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Abstract 

 
In this paper, a finite element formulation is developed for analyzing the axisymmetric thermal buckling of FGM annular plates of 

variable thickness subjected to thermal loads generally distributed nonuniformly along the plate radial coordinate. The FGM assumed to 
be isotropic with material properties graded in the thickness direction according to a simple power-law in terms of the plate thickness 
coordinate, and has symmetry with respect to the plate midplane. At first, the pre-buckling plane elasticity problem is developed and 
solved using the finite element method, to determine the distribution of the pre-buckling in-plane forces in terms of the temperature rise 
distribution. Subsequently, based on Kierchhoff plate theory and using the principle of minimum total potential energy, the weak form of 
the differential equation governing the plate thermal stability is derived, then by employing the finite element method, the stability equa-
tions are solved numerically to evaluate the thermal buckling load factor. Convergence and validation of the presented finite element 
model are investigated by comparing the numerical results with those available in the literature. Parametric studies are carried out to 
cover the effects of parameters including thickness-to-radius ratio, taper parameter and boundary conditions on the thermal buckling load 
factor of the plates.    
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1. Introduction 

Functionally graded materials (FGMs) have found impor-
tant applications especially in aerospace and nuclear industries. 
The applications include the situations where a structural ele-
ment has to experience thermal stresses due to a nonuniformly 
distributed temperature rise. Thermal buckling is an important 
failure mode in plates and shells. Geometrically perfect plates 
that are restrained from in-plane expansion when slowly 
heated generally develop compressive stresses and then 
buckle at a specific temperature. On the other hand, design of 
such structural elements with minimum weight is of special 
interest, particularly in weight sensitive applications, such as 
aircraft and space vehicles. By an accurate design of thickness 
distribution, one can get the same required buckling capacity 
of a plate with considerable weight reduction compared to its 
uniform thickness counterpart. 

Raju and Rao [1] studied the post-buckling behavior of ho-
mogenous isotropic circular plates of linearly tapered thick-
ness subject to thermal load by implementing a finite element 
formulation. They took into account the shear deformation 

effects in their modeling. Assuming Kierchhoff plate theory 
and applying the Rayleigh-Ritz method, Ciancio et al. [2] 
evaluated the buckling behavior of circular and annular plates 
of continuously variable thickness used as internal bulkheads 
in submersibles. They assumed an exponential function for the 
plate thickness variations. Özakça et al. [3] developed a finite 
element formulation for the buckling analysis of tapered circu-
lar and annular plates under mechanical in-plane loads, using 
an axisymmetric Mindlin-Reissner theory. Najafizadeh and 
Hedayati [4] presented an analytical solution for axisymmetric 
thermal and mechanical buckling of functionally graded 
circular plates of uniform thickness based on first order shear 
deformation plate theory (FSDPT). They studied the plate 
buckling under temperature differences of uniform, linear and 
nonlinear gradient through the thickness. Implementing the 
exact element method, Efraim and Eisenberger [5] carried out 
an exact vibration analysis of variable thickness thick annular 
isotropic and FGM plates based on FSDPT. Jalali et al. [6] 
analyzed the thermal stability behavior of laminated function-
ally graded circular sandwich plates of variable thickness, 
based on the FSDPT, using a pseudo-spectral method. The 
laminated FGM plate is considered as a sandwich plate consti-
tuted of a homogeneous core of variable thickness and two 
FGM face sheets. Zenkour and Sobhy [7] studied the thermal 
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buckling of several kinds of uniform thickness symmetric 
FGM sandwich plates with a homogeneous isotropic core 
layer using a sinusoidal shear deformation plate theory. They 
assumed thermal loads be uniform, linear and non-linear dis-
tribution through the thickness. 

This work presents a finite element formulation for analyz-
ing the axisymmetric thermal buckling of FGM annular plates 
of variable thickness under thermal loads having an arbitrary 
non-uniform distribution through the plate radial coordinate. 
The FGM assumed to be isotropic with properties graded in 
the thickness direction according to a simple power-law in 
terms of the plate thickness coordinate, and has symmetry 
with respect to the plate midplane. At first, the weak form of 
the pre-buckling plane elasticity is developed. Next, based on 
Kierchhoff plate theory and using the principle of minimum 
total potential energy, the weak form of the differential equa-
tion governing the plate thermal stability is derived. Second, 
using finite element method, the weak form of the plane elas-
ticity is descretized and solved to determine the distribution of 
the prebuckling inplane forces in terms of the temperature 
difference. Subsequently, the stability equation is descretized 
by FEM and solved to evaluate the thermal buckling load 
factor. Finally, validation and convergence of the present 
FEM is investigated by comparing the numerical results with 
a number of published works. Also, parametric studies are 
conducted to investigate the effects of some important pa-
rameters on the thermal buckling load factor of the plates. 

 

2. Theoretical formulation 

The geometry of a FGM annular plate of variable thickness 
is illustrated in Fig. 1 with its profile and selected coordinate 
axes. The thickness variations as in Ref. [1], is expressed gen-
erally by:  
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in which η denotes the degree of the thickness variations, and 
β is a nondimensional parameter defined by: 
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where hi, ho are the plate thicknesses at the interior and exte-
rior edges respectively. For a plate of linear thickness varia-
tions (η = 1), β is termed taper parameter. A material property, 
P, such as elastic modulus, E, and coefficient of thermal ex-
pansion, α, assumed to vary according to a simple power law 
along the thickness coordinate z at each side of the plate mid-
plane, and has symmetry with respect to the midplane, which 
can be expressed as: 
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where Pm, Pc are properties of metal and ceramic respectively, 
h(r) is the plate thickness at the radial position r, and k is the 
volume fraction index. In this study, however Poisson’s ratio, 
ν, which has small variations, is considered as a constant. 

In order to determine the pre-buckling membrane force dis-
tribution due to temperature rise in the annular plate, under 
axisymmetric conditions, here we develop the pre-buckling 
plane elasticity problem. Stating the static equilibrium equa-
tion along radial direction for an element of the plate in polar 
coordinate, we obtain: 
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where ,rN Nθ  are inplane radial and peripheral forces per 
unit length respectively. Solving the equation for Nθ , results 
in: 
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The plate constitutive equation in plane elasticity can be 

written as: 
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where [A] is the extensional stiffness, 0 0,r θε ε  are the radial 

 
 
Fig. 1. Geometry of an FGM annular plate of variable thickness, with 
coordinate axes. 
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and peripheral strains respectively, and ,T T
rN Nθ  denote the 

thermal forces per unit length. The strains in terms of radial 
displacement, u0, can be obtained as [8]: 

 

0 0 00 0, , 0r r

du u

dr r
θ θε ε γ= = =           (7)                                                  

 
and, the thermal forces are calculated by [8]: 
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By substituting from Eq. (3) for E(z) and α(z), into the 

above equation, and performing the integration, we obtain: 
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Substituting from Eq. (7) into Eq. (6), then in the equilib-

rium Eq. (5), and after some mathematical manipulations, 
yields the following differential equation in terms of radial 
displacement u0: 
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This second order differential equation often termed as 

membrane equation, should be solved with two boundary 
conditions at the inner and outer edges of the annular plate. At 
a free edge the boundary condition is du0/dr = 0, and at a fixed 
end is u0 = 0. The weak form of the differential equation, as it 
is useful to derive the finite element formulation for the plate 
prebuckling behavior is as follows: 
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where: 
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Now, in order to derive the equation governing the buckling 
behavior of the plate, we make use of the principle of mini-
mum total potential energy (PMPE). The strain energy stored 
in the FGM annular plate, due to bending during the thermal 
buckling, can be obtained by [9]: 
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in that, the strain components in terms of midplane strains and 
curvatures are stated as [9]: 
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where midplane strains 0 0 0, ,r rθ θε ε γ  and curvatures , ,r rθ θκ κ κ  
in terms of radial and lateral displacements u0, w are: 
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The stress components are expressed in terms of the strain 

components by the following constitutive equations, which are 
the Hook’s law: 
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By substituting from Eqs. (15)-(17), into Eq. (14), and per-

forming the integrations over z and θ, we obtain: 
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in that D = D11 is the plate flexural rigidity determined by: 
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In deriving Eq. (18), midplane strains are neglected, regard-
ing that we should calculate only the strain energy due to 
bending during the buckling phenomenon. During the plate 
buckling, the work done by the resultant inplane forces are 
calculated by the following integral:  
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Now, substituting from Eqs. (18) and (20) into the PMPE 

(δΠ = δU-δW = 0), the weak form of the differential equation 
governing the plate thermal buckling behavior obtained as the 
following: 
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The weak form together with the boundary conditions 

should be solved to obtain the lateral deflection of the plate. 
The boundary conditions at a clamped edge is w = dw/dr = 0, 
at a simply supported edge is w = Mr = 0, and at a free edge is 
Mr = Vr = 0 in that Vr is the effective shear force. 

 
3. Finite element formulation 

Since the equations governing the prebuckling and buckling 
behaviors of the variable thickness FGM annular plates are 
differential or variational equations with variable coefficients, 
in general there are no analytical solutions for them. In this 
section, finite element approximations for both prebuckling 
and buckling behaviors are derived. The total domain of the 
annular plate is divided into axisymmetric elements of equal 
radial lengths as shown in Fig. 2. 

In order to derive the finite element formulation for the 
plate prebuckling behavior, we make use of the weak form Eq. 
(12) stated for a typical element in membrane deformation. 
Each element of this type consists of two nodes, with one 
degree of freedom per each nod, as shown in Fig. 3. ξ is an 
element local coordinate, and L is the length of an assumed 
element. Implementing the Lagrange linear interpolation func-
tions, the element radial displacement function, ue, can be 
approximated by [10]: 
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Following the Rayleigh-Ritz procedure, we substitute the 
approximation function defined by Eq. (22) for u0, and 1

eN , 

2
eN  for δu0 into the weak form Eq. (12) stated for a typical 

element, then perform the integrations, to obtain the finite 
element formulation of the prebuckling displacement field as 
follows: 
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It should be mentioned that the force vector {f e} arises from 

the radial thermal stresses, and the force vector {Q e} is due to 
axisymmetric external radial loads which may be applied on 
the plate. After expanding Eq. (24) to the whole elements in 
the solution domain and then imposing the plate boundary 
conditions, the resulting set of linear algebraic equations are to 
be solved to obtain the displacement vector {u0} as function of 
the temperature index T0. Note that T (r) is expressible as T0 

× f(r). Then, using Eqs. (6) and (7) subsequently, the mem-
brane forces will be determined.     

To derive a finite element model for the plate stability equa-
tion, we apply the weak form given by Eq. (21) stated for a 
typical element. The equation is of second order, so we must 
save deflection and slope data for each nod. An element with 
its nodal degrees of freedom in transverse deflection is shown 
in Fig. 4. The approximation of the primary variables over a 
finite element should be such that it satisfies the essential 
boundary conditions of the element. So, we make use of Her-
mite family of interpolation functions to approximate the ele-
ment displacement function we, as [10]: 

 
Fig. 2. A schematic diagram showing the nodes and elements included 
in the problem domain. 

 

 
 
Fig. 3. An element with its nodal degrees of freedom in membrane 
deformation. 
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Substituting from Eq. (26) for w, and each of the shape 

functions for δw into the weak form of the stability equation 
(21) stated for an element, then performing the integrations, 
we obtain the discretized form of the plate stability equation as 
follows: 
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in which [ ]ek , [ ]eb  are the element elastic stiffness and 
geometric stiffness matrices respectively, which their entries 
are determined by the following integrals: 
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where e
ir R ξ= + , with e

iR  as the radial coordinate of the 
element internal node. After expanding Eq. (28) to the struc-
ture size, then imposing the plate boundary conditions, we 
obtain: 
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where [K], [B] are the global elastic stiffness and geometric 
stiffness matrices respectively, and { }Wɶ  is the generalized 
vector of nodal displacements, defined as: 

1 1 2 2{ } [ . . . ] .T
n nW w w wɶ θ θ θ=              (31) 

 
In the second of the above Eq. (29), Nr is the radial mem-

brane force which has been found previously by solving the 
discrete form of the membrane equation, Eq. (24), as a func-
tion of the radial coordinate r, multiplied by the temperature 
rise index T0, i.e.: 

 

0 ( ) .rN T N r=                              (32) 

 
Substituting from Eq. (32) into the second of Eq. (29), the 

global geometric stiffness may be rewritten as 0[ ] [ ']B T B= . 
So, Eq. (30) takes the form: 
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The recent equation is an eigenvalue problem, which can be 

solved to obtain the critical values of the temperature index 
T0cr as the eigenvalues, and the mode shapes of buckling as the 
eigenvectors. 

 
4. Numerical results and discussion 

In this section, the numerical results of the thermal buckling 
of circular and annular FGM plates having constant or vari-
able thicknesses under uniform or nonuniform temperature 
fields are presented. The solution convergence of the pre-
sented finite element formulation is investigated. Also, the F.E. 
model is validated by comparing its numerical results with 
those existing in the literature. Parametric studies are con-
ducted to cover the effects of a number of important parame-
ters on the critical thermal buckling of the annular plates. In 
these computations the FGM plate assumed to be made from a 
mixture of metal and ceramic whose material properties are as 
listed in Table 1, unless otherwise specified. 

 

4.1 Convergence of presented FEM formulation 

In any finite element model, errors caused by discretization 
arise, which include the errors due to approximate interpola-
tion functions, as well as those of the numerical integrations. 
The convergence of the present FEM has been investigated for 
a simply supported annular homogeneous plate with linearly 

 
 
Fig. 4. An element with its nodal degrees of freedom in transverse 
deflection. 

 

Table 1. Material properties of metal and ceramic in the FGM plate. 
 

Materials Young’s modulus 
Thermal expansion coeff. 

(1/◦C) 
Poisson’s ratio 

(--) 

Aluminum 70 23e-6 0.3 

Zirconia 380 7.4e-6 0.3 
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increasing thickness from center to the outer boundary, subject 
to a uniform temperature rise. Fig. 5 demonstrates the effect of 
the number of elements in the problem domain on the normal-
ized error. Selection of the larger number of elements results 
in the higher accuracy of the results. However, the normalized 
error descended relatively fast with increase in the number of 
elements.    

 

4.2 Verification of presented FEM formulation 

Since there are comparable submitted results only for ho-
mogenous plates, the problem is solved for two cases of ho-
mogenous plates, and compared with the existing results in the 
literature. For this purpose, the volume fraction index k is 
equated to zero. In Table 2, the values of the critical thermal 
buckling load factor obtained from the presented analysis 
along with those reported in Refs. [1, 3, 4, 6] and [8] are pre-
sented for the case of a homogenous full ceramic circular plate 
of constant thickness under a uniform temperature rise, and 
clamped at exterior edge. The results are presented for five 
different thickness-to-radius ratios, h/r0. Thermal buckling 
load factor, λT, is defined as [1]: 

 

( )20 012(1 ) / .T crT r hλ ν= +                     (35) 

 
As can be seen in Table 2, there is good agreement between 

the results of the present analysis with those reported in the 

references, particularly those associated with the smaller val-
ues of h/r0. This can be explained in this way that, the present 
FEM analysis is based on the Kierchhoff plate theory which 
has more accuracy for thin plates, while in the works reported 
in Refs. [1, 3] and [6] the shear deformation theories are im-
plemented for their analysis.  

Thermal buckling of homogenous circular plates with linear 
variations in their thickness, and simply supported at their 
edges are studied as the second case. In Fig. 6 the profiles of 
such plates are illustrated for a positive and a negative value of 
the taper parameter, i.e. for β > 0 and β < 0 respectively. The 
numerical values of the thermal buckling load factor obtained 
from the presented FEM, along with those reported in Refs. 
[1] and [6] are summarized in Table 3, sorted for 9 different 
values of β, and 4 different values of hi/ro. Again, the thermal 
buckling factor is defined by Eq. (35), in that h is to be re-
placed by hi. As mentioned previously, in Refs. [1] and [6] 
shear deformation is regarded, while the present FEM is based 
on the thin plate assumptions, and therefore, for smaller values 
of hi/ro, the FEM results have more correspondence with those 
reported in the references.    

It should be mentioned that, since there were no experimen-
tal data available, either published or from current work, the 
results of the present FEM are just compared to those of some 
other analytical/numerical models which were available in the 
literature, as summarized in Tables 2 and 3. 

 

4.3 Parametric studies 

In this subsection, the effects of a number of parameters on 
the thermal buckling load factor of the annular plates are stud-
ied. In Fig. 7 the critical buckling temperature index, T0cr, is 
plotted versus the volume fraction index, k, for uniform thick-
ness annular plates of h/ro = 0.2, and ri/ro = 2, under a uniform 
thermal load (T(r) = T0). The results are plotted for two differ-
ent kinds of supporting, a clamped at inner and outer edges 
(C-C) and a simply supported at both edges (S-S). The value 
of T0cr decreases as k increases for both kinds of supporting. 
This can be explained by noting that, as k increments, the vol-
ume percent of ceramic in FGM decreases, and as a result the 
plate bending stiffness decreases, regarding that the metal 

Table 2. Comparison of the present buckling load factor λT with the 
results reported in references for circular clamped plates of constant 
thickness. 
 

  h/r0 = 0.001 0.01 0.05 0.1 0.2 

Present 14.6819 14.6819 14.6819 14.6819 14.6819  

Ref. [1] 14.6825 - 14.5299 14.0910 12.5725 

Ref. [3] 14.6819 14.6746 14.5014 13.9885 12.2843 

Ref. [4] 14.6800 14.6800 14.6800 14.6800 14.6800 

Ref. [6] 14.6819 14.6758 14.5296 14.0909 12.5724 

Ref. [8] 14.6842 14.6842 14.6842 14.6842 14.6842 

 

 
Fig. 5. Convergence of the presented FEM solution with increase in the 
number of elements. 

 

 
(a) 

 

 
(b) 

 
Fig. 6. Profile of a circular plate with linear thickness variations for (a) 
β > 0; (b) β < 0. 
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Young’s modulus is less than that of ceramic. This causes a 
decrease in T0cr. 

Effect of thickness to radius ratio, h/ro, on T0cr is investi-
gated in Fig. 8, for two kinds of supporting, a C-C and a S-S, 
each one for two different types of temperature distributions, a 
uniform and a linear distribution. The annular plate is of uni-
form thickness, made fully of ceramic (k = 0), with ri/ro = 0.2. 
As seen in this figure, increasing h/ro results in increase in T0cr 
for all of the cases. Clamped plates have larger buckling tem-
perature than simply supported plates under the same thermal 
load distribution. Also, the plates subjected to linear tempera-
ture distribution buckle at larger T0cr than those which are un-
der uniform temperature rise. 

In Fig. 9 the buckling load factor λT is plotted versus the ta-
per parameter, β, for linearly variable thickness FGM annular 
plates under three different types of temperature rise distribu-
tions, a uniform, a linear, and a parabolic distribution. As seen 
in this figure, for all three kinds of the temperature distribu-
tions, increasing β results in decrease in T0cr.  

Effect of the inner-to-outer-radius ratio, ri/ro, in the thermal 
buckling load factor of annular plates of uniform thickness is 

investigated in Fig. 10, for 4 different types of edge supporting. 
In the plate with clamped supporting at both interior and exte-
rior edges (C-C), and in the plate simply supported at the both 
edges (S-S), the thermal load factor λT increases with increase 
in ri/ro. For the two other supporting types, there are no serious 

 
Fig. 8. Effect of h/ro ratio on the buckling temperature index T0cr in 
uniform thickness annular plates for two kinds of supporting, C-C, S-S. 
 
 

 
Fig. 9. Effect of taper parameter β on the buckling load factor λT of 
annular plates for uniform, linear, and parabolic temperature distribu-
tion. 

 

Table 3. Comparisons of the present buckling load factor λT for a homogenous circular simply-supported plate of linear thickness variations under a 
uniform thermal load. 
 

 β 

hi/r0 Reference 0.4 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 

0.001 
Present 

[1] 
[6] 

8.3154 
8.3160 
8.2517 

9.8002 
9.8008 
9.8171 

11.3569 
11.3578 
11.3572 

12.9848 
12.9855 
12.9829 

14.6819 
14.6825 
14.6819 

16.4468 
16.4472 
16.4574 

18.2776 
18.2780 
18.3133 

20.1731 
20.1734 
20.2322 

22.1318 
22.1319 
22.2276 

0.05 
Present 

[1] 
[6] 

8.3154 
8.2660 
8.3020 

9.8002 
8.2660 
9.7487 

11.3569 
11.2660 
11.2657 

12.9848 
12.8660 
12.8636 

14.6819 
14.5299 
14.5296 

16.4468 
16.2557 
16.2661 

18.2776 
18.0412 
18.0766 

20.1731 
19.8844 
19.9432 

22.1318 
21.7833 
21.8787 

0.10 
 

Present 
[1] 
[6] 

8.3154 
8.1200 
8.1562 

9.8002 
9.5320 
9.5488 

11.3569 
10.9999 
11.0001 

12.9848 
12.5208 
12.5186 

14.6819 
14.0911 
14.0909 

16.4468 
15.7076 
15.7178 

18.2776 
17.3669 
17.4013 

20.1731 
19.0658 
19.1233 

22.1318 
20.8010 
20.8944 

0.15 
Present 

[1] 
[6] 

8.3154 
7.8878 
7.9241 

9.8002 
9.2163 
9.2333 

11.3569 
10.5835 
10.5841 

12.9848 
11.9849 
11.9830 

14.6819 
13.4159 
13.4157 

16.4468 
14.8719 
14.8818 

18.2776 
16.3485 
16.3813 

20.1731 
17.8414 
17.8970 

22.1318 
19.3467 
19.4368 

 
 

 
Fig. 7. Effect of volume fraction index, k, on the buckling temperature 
index T0cr in uniform thickness annular plates for two kinds of support-
ing, C-C and S-S. 
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variations in λT. However, for the plate of F-C supporting, i.e. 
free at its interior edge and clamped at its exterior edge, λT 
decreases a little with increase in ri/ro, at interval ri/ro = [0.1 
0.3], but at the remaining interval, i.e. ri/ro = [0.3 0.5], λT has 
inclined. For plate with F-S supporting, λT declines very 
slightly with increase in ri/ro at the whole interval.  

In Figs. 11 and 12, the first mode shapes of buckling in ho-
mogenous circular and annular plates of linearly varying 
thickness are plotted for 3 different values of taper parameter, 
β. Mode shapes associated with circular plates having simply 
supported and clamped edges are shown in Figs. 11(a) and (b) 
respectively, and mode shapes of annular plates with S-S and 
C-C boundary conditions are depicted in Figs. 12(a) and (b) 
respectively. It is noticed that, in all of the cases, as the taper 
parameter increases, the plate maximum buckling deflection is 
shifted towards the exterior edge of the plate. This is in accor-
dance with one’s physical intuition, as for grater values of 
taper parameter the plate thickness and consequently the bend-
ing stiffness take smaller values at the points nearer to the 
exterior edges.    

 

5. Concluding remarks 

In this paper, a finite element formulation is derived for the 
thermal buckling behavior of axisymmetric FGM circular and 
annular plates of variable thickness, subjected to a temperature 
rise distribution that can be non-uniformly distributed along 
radial coordinate axis. The convergence of the FEM model is 
investigated, and also validated through comparison with ref-
erences. Parametric studies are conducted, to investigate the 
effect of a number of important parameters which lead to the 
following deductions: 

The value of the critical buckling temperature index, T0cr, 
decreases as the volume fraction index, k, increments. In the 
plates of uniform thickness, increasing h/ro results in increase 
in T0cr. Clamped plates have larger buckling temperatures than 
their simply supported counterparts under the same tempera-
ture distribution. Plates under linear temperature distribution 
buckle at larger T0cr than those subjected to uniform tempera-

ture rise. In tapered circular plates, λT decreases as β increases. 
In uniform thickness annular plates having C-C and S-S edge 
supports, λT increases as ri/ro increments in the interval [0.1 
0.5]. However, for the plates with F-S and F-C supporting 
types, there are no serious variations in λT in the interval. In 
the first mode shape of buckling of circular and annular plates 
with linearly variable thicknesses having S-S and/or C-C sup-
ports, as the taper parameter increases, the plate maximum 
buckling deflection is shifted towards the exterior edge of the 
plate.  

 
Fig. 10. Effect of ri/ro ratio on the thermal buckling load factor λT in 
uniform thickness annular plates for various kinds of edge supporting. 

 

 
(a) 

 

 
(b) 

 
Fig. 11. First mode shape of buckling in tapered circular plates for 3 
different values of β with (a) simply supported edges; (b) clamped 
edges. 

 
 

 
(a) 

 

 
(b) 

 
Fig. 12. First mode shape of buckling in tapered annular plates for 3 
different values of β with (a) simply supported edges; (b) clamped 
edges. 
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Nomenclature------------------------------------------------------------------------ 

[A]    : Extensional stiffness matrix 
D        : Plate flexural rigidity 
E      : Elastic modulus  
Ec, Em  : Elastic modulus of ceramic and metal resp. 
hi, ho   : Plate thicknesses at inner and outer edges 

resp. 
k        : Volume fraction index 
L        : Length of an element 
Mr            : Mechanical moment resultant 

θNNr ,    : Inplane mechanical force resultants 
TT

r NN θ,   : Inplane thermal force resultants 
eN1 , eN2   : Lagrangian shape functions 

P        : A material property  
Pc, Pm     : A material property of ceramic and metal 

resp. 
r        : Radial coordinate 
ri, ro     : Anular plate inner and outer radii resp. 
T0             : Temperature rise index  

T0cr       : Critical value of the temperature index  
U        : Strain energy stored in plate 
u0, w      : Midplate displacements along r and z coords.  
Vr       : Effective lateral shear force resultant  
W        : Work done by inplane forces due to buckling 
z        : Coordinate through the plate thickness 
α        : Coefficient of thermal expansion  
αc, αm     : Coefficient of thermal expansion of ceramic 

and metal resp. 
β      : Plate taper parameter 
∆T        : Temperature change 

00 , θεε r
0, θγ r

 : Midplane strains  
η         : Degree of the thickness variations 

θθ κκκ rr ,,   : Plate curvatures 
λT        : Thermal buckling load factor 
ν         : Poisson’s ratio  
ξ         : Element local coordinate 

θθ τσσ rr ,,   : Stress components  
eeee
4321 ,,, φφφφ : Hermitian shape functions 
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