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Abstract 

 

The paper focus on first and second laws analysis for flow and heat transfer inside a vertical channel made of two uniformly porous pa-

rallel plates with suction/injection under the combined action of buoyancy force, transverse magnetic field and constant pressure gradient. 

Both vertical walls are kept isothermal at the same temperatures and the flow of the conducting fluid is assumed to be unsteady with 

variable viscosity. The nonlinear governing equations in Cartesian coordinate are obtained and solved numerically using semi-implicit 

finite difference techniques to develop expressions for velocity and temperature profiles. The entropy generation number, irreversibility 

distribution ratio and Bejan number are presented graphically and discussed quantitatively for various values of the embedded parameters.   
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1. Introduction 

Analysis of the flow of an electrically conducting fluid in a 

porous channel in the presence of a transverse magnetic field 

is of special technical significance because of its widespread 

engineering and industrial applications such as in geothermal 

reservoirs, nuclear reactor cooling, MHD marine propulsion, 

electronic packages, micro electronic devices, thermal insula-

tion, and petroleum reservoirs. Some other quite promising 

applications are in the field of metallurgy such as MHD stir-

ring of molten metal and magnetic-levitation casting. This 

type of problem also arises in electronic packages and micro-

electronic devices during their operation. The experimental 

investigation of modern MHD flow in a laboratory was first 

carried out by Hartmann and Lazarus [1]. Riley [2] studied 

buoyancy induced flow and transport in the presence of mag-

netic field. Chamkha [3] reported the unsteady natural convec-

tion in a porous channel in the presence of magnetic field. For 

rectangular vertical duct, Hunt [4] and Buhler [5] analyzed the 

fluid flow problem in magnetic field with or without buoy-

ancy effect. For conducting fluid, Shercliff [6] analyzed the 

fluid flow characteristics in a pipe under transverse magnetic 

field. Alboussiere et al. [7] did an asymptotic analysis to study 

the buoyancy driven convection in a uniform magnetic field. 

Makinde and Aziz [8] reported the effects of magnetic field 

and convective heat transfer on mixed convection from a ver-

tical plate embedded in a porous medium. The combined ef-

fects of variable viscosity and electrical conductivity on hy-

dromagnetic flow and heat transfer between a fixed plate and 

moving parallel plate was numerically analyzed by Makinde 

and Onyejekwe [9]. All the above mentioned references are 

very much restricted to first law analysis in the thermody-

namic point of view. 

Meanwhile, the contemporary trend in the field of heat 

transfer and thermal design is the second law analysis and its 

design-related concept of entropy generation minimization. 

The foundation of knowledge of entropy production goes back 

to Clausius and Kelvin's studies on the irreversible aspects of 

the second law of thermodynamics. Since then the theories 

based on these foundations have rapidly developed. However, 

the entropy production resulting from combined effects of 

velocity and temperature gradients has remained untreated by 

classical thermodynamics, which motivates many researchers 

to conduct analyses of fundamental and applied engineering 

problems based on second law analysis. Entropy generation is 

associated with thermodynamic irreversibility, which is com-

mon in all types of heat transfer processes. Moreover, in ther-

modynamical analysis of flow and heat transfer processes, one 

thing of core interest is to improve the thermal systems to 

avoid the energy losses and fully utilize the energy resources. 

Since the pioneering work of Bejan [10, 11], many investiga-
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tions have been made on entropy generation analysis [12-17]. 

Sahin [18] investigated the second law analysis for a viscous 

fluid in a circular duct with isothermal boundary conditions. 

Tasnim and Mahmud [19] studied the first and second law 

characteristics of the flow and the heat transfer inside a verti-

cal channel embedded in a porous medium under the influence 

of transverse magnetic field. Mahmud and Fraser [20] applied 

the second law analysis to heat and fluid flow due to forced 

convection inside a channel. The entropy generation in 

boundary layer flow was investigated by Arpaci and Selamet 

[21]. Makinde and Beg [22] studied the effect of magnetic 

field on entropy generation due to a reactive flow in a channel. 

The purpose of this article is to analyze the first and second 

laws of thermodynamics with respect to inherent irreversibil-

ity in an unsteady flow of a viscous incompressible conduct-

ing fluid through a uniformly porous channel in the presence 

of suction/injection and a transversely imposed magnetic field 

with isothermal boundary condition. Expressions for dimen-

sionless velocity, temperature and entropy generation number 

are presented graphically and discussed quantitatively. 

The article is organized as follows: the mathematical model 

of the physical problem is described in section 2 leading to the 

relevant (dimensionless) governing equations. We follow this 

up in section 3 with the development of the mathematical 

tools to be used in analyzing the entropy generation and irre-

versibility. The numerical method of solution for the nonlinear 

set of governing partial differential equations is developed in 

section 4 and then employed in sections 5 and 6 to obtain and 

discuss the relevant graphical results. Concluding remarks 

follow in section 7.  

 

2. Mathematical model 

We consider unsteady flow of an incompressible electrically 

conducting viscous fluid through a vertical channel under the 

combined action of constant axial pressure gradient; buoyancy 

force and uniform suction/injection through channel walls in 

the presence of a transversely imposed magnetic field of 

strength B0 (see Fig. 1). In addition, there is no applied electric 

field and all of the Hall effects are neglected. Since the mag-

netic Reynolds number is very small for most fluid used in 

industrial applications, we assume that the induced magnetic 

field is negligible. The fluid temperature dependent variable 

viscosity ( µ ) is expressed as  

 

0( )
0

T Te γµ µ − −=                    (1) 

 

where µ0 is the initial fluid dynamic viscosity at the tempera-

ture T0.  

Under these conditions the continuity, momentum and en-

ergy equations governing the problem in may be written as [7, 

9, 18, 20]  
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with the initial and boundary conditions given as  

 

(0, ) 0,u y = 0(0, )T y T=              (5) 

( ,0) 0,u τ = ( ,0) ,wT Tτ = ( , ) 0,u Hτ = ( , ) wT H Tτ =      (6)  

 

where ( , )x y  are the distance measured in the axial and nor-

mal directions respectively, τ is the time, ρ is the fluid density, 

k is the thermal conductivity, α is volumetric expansion coef-

ficient, g is the gravitational acceleration, σ is the electrical 

conductivity, T is the fluid temperature, Tw is the channel 

wall’s temperature, H is the channel width, T0 is the fluid ini-

tial temperature, V is the uniform suction/injection velocity, 

u  is the axial velocity, cp is the specific heat at constant pres-

sure and P is the fluid pressure. We introduce the following 

non-dimensional quantities into Eqs. (2)-(6): 
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and obtain 

 

     
 

Fig. 1. Schematic diagram of the problem. 
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with  

 

(0, ) 0,u y = (0, ) 0yθ =   (10)   

( ,0) 0,u t = ( ,0) 1,tθ = ( ,1) 0,u t = ( ,1) 1tθ =  (11) 

 

where β is the viscosity variation parameter, Gr is the Grashof 

number, M is the magnetic field parameter, Br is the Brink-

man number, Re is the suction/injection Reynolds number and 

Pr is the Prandtl number. Other quantities of interest in this 

study include the wall shear stress wι  and the heat transfer 

rate at the channel surface wq given as 
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and in dimensionless form, we obtain 
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3. Entropy analysis 

Second law analysis in terms of entropy generation rate is a 

useful tool for predicting the performance of the engineering 

processes by investigating the irreversibility arising during the 

processes. According to Woods [23], the local entropy genera-

tion rate is defined as 
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The first term in Eq. (14) is the irreversibility due to heat 

transfer and the second term is the entropy generation due to 

viscous dissipation and third term is due to magnetic field. 

Using Eq. (7), we express the entropy generation number in 

dimensionless form as 
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where Ω = (Tw –T0)/T0 is the temperature difference parameter. 

In Eq. (15), the first term can be assigned as N1 and the second 

term due to viscous dissipation as N2, i.e. 
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Following Bejan [10, 11], the irreversibility distribution ra-

tio is defined as Φ = N2 / N1. Heat transfer dominates for 0 ≤ 

Φ < 1 and fluid friction and magnetic field effects dominate 

when Φ > 1. The contribution of both heat transfer and fluid 

friction with magnetic field effects to entropy generation are 

equal when Φ = 1. Alternatively, the dominant effect of either 

heat transfer irreversibility or fluid friction with magnetic field 

irreversibility can be investigated using the Bejan number (Be) 

defined mathematically as 
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Clearly, the Bejan number ranges from 0 to 1. Be = 0, is the 

limit where the fluid friction with magnetic field irreversibility 

dominates and Be = 1, corresponds to the limit where the heat 

transfer irreversibility dominates. The contribution of both 

heat transfer and fluid friction with magnetic field to entropy 

generation are equal when Be = 1/2. 

In section 4, Eqs. (8)-(17) are solved numerically using a 

semi-implicit finite difference scheme. 

 

4. Numerical procedure 

Our numerical algorithm is based on the semi-implicit finite 

difference scheme and is implemented along the same lines as 

in, say, Refs. [24-27]. Implicit terms are taken at the interme-

diate time level ( )N ξ+  where 0 1ξ≤ ≤ . The discretization 

of the governing equations is based on a linear Cartesian mesh 

and uniform grid on which finite-differences are taken. We 

approximate both the second and first spatial derivatives with 

second-order central differences. The equations corresponding 

to the first and last grid points are modified to incorporate the 

boundary conditions. The semi-implicit scheme for the veloc-

ity component reads: 
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In Eq. (18) it is understood that subscript y denotes partial 

differentiation under the finite difference framework described 

earlier, the subscript j represents the mesh position and the 

superscripts denote the time levels such that ( )# N ξ+ =  
( 1) ( )# (1 )#N Nξ ξ+ + − . Since the unsteady problem under inves-

tigation is posed as an initial value problem, given a solution 

at a time level ( )N , i.e. ( ) ( ),N Nu θ 
  , the equations for the 

velocity solution at the subsequent time level ( 1)N +  reduce 

to: 
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where the explicit terms contain terms prescribed at the earlier 

time level ( )N  and: 
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The solution procedure for ( 1)Nu +  thus reduces to inver-

sion of tri-diagonal matrices which is an advantage over a full 

implicit scheme. The semi-implicit integration scheme for the 

energy equation is similar to that for the velocity: 
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The equation for ( 1)Nθ +  thus becomes: 
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where 2r t yξ= ∆ ∆ . The solution procedure again reduces to 

inversion of tri-diagonal matrices. The schemes (19 & 21) 

were checked for consistency. For 1ξ = , these are first-order 

accurate in time but second order in space. The schemes in 

Ref. [24] have 1 2ξ =  which improves the accuracy in time 

to second order. We use 1ξ =  here so that we are free to 

choose larger time steps. 

 

5. Results and discussion 

Unless otherwise stated, we employ the parameter values: 

 

1, 0.5, 0.5, 0.5, 1, Pr 7.1,

Re 1, 0.02, 0.5, 500.

A M Gr Br

y t t

β= = = = = =

= ∆ = ∆ = =
  

 

These will be the default values in this work and hence in 

any graph where any of these parameters is not explicitly 

mentioned, it will be understood that such parameters take on 

the default values. 

 

5.1 Transient and steady flow profiles 

We display the transient solutions in Figs. 2 and 3. Both 

figures show a transient increase in fluid quantities (velocity 

and temperature) until a steady state is reached. 

 

5.2 Parameter dependence of solutions 

In this section, we investigate the response of the velocity 

and temperature (at steady state) to varying values of the rele-

vant parameters. To ensure that all solutions have indeed 

reached steady state, we employ a time of 500t =  in all 

graphs under this section. The response of the velocity and 

temperature to variations in the viscosity parameter ( )β  is 

illustrated in Figs. 4 and 5 respectively. 

An increase in the viscosity parameter corresponds to a de-

crease in fluid viscosity and hence a reduced resistance to flow. 

This in turn leads to increased fluid velocity as shown in Fig. 4. 

The increased fluid velocity in turn increases the magnitude of 

the viscous heating sources terms in the energy equations and 

hence leads to increased fluid temperatures as illustrated in Fig. 

5. 

The response of the velocity and temperature to variations 

in the Brinkman number ( )Br  is illustrated in Figs. 6 and 7 

respectively. 

As previously explained, the increased strength of the vis-

cous heating source terms (due to increases in the Brinkman 

number) is directly responsible for the increase in fluid tem-

perature shown in Fig. 7. The temperature is strongly coupled 

to the velocity through the temperature dependent buoyancy 

terms and hence the recorded temperature increases (with 

increasing Br ) lead to corresponding increases in the magni-

tude of the fluid velocity as shown in Fig. 6. 

The suction Reynolds number primarily represents the 

strength of the suction/injection through the walls. Thus, 

 
Fig. 2. Transient and steady state velocity profiles. 

 

 
 

Fig. 3. Transient and steady state temperature profiles. 
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Re 0=  represents the case of (steady) plane Poiseuille flow 

in a channel with impermeable walls and Re 0>  represents 

flow with constant suction/injection towards the right hand 

side direction. Figs. 8 and 9 respectively show the response of 

the fluid velocity and temperature to variations in the suction 

Reynolds number. We notice that as the suction Reynolds 

number moves away from zero, the region of maximum fluid 

velocity correspondingly moves away from the channel cen-

      
 

Fig. 4. Effects of viscosity parameter on steady state velocity.    Fig. 7. Effects of Brinkman number on steady state temperature. 

 

 

     
 

Fig. 5. Effects of viscosity parameter on steady state temperature. Fig. 8. Effects of the suction Reynolds number on steady state velocity. 

 

      
 

Fig. 6. Effects of Brinkman number on steady state velocity.     Fig. 9. Effects of the suction Reynolds number on steady state temperature. 
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terline towards the direction in which the bulk fluid is 

“pushed” by the suction/injection cross flow. The presence of 

the cross flow is used to explain the reduction of the strength 

of the longitudinal velocity component u . In particular, the 

larger the strength of the cross flow (i.e. the higher the value 

of Re ) the lower the magnitude of the longitudinal velocity 

component ( )u y  as shown in Fig. 8. As explained before, 

the nature of the coupling of the velocity to the source terms in 

the energy equation leads to a corresponding reduction in fluid 

temperature with increased suction Reynolds numbers (i.e. 

with decreased longitudinal fluid velocity strength) as shown 

in Fig. 9. 

The increase in the magnitude of the velocity with increas-

ing Grashof number as illustrated in Fig. 10 is a consequence 

of the increased buoyancy source terms due to the higher val-

ues of Gr . The increased velocity in turn leads to increased 

fluid temperature due to the increased source terms, see Fig. 

11. An increased magnetic field strength expectedly leads to 

decreased magnitudes in fluid velocity due to the increased 

resistance to flow, see Fig. 12. The magnitude of the tempera-

ture field however depends on a combination of the strength 

of the magnetic field M  as well as the magnitude of the 

velocity field, both of which contributes to the energy sources, 

see Fig. 13. 

 

5.3 Skin friction 

The wall shear stress (at the right hand side wall, 1y = ) 

dependence on β  is illustrated in Fig. 14 for varying values 

of the Brinkman number Br . Similarly, the wall shear stress 

dependence on Re is illustrated in Fig. 15 at different times 

and the wall shear stress dependence on M  is illustrated in 

Fig. 16 for varying values of the Grashof number. 

The results of Figs. 14-16 are consistent with the conclu-

sions of the previous section, on parameter dependence of 

solutions. In general, parameters that decrease (increase) the 

fluid velocity correspondingly decrease (increase) the wall 

shear stress, respectively. This is so since (i) fluid viscosity at 

 
 

Fig. 10. Effects of Grashof number on steady state velocity. 

 

 
 

Fig. 11. Effects of Grashof number on steady state temperature. 

 

 

Fig. 12. Effects of the magnetic field strength on steady state velocity. 

 

 
 

Fig. 13. Effects of the magnetic field strength on steady state tempera-

ture. 
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the wall(s) remains constant due to the fixed wall temperatures 

while (ii) the decrease (increase) of the bulk flow velocity 

correspondingly decreases (respectively increases) velocity 

gradients at the wall(s). 

 

5.4 Wall heat transfer 

The wall heat transfer rate (at the right hand side wall, 

1y = ) dependence on β  is illustrated in Fig. 17 for varying 

values of the Brinkman number Br . Similarly, the wall heat 

transfer rate dependence on Re is illustrated in Fig. 18 at 

different times and the wall heat transfer rate dependence on 

M  is illustrated in Fig. 19 for varying values of the Grashof 

number. 

As with the wall shear stress, parameters that decrease (in-

crease) the fluid temperature correspondingly decrease (in-

crease) the wall heat transfer rate respectively. 

 

5.5 Entropy generation 

In this section, we plot the entropy generation rate Ns  

across the channel under varying parameter conditions. 

Figs. 20-22 show the expected increase in Ns with corre-

 
 

Fig. 14. Variation of wall shear stress with β  and Br . 

 

 
 

Fig. 15. Variation of wall shear stress with Re  and t . 

 

 
 

Fig. 16. Variation of wall shear stress with M  and Gr . 

 

 
 

Fig. 17. Variation of wall heat transfer rate with β  and Br . 

 

 

Fig. 18. Variation of wall heat transfer rate with Re  and t . 
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sponding increases in 1Br −Ω , β  and Gr  respectively. 

This follows from the realization that increases in these pa-

rameters correspondingly increase the fluid friction with mag-

netic field contribution to the entropy generation. In Figs. 20 - 

22, the entropy generation rate is expectedly maximum at the 

walls where velocity and temperature gradients as well as 

fluid viscosity are highest and minimum somewhere inside the 

channel in the proximity of the regions of maximum tempera-

ture and velocity and hence also minimum temperature and 

velocity gradients. 

As the suction Reynolds number (Re)  increases, the dis-

placement of the velocity profiles towards the right means that 

the magnitudes of the velocity (and temperature) gradients 

decrease at the left wall but increase at the right wall. This 

explains (i) the opposite behavior in Ns  shown in Fig. 23 at 

the opposite walls and (ii) why higher Ns  values obtain at the 

right wall. Roughly similar behavior is observed with respect 

to the magnetic field, see Fig. 24. In this case the unequal ef-

fects at the opposite walls due to suction/injection result in the 

similar but unequal behavior in Ns at the opposite walls. 

The time dependent behavior of Ns  shown in Fig. 25 is 

almost similar to that illustrated in Figs. 20-22. Maximum 

entropy generation rate is recorded at the walls at all times and 

minimum values occur somewhere inside the channel in the 

proximity of the regions of maximum temperature and veloc-

ity. 

 

5.6 Bejan number 

In this section, we plot the Bejan number Be  across the 

channel under varying parameter conditions. The analysis in 

this section is similar to that for the previous section with Ns  

now replaced by Be . 

Fig. 26, shows as expected that higher values of 1Br −Ω , 

which increase the magnitude of fluid friction with magnetic 

field irreversibility 2N  but has no effect on the heat transfer 

irreversibility 1N , increases the values of Φ  leading to 

 

Fig. 20. Variation of entropy generation rate with y  and 1Br −Ω . 

 

 

 
 

Fig. 21. Variation of entropy generation rate with y  and β . 

 

 

 
 

Fig. 22. Variation of entropy generation rate with y  and Gr . 

 

 
 

Fig. 19. Variation of wall heat transfer rate with M  and Gr . 
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lower Bejan numbers. 

The effects of β  and Gr  show their competing influence 

on 1N  and 2N . In general we notice that these parameters 

have a higher effect on the heat transfer irreversibility ( 1N ) 

than on fluid friction with magnetic field irreversibility ( 2N ) 

and hence an increase in either β  or Gr  gives correspond-

ingly higher Bejan numbers as shown in Figs. 27 and 28. 

Fig. 29 shows that as the Reynolds number increases (i) 

heat transfer irreversibility dominates over fluid friction with 

magnetic field irreversibility close to the walls as shown by 

      
    

Fig. 23. Variation of entropy generation rate with y  and Re .     Fig. 26. Variation of  Bejan number with y  and 1Br −Ω . 

 

      
Fig. 24. Variation of entropy generation rate with y  and M . Fig. 27. Variation of  Bejan number with y  and β .  

 

      
 

Fig. 25. Variation of entropy generation rate with y  and t .    Fig. 28. Variation of  Bejan number with y  and Gr . 
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the decrease in the Bejan number in these regions, (ii) similar 

behavior is observed inside the channel just to the left the re-

gion of maximum velocity, but (iii) opposite behavior obtains 

just to the right the region of maximum velocity in which the 

Bejan number increases with Re . 

Fig. 30 shows that as the magnetic field intensity increases 

(i) fluid friction with magnetic field irreversibility dominates 

over heat transfer irreversibility close to the right wall as 

shown by the increase in the Bejan number in this region, (ii) 

similar behavior is observed inside the channel just to the left 

the region of maximum velocity, but (iii) opposite behavior 

obtains just to the right the region of maximum velocity in 

which the Bejan number decreases with increasing SMS. 

The time dependent behavior is illustrated in Fig. 31. Close 

to the walls, an interplay between both fluid friction with 

magnetic field and heat transfer irreversibility leads to positive 

values of the Bejan number ( 0 1Be< < ) in this wall region. 

Close to the left wall, the fluid friction with magnetic field 

irreversibility strongly dominates over heat transfer irreversi-

bility. Close to the right wall, the strength of the fluid parame-

ters will determine which mode of irreversibility dominates 

over the other. At our current parameters (with 0.5Be < ) the 

fluid friction with magnetic field irreversibility dominates over 

heat transfer irreversiility at this wall. 

 

6. Entropy generation minimization 

The minimization of the calculated entropy generation rate 

is of crucial importance in irreversibility analysis, we refer to 

Ref. [28] for a more comprehensive and detailed description 

of entropy generation minimization (EGM) analysis. In order 

to perform EGM analysis, we should proceed according to 

Ref. [28] and express the entropy generation rate sN  “as a 

function of the topology and physical characteristics of the 

system, namely, finite dimensions, shapes, materials, finite 

speeds, and finite-time intervals of operation.” For reasons 

listed below, it will be unnecessary to perform EGM analysis 

for our current investigation and hence the computational 

results presented for entropy generation rates will be consid-

ered sufficient. 

 

6.1 Topology and material properties 

We investigate the flow in a channel of constant shape and 

dimensions. Minimizing the entropy generation rates with 

respect to the topological characteristics of the problem will 

thus be inappropriate in the current investigation. We also 

limit our investigation to fluids and materials of constant com-

position and hence, for the same reason, EGM analysis with 

respect to material properties will not be necessary. 

 

6.2 Time 

Our results suggest that the lowest entropy generation rates 

occur in steady state. An attempt to perform an EGM analysis 

to obtain the optimal required time is thus inappropriate. 

 

6.3 Speeds 

The finite suction/injection velocity may appear as the most 

 
 

Fig. 29. Variation of  Bejan number with y  and Re . 

 

 
 

Fig. 30. Variation of  Bejan number with y  and M . 

 

 
 

Fig. 31. Variation of  Bejan number with y  and t . 
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plausible flow characteristic on which to base an EGM analy-

sis on. These speeds are measured in terms of the suction 

Reynolds number Re. However, Fig. 23 shows four regions 

in which the entropy generation rates alternate in magnitude 

for high and low Re  values. For example, close to the injec-

tion wall, low entropy generation rates are recorded at higher 

Re  values whereas the opposite behavior is observed close to 

the suction wall. These results thus show that is will not be 

possible to find an optimal Re  value such that the entropy 

generation rates are minimized throughout the channel. 

 

7. Conclusions 

We have computationally investigated the transient pressure 

driven flow of a fluid in the presence of constant suc-

tion/injection at the walls and employed second law analysis to 

study the irreversibility properties within the flow field. The 

suction/injection shifts the regions of maximum velocity away 

from the centerline and leads to non-symmetry in the velocity 

and temperature gradients. Close to the left wall which is sub-

jected to fluid injection, the fluid friction with magnetic field 

irreversibility strongly dominates over heat transfer irreversibil-

ity. This observation also obtains inside the main channel away 

from the right wall. Close to the right wall, which is subjected to 

fluid suction, the strength of the fluid parameters will determine 

which mode of irreversibility dominates over the other. It is thus 

possible to choose parameter values so that heat transfer irre-

versibility dominates in the vicinity of right wall region. 
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