pro-

grammable GPU has evolved in recent years, becoming highly 

parallel and multithreaded. Numerous core processors with 

tremendous computational power and very high memory 

bandwidth have been developed to meet the increasing market 

demand for real time, high-definition 3D graphics. Although 

existing GPUs have been used for processing simple graphics, 

a general-purpose GPU (GPGPU) is being developed for pub-

lic operation, which is not the original purpose of GPUs. As 

the API function handles the graphics engine, programmers 

and beginners found the GPGPU difficult to use, and flexible 

programs could not be developed because of the limited 

DRAM memory bandwidth that generates bottleneck condi-

tions. To solve many complex computational problems more 

efficiently without using a CPU, NVIDIA, on November 2006, 

introduced CUDA
TM

, which is a general-purpose parallel 

computing architecture with a new parallel programming 

model. CUDA also has an instruction set architecture that 

powers the parallel computing engine in the NVIDIA GPU. If 

the strengths of GPUs, including their many processors, wide 

bandwidth, and quick operation, are applied to real-time op-

erations using parallel programming, obtaining efficient re-

sults is possible. Currently, NVIDIA is producing CUDA 

architecture-based graphics hardware to supply products that 

are capable of providing both fast computation and quality 

graphics to consumers [1-3]. To develop a general-purpose 

program that uses a GPU, NVIDIA is supplying not only 

graphics hardware but also an integration environment that 

includes “program model,” “language,” “compiler,” “library,” 

“debugger,” and “profiler.” Using CUDA programming, vari-

ous studies are being conducted in several areas such as in 

entertainment, industrial, design, medicine, education, and 

finance. Many successful computing examples are thus being 

put forward [4].  

Iterations are unavoidable in performing serial CPU-based 
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analysis for multi-body dynamics. Iterations make real-time 

analysis difficult as the system size increases. As the analysis 

of the dynamic behavior of a gigantic multi-body system re-

quires fast computing, we can replace iterative computing 

with parallel computing. Doing so speeds up computing time. 

Thus, studies using GPU parallel computing for multi-body 

dynamics are increasing. Dan et al. proposed an approach to 

GPU dynamic simulation wherein large collections of rigid 

bodies mutually interact through millions of frictional contacts 

[5, 6]. However, the GPU parallelization method and the ef-

fects of increasing multi-bodies and force elements on parallel 

computing are not clearly understood. 

This present study proposes a systematic approach to paral-

lel computing algorithm that uses GPU for the collision analy-

sis of a multi-body system and numerous particles. To calcu-

late the contact force between the modeled multi-body system 

and a particle, a spatial subdivision algorithm [7, 8] and a dis-

crete element modeling (DEM) [9] are used. Motion equations 

for multi-body dynamics are derived using Cartesian coordi-

nates [10, 11]. The implicit integration algorithm called the 

Hilber-Hughes-Taylor (HHT) algorithm is used for the analy-

sis. The data interface between the CPU and GPU is also ex-

plained. The computing time of the serial CPU-based program 

is compared with that of the parallel CUDA-based program to 

study the numerical efficiency of the GPU.  

 

2. Dynamic analysis method for multi-body system 

The HHT or HHT-α  method [12-14] is widely used in 

structural dynamics for the numerical integration of a linear 

set of second order differential equations. A precursor of the 

HHT method is the newmark method, wherein a family of 

integration formulas that depend on two parameters ( β  and 

γ ) is presented as Eqs. (1) and (2).   
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The HHT method possesses the stability and order proper-

ties provided by [ ]1/3, 0α ∈ −  and Eq. (3).  

 

1 2

2

α
γ

−
=     

( )2

1
.

4

α
β

−
=                (3) 

 

In any constrained mechanical system, the joints that con-

nect bodies restrict their relative motion and impose con-

straints on the generalized coordinates. Kinematic constraints 

are then formulated as algebraic expressions (4) involving 

generalized coordinates [10, 11], where m is the total number 

of independent constraint equations that must be satisfied by 

the generalized coordinates throughout the simulation. Differ-

entiating Eq. (4) with respect to time results in the velocity 

kinematic constraint equation, as shown in Eq. (5). The over-

dot denotes the differentiation with respect to time, and the 

subscript denotes partial differentiation, wherein 1 ,i m≤ ≤  

1 .j p≤ ≤  The acceleration kinematic constraint equation in 

Eq. (6) is obtained by differentiating Eq. (5) with respect to 

time. System time evolution is controlled by the Lagrange 

multiplier form of the constrained equations of motion (7), 

where ( )
p p

M q R
×∈  is the generalized mass, and 

( , , ) pQ q q t R∈&  is the action (as opposed to the reaction 

( )T

q
q λΦ ) force acting on the generalized coordinates. pq R∈  

and mRλ∈  are the Lagrange multipliers associated with the 

kinematic constraints. 
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Note that Eq. (7) can also be written as Eq. (8), where H 

represents the generalized forces that include the constraint 

forces. Eq. (8) at time step 
1n

t +  can be written as Eq. (9). The 

right side of Eq. (9) can be written as Eq. (10) using a Taylor 

series expansion. tm is the time between tn and 
1n

τ + , and 

( )
m

H t&  can be approximated by assuming linear change in H, 

that is, Eq. (11). By substituting this equation into Eq. (10) and 

by using the resulting expression 
1

( )
n

H τ +  in Eq. (9), Eq. (12) 

is obtained. Using Eq. (8), Eq. (12) can then be written as Eq. 

(13). 
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To obtain 
1n

q +&&  and 
1n

λ + , the iterative Newton-Raphson 

method should be used. This method requires constructing and 

solving the system of Eq. (14) at iteration k, where ∆  indi-

cates Newton differences, and matrix M , e1, and e2 are de-

fined as Eqs. (15)-(17), respectively. 
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3. Contact modeling for collision analysis 

3.1 Spatial subdivision  

Most efficient collision detection implementations use a 

two-phase approach: a broad phase followed by a narrow 

phase. In the broad phase, collision tests are usually based on 

bounding volumes only, but such tests are conducted quickly 

to immediately prune away object pairs that do not collide 

with each other [7]. The broad phase output is the potentially 

colliding set of object pairs. In the narrow phase, collision 

tests are performed only for pairs of the potentially colliding 

set [8]. Such an approach is very suitable when numerous 

objects are actually not colliding. Many object pairs are thus 

rejected during the broad phase. In this study, spatial subdivi-

sion, which is one of the broad-phase algorithms, is used. Spa-

tial subdivision partitions space into a uniform grid such that a 

grid cell is at least as large as the largest object. Each cell con-

tains a list of each object whose centroid is within that cell. A 

collision test between two objects is only performed if they 

appear in the same cell and if at least one of them has its cen-

troid in the given cell. For example, as shown in Fig. 1, a col-

lision test is performed between objects 
1

O  and 
2

O  because 

both have their centroids in cell 1, and between objects 
2

O  

and 
3

O  because both appear in cell 5, and 
3

O  has its cen-

troid in cell 5. However, no collision test is performed be-

tween 
2

O  and 
4

O  because both appear in cell 2, but neither 

of their centroids is in cell 2. In this study, the simulation 

space is a square with a 6 m x 6 m dimension. Each edge is 

divided into 60 equal parts because all particles are designed 

to have a 0.05 m radius. The cell size is 0.1 m, and the square 

has 3600 (60× 60) cells. 

 

3.2 Discrete element method  

To calculate the contact force between circular bodies, the 

DEM is used [9]. The DEM is one of the numerical methods 

used to calculate the motion of mass particles like sand. The 

DEM is also known as the best method to simulate particle 

behavior. This method is originally devised for the rock me-

chanics problem, but it has been applied to all granular mate-

rial problems since 1979. Nowadays, the DEM is used in 

many industries. Fig. 2 shows the flow chart for the particle 

dynamics simulation using the DEM.  

During particle dynamics simulation, four stages are re-

peated until simulation time ends. The first stage involves 

detecting pairs of colliding particles, and the next stage in-

volves calculating the contact force based on the Kelvin-Voigt 

contact model [15]. The contact model is composed of spring 

and damping forces.  

Fig. 3 shows the contact force calculation between two par-

ticles. Eq. (18) represents the contact force, where parameter 

K is the spring coefficient, and C is the damping coefficient. 

In Eq. (19), 
ij
r  (the relative position between the i-th particle 

and the j-th particle) can be calculated by subtracting the j-th 

particle position from the i-th particle position. From this rela-

tive position vector, the distance between two particles is 

 
 

Fig. 1. Example of spatial subdivision of four objects. 

 

 
 

Fig. 2. Flow chart for particle dynamics simulation using the DEM. 

 

 
 

Fig. 3. Contact force calculation between two particles. 
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computed using Eq. (20). The normal direction unit vector 
ij

n  

should be calculated using Eq. (21). Eq. (22) represents the 

relative velocity of the normal direction. 
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where 
c

d  means is the sum of the i-th particle radius and the 

j-th particle radius in Eq. (23); 
ij
δ  is the penetration depth of 

the i-particle and j-particle in Eq. (24). If the distance d  is 

shorter than 
c

d , the penetration depth and contact force are 

computed.  

Next, Newton’s second law is used to calculate particle ac-

celerations, and the HHT method is used to compute the ve-

locity and position of all particles [14].  

 

4. Parallel programming based on CUDA 

In this study, the parallel computing program for multi-body 

system dynamics is developed using the CUDA C language 

provided by NVIDIA. As the device (GPU) has more memory 

than the host (CPU), understanding device memory features is 

important to use it efficiently. To use the device memory, it 

should be allocated from the host. Afterwards, the memory on 

the device should be freed. If the device memory needs host 

data, the host data should be given using the CUDA API func-

tion. The CUDA API offers a useful function to parallel pro-

gramming users [3]. In parallel programming, the data transfer 

between the host and the device should be minimized because 

such transfer has lower bandwidths compared with data trans-

fers between global memory and device.  

In this study, the host calculates the initial system data (t0), 

transfers the initial data (t0) to the device memory, and deallo-

cates memory if simulation time is done. The device executes 

the integrator and transfers the solution of the system at each 

time step.  

The flow diagram for parallel programming is shown in Fig. 

4. In the host, the position and velocity vector is initialized, 

and acceleration can be obtained by solving the equations of 

motions at the initial time. These vectors are transferred to the 

GPU memory. In the GPU, all the positions and velocities are 

obtained at each time step using the HHT integrator. If the 

obtained solutions are acceptable, the solutions are saved to 

the CPU memory, and simulation time is updated. If the up-

dated time is the designated end time, the CPU frees memory 

on the GPU and stops the simulation. 

Fig. 5 shows a parallel programming flow diagram of the 

collision analysis between a multi-body system and numerous 

particles. “serial computing” or “parallel computing” in the 

first column of Fig. 5 means that the data that must be calcu-

lated should be processed using the CPU or GPU, as shown in 

Fig. 5. 

GPU computing is performed by the kernel function that is 

executed on the GPU by the function type qualifier 

“__global__.” When the kernel function is called, the number 

of threads per block and the number of blocks per grid speci-

fied in the <<< Dg, Db, Ns >>> syntax can be of type int or 

dim3 between the function name and the parenthesized argu-

ment list.  

In a kernel function, a grid with blocks and threads is gener-

ated (Fig. 6). Each block within the grid can be identified by a 

one-dimensional, two-dimensional, or three-dimensional in-

dex accessible within the kernel through the built-in blockIdx 

variable. Each thread that executes the kernel is given a 

unique thread ID that is accessible within the kernel through 

the built-in threadIdx variable. The thread block dimension is 

accessible within the kernel through the built-in blockDim 

variable.  

Parallel computing is possible by simultaneously executing 

the kernel function routine in each thread. If the kernel func-

tion is executed, each thread obtains the element data for cal-

culation. Subsequently, parallel computing is carried out be-

cause a thread has the iteration structure data in the sequential 

program. 

 

5. Simulation and results 

To study the GPU application effects on the collision analy-

sis of a constrained multi-body system and numerous particles, 

a CPU-based analysis program (CMAP) and a GPU-based 

 
 

Fig. 4. Parallel programming flow diagram. 

 

 



 H.-Y. Jung et al. / Journal of Mechanical Science and Technology 27 (4) (2013) 973~980 977 

 

  

analysis program (GMAP) are respectively developed. A 

CMAP has numerous serial iteration statements, and a GMAP 

computes most parallel numerical data. In this study, ADAMS 

is used to verify the results obtained from the GMAP. 

5.1 GMAP verification 

A multi-body system model for GMAP verification is de-

signed for this study. An example is composed of 20 circle-

shaped bodies, 19 spring-damper force elements, and 2 revo-

lute joints (Fig. 7). In Fig. 7, each number represents the body 

number, wherein bodies 0 and 19 are constrained in the 

ground by revolute joints. Gravity is only applied as an exter-

nal force, and gravitational acceleration is set at 9.8066 

(m/sec
2
). The properties of this model and the simulation con-

dition are shown in Table 1. 

Figs. 8 and 9 show the horizontal and vertical displacements 

of bodies 4 and 5, whose initial positions are (-0.55, -0.6) and 

(-0.45, -0.60), respectively. As shown in Figs. 8 and 9, the 

GMAP results are identical to the ADAMS results. 
 

5.2 Collision simulation 

A collision model for GMAP contact force verification is 

developed. The model is composed of 18 circle-shaped bodies 

and 13 revolute joints (Fig. 10). In Fig. 10, each number 

represents the body number. 13 bodies (from 0 to 12) are con-

strained by revolute joints, and 5 bodies (from 13 to 17) are 

 

 
 

Fig. 5. Parallel programming flow diagram of the collision analysis of 

a multi-body system and numerous particles. 

 

Table 1. Property of a multi-body system model and the simulation 

condition. 
 

Attribute Values 

Mass of body 1 (kg) 

Inertia of body 0.005 (kg-m2) 

Radius of body 0.05 (m) 

Stiffness coefficient of 

spring-damper force  
1.0× 105 (N/m) 

Damping coefficient of 

spring-damper force  
100 (N-s/m) 

Simulation time 1 (sec) 

Time step 0.001 (sec) 

 

 
 

Fig. 6. Grid generation with blocks and threads. 

 

 
 

Fig. 7. A multi-body system model for GMAP verification. 
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considered as particles without constraints. The properties of 

this model and the simulation condition are shown in Table 2. 

Figs. 11 and 12 show the horizontal and vertical displace-

ment of particles 13 and 14. The initial position of particle 13, 

which is (-0.60, 1.50), is in contact with body 3, whose posi-

tion is (-0.65, -0.90). The initial position of particle 14, which 

is (-0.40, 1.30), is in contact with body 5, whose initial posi-

tion is (-0.45, -1.10).  

From Figs. 11 and 12, the results are the same as the 

ADAMS results.  

Table 2. Properties of a collision model and the simulation condition. 
 

Attribute Values 

Mass of body 1 (kg) 

Inertia of body 0.005 (kg-m2) 

Radius of body 0.05 (m) 

Stiffness coefficient of 

contact force  
1.0× 107 (N/m) 

Damping coefficient of 

contact force  
10 (N-s/m) 

Simulation time 1 (sec) 

Time step 0.001 (sec) 

 

 

 
 

Fig. 8. Horizontal displacement comparison of body 4. 

 

 

 
 

Fig. 9. Vertical displacement comparison of body 4. 

 

 
 

Fig. 10. A collision model for GMAP contact force verification. 

 

 

 
 

Fig. 11. Horizontal displacement comparison of particle 13. 

 

 

 
 

Fig. 12. Vertical displacement comparison of particle 13. 
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5.3 Collision simulation between multi-body model and par-

ticles 

Fig. 13 shows the model for collision analysis between a 

multi-body system and numerous particles. The model is 

composed of 29 bodies, 19 spring-damper force elements, and 

2 revolute joints. All bodies are considered circular, rigid bod-

ies so that the DEM can be applied to all bodies. Rigid bodies 

are connected by spring dampers. 9 bodies (from 20 to 28) in 

the top box are particles without constraints. The properties of 

this model and the simulation condition are shown in Table 3. 

Fig. 14 illustrates the simulation when 400 particles collide 

with a multi-body system. 

Fig. 15 shows the comparison of computing time according 

to the number of particles. In Fig. 15, the circular symbol line 

represents the results obtained from the GMAP. The accuracy 

of the GMAP with regard to the number of particles is verified 

by comparing it with that of the CMAP. The GMAP provides 

an accurate calculation regardless of the number of particles. 

Notably, the greater the number of particles, the more comput-

Table 3. Properties of a multi-body system and the simulation condi-

tion for the particle collision analysis. 
 

Attribute Values 

Mass of body 1 (kg) 

Inertia of body 0.005 (kg-m2) 

Radius of body 0.05 (cm) 

Stiffness coefficient of 

spring-damper force  
1.0× 105 (N/m) 

Damping coefficient of 

spring-damper force  
100 (N-s/m) 

Stiffness coefficient of 

contact force  
1.5× 106 (N/m) 

Damping coefficient of 

contact force  
10 (N-s/m) 

Simulation time 1 (sec) 

Time step 0.001 (sec) 

 

 
 

Fig. 13. Collision simulation model between a multi-body system and 

numerous particles. 

 

Table 4. Computing time comparison between GMAP and CMAP 

according to the number of particles. 
 

Particle number (N) GMAP CMAP 

100 24.0 20.3 

150 24.4 23.4 

200 24.7 26.9 

250 25.2 30.4 

300 25.8 34.4 

350 26.2 37.9 

400 26.9 42.3 

450 27.4 48.1 

500 27.8 54.8 

550 28.6 63.2 

600 29.2 70.9 

650 29.9 81.1 

700 30.4 93.8 

750 30.8 104.8 

800 31.2 116.5 

850 31.5 129.6 

900 31.8 150.1 

 

 

 
 

Fig. 14. Collision simulation of a multi-body system and 400 particles. 

 

 

 
 

Fig. 15. Computing time comparison between GMAP and CMAP 

according to the number of particles. 
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ing time can be saved. As shown in Table 4, when the number 

of particles is 900, the computing speed of the GMAP is about 

five times faster than that of the CMAP. 

This result can be attributed to the fact that whereas the 

CMAP computes the positions of particles one after another 

with one thread, the GMAP calculates the positions of all par-

ticles at the same time using many threads.  

 

6. Conclusions 

In this study, we proposed a parallel algorithm using a GPU 

and explained the data interface of the CPU and GPU. A colli-

sion analysis model, which consists of a multi-body system 

and numerous particles, was constructed to compare the nu-

merical efficiency of parallel programming with that of serial 

programming. A motion equation was formulated using the 

absolute coordinate system, and the implicit HHT integration 

algorithm was used for the integral equation. C and C++ were 

used to program the multi-body dynamics analysis, and 

ADAMS was used to test solution accuracy.  

The spatial subdivision algorithm and the DEM are very ef-

fective for collision detection. However, numerous particles 

remain in the simulation space. Notably, the greater the num-

ber of particles, the more computing time can be saved. The 

calculating time of the serial program increased in proportion 

to the number of particles. For the multi-body dynamic analy-

sis with numerous contact bodies, CUDA-based parallel pro-

gramming is strongly recommended. 
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