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Abstract 

 

In this study, a modal superposition approach was adopted to derive the dynamic response of coupled vehicle and bridge systems. The 

train comprises a number of railway cars, each of which is modelled with ten degrees of freedom. The railway bridge was represented by 

a simply supported beam modelled as Euler-Bernoulli beam. In the numerical simulations, dynamic responses at the mid-span of the 

bridge and dynamic responses of the train under different train speeds are computed with random and non random rail irregularities. Ef-

fect of parameters like the depth and the position of the imperfection on the rail are taken into account. The coupled system of equations 

is integrated numerically by the newmark’s β method. The results obtained show that the rail irregularities affect the vertical acceleration 

of the train, which serves as a measure of the riding comfort of the trains moving over a bridge.   
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1. Introduction 

The dynamic of railway bridges under moving trains is im-

portant in the design of bridges and trains, and especially for 

high speed rail bridges. Three aspects need to be carefully 

taken into account in the analysis of the dynamic train-bridge 

system: the model of the bridge, the model of the train, and a 

good representation of rail irregularities. In the literature, the 

vehicle-bridge interaction problem is investigated using the 

beam models such as Euler-Bernoulli [1-4]. However, for the 

case when the cross section of the beam is relatively large in 

comparison with the beam span, the Timoshenko beam theory 

is employed by taking account of the effects of shear deforma-

tion and rotatory inertia in the analysis [4-6]. A general proce-

dure for the dynamic response analysis of coupled vehicle and 

bridge systems using the modes superposition method is pre-

sented in Refs. [7-9] for a simply supported beam subject to a 

moving train. The moving load model is generally simple if 

only the bridge response is desired, such as a concentrated 

force [1, 2, and 5], moving mass model, which considers 

gravitational as well as inertial effects of the train [1, 2, 4], and 

spring-mass-damper system [1, 2, 10-12]. The train is modu-

lated with two-wheel-set vehicles in Refs. [7, 11] and by two-

stage suspension vehicles in Refs. [8, 13], where the model of 

a railway vehicle consisting of rigid bodies with lumped 

masses representing components such as axles. Using modal 

superposition technique, the semi- analytical methods [3, 13] 

are used for resolving the moving load problems. On the other 

hand, the dynamic response analysis for discrete system can 

be found using the finite elements method [11, 14, 15]. Yang 

et al. [14] also analyzed the dynamic response of the train-

bridge system using finite elements method and newmark 

finite difference formula. Song [15] presented a new three-

dimensional finite element in the analysis of high-speed train-

bridge interactions. However, Cao [16] presented a semi-

analytical/FEM model for dynamic analysis of the continuous 

girder bridge under high speed train. There are numerous pub-

lications on the dynamic behavior of the railway bridge under 

moving train, which employed the experimental method. One 

can mention the experiments of Ref. [17], where the dynamic 

responses of the bridge such as the deflections, the accelera-

tions and the strains were measured by a laser velocity dis-

placement transducer accelerometers and strain gauges, re-

spectively. Zhang et al. [18] presented a numerical solution for 

the dynamic responses of a train-bridge interaction system 

subjected to multi-support seismic loads. And in Ref. [19] the 

experimental and numerical analysis of a composite bridge for 

high-speed trains is presented.  

Track irregularities may be caused by factors such as small 

imperfections in materials, imperfections in manufacturing of 

rails and rail joints, terrain irregularities, and errors in survey- 
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ing during design and construction. The track irregularities [10, 

20, 21] are a second source of bridge vibrations, and a first 

source of train vibrations. Some research work on the effect of 

rail imperfections on the dynamic responses of the entire train 

and bridge coupling system has been performed. One must 

refer to the works of Ref. [7], this paper introduces an analyti-

cal procedure to derive equations of motion for the train-

bridge interaction based on a modal superposition approach to 

investigate riding comfort of moving railway trains on bridges. 

To investigate the effect of track irregularity, we shall con-

sider three classes of the random irregularity: Class 4, 5 and 6 

and two cases of non-random irregularities: the first case 

represents the rail welds [22, 23] and the second case repre-

sents the corrugation wavelengths [24] on the rail surface. 

Other studies [25, 26] using Sperling’s Ride Index for appre-

ciating the riding comfort of the train. However, in Ref. [27], 

the Sperling’s ride index is replaced by the standardized ISO, 

the riding comfort of trains running on a rationalized monorail 

bridge was estimated using 1/3 octave band spectral analysis 

based on ISO 2631 [28].  

To carry out the analysis, the dynamic amplification factor 

(DAF), as the ratio of the maximum response resulting from 

moving loads, to the maximum static response, is calculated as 

the most important parameter in the bridge response. In addi-

tion to the DAF, dynamic responses of the train are evaluated 

in this study. A comfort index based on the vertical accelera-

tion response of the train is used for evaluating the riding com-

fort of the train. Finally, the dynamic behavior of the bridge 

and of the train is carried out through a parametric study for 

various speeds, for the rail random irregularities i.e. rail 

roughness and non random irregularities with various depth 

and position of the imperfection on the bridge. 

 

2. Dynamic model of a train-bridge interaction sys-

tem 

2.1 Vehicle model  

The train can be modeled as several independent vehicle 

elements as shown in Fig. 1, and runs on the bridge at a con-

stant speed. In studying a vehicle’s vertical vibration, a ten 

degrees-of-freedom model is taken. Each vehicle element is 

composed of a car body, with a mass m0 and mass moment of 

inertia I0, two bogies, each one with a mass m1,2 and mass 

moment of inertia I1,2, four wheel-sets, each one with a mass 

mwk (k = 1,4), and the connections between the components. 

The connections are characterized by the suspension system, 

which consists of springs and dampers with identical proper-

ties. The wheel-set and the bogie are connected by the primary 

suspension, while the car body is supported on the bogie 

through the secondary suspension. The system model adopts 

the following assumptions: (1) the springs in the vehicle ele-

ments are all with a linear property, and the dampers all with 

viscous property, (2) for the car body and bogies, vertical dis-

placement and pitching motion is adopted, (3) the wheels are 

assumed to remain in contact with the rail at all times. The 

vertical displacement, velocity and acceleration of the wheel 

are, respectively, defined by: 
 

( , ) ( ) , 1,4
wk k k k k k
z w x t r x w r k= + = + =   (1) 

( ), 1,4
wk k k k
z w v w r k′ ′= + + =ɺɺ   (2) 

2 22 , 1,4
wk k k k k
z w vw v w v r k′ ′′ ′′= + + + =ɺɺ ɺɺɺ   (3) 

 

in which the dot represents differentiation with respect to time 

t; and the prime represents differentiation with respect to the 

abscissa x; v is the horizontal velocity of the moving vehicle; 

wk is the bridge deflection; and rk, are irregularities of the rail. 

The interaction forces between the car body and the bogies 

are written as 

 

0 1 0 1 1 0 1
( ) ( )

R p R p R
F k z z c z z= − + −ɺ ɺ   (4) 

0 2 0 2 2 0 2
( ) ( ) .

L p L p L
F k z z c z zɺ ɺ= − + −   (5) 

 

The interaction forces between the bogies and the wheel-set 

are written as 

 

1 1 1 1 1 1 1
( ) ( )

w s R w s R w
F k z z c z z= − + −ɺ ɺ   (6a) 

2 2 1 2 2 1 2
( ) ( )

w s L w s L w
F k z z c z z= − + −ɺ ɺ   (6b) 

3 3 2 3 3 2 3
( ) ( )

w s R w s R w
F k z z c z z= − + −ɺ ɺ   (6c) 

4 4 2 4 4 2 4
( ) ( ) .

w s L w s L w
F k z z c z zɺ ɺ= − + −   (6d) 

 

The internal forces and inertia forces of the car body, the 

bogies and the axles are shown in Fig. 2.  

The dynamic equilibrium equations of the mass m0 (car 

 
 

Fig. 1. Model of a railway vehicle. 

 

 

 
 

Fig. 2. The interaction forces between the vehicle of the train and 

bridge. 
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body) are as follows:  

 

0 0 0 0 0 0 0 0
0

R
m b l z I F lθ+ + =ɺɺɺɺ   (7) 

0 0 0 0 0 0 0 0
0 .

L
m a l z I F lɺɺɺɺ θ− + =   (8) 

 

The dynamic equilibrium equations of the mass m1 (bogie 

1) are as follows: 

 

1 1 1 1 0 1 1 1 1 1 1
0

R w
mb l z F b l I F lθ− + + =ɺɺɺɺ   (9) 

1 1 1 1 0 1 1 1 1 2 1
0 .

R w
m a l z F a l I F lɺɺɺɺ θ− − + =   (10) 

 

The dynamic equilibrium equations of the mass m2 (bogie 

2) are as follows: 

 

2 2 2 2 0 2 2 2 2 3 2
0

L w
m b l z F b l I F lθ− + + =ɺɺɺɺ   (11) 

2 2 2 2 0 2 2 2 2 4 2
0

L w
m a l z F a l I F lθ− − + =ɺɺɺɺ   (12) 

 

where ai + bi = 1, i = 0, 1, 2 with ai, and bi are the coefficients 

of length. 

By using the Eqs. (1)-(6) in the Eqs. (7)-(12), the coupling 

of the dynamic equations, we obtain the following: 

 

{ } { } { } { }v v v v v v v
M z C z K z F+ + =          ɺɺ ɺ   (13) 

 

where [Mv], [Cv], and [Kv] are respectively, the mass, damping 

and stiffness matrices of the vehicle and {F}, is the interaction 

force vector applied on the vehicle; {zv} = {z1R, z1L, z2R, z2L, 

z0R, z0L}
T
, { }vzɺ  and{ }vzɺɺ  are respectively, displacement, ve-

locity and acceleration vectors of the vehicle system. The ex-

pressions of the matrices and the vectors are given in appendix 

A. 

The vertical and rotation displacements of the centers of 

gravity are given by 

 

 and ( ) / , 0,1,2 .
i i iL i iR i iR iL i
z a z b z z z l iθ= + = − =   (14) 

 

2.2 Bridge model 

The bridge subsystem is modeled as a uniform simply sup-

ported Euler-Bernoulli beams as shown in Fig. 1. The motion 

of the vehicle is defined by the wheels coordinates of the ve-

hicle. With the vehicle moving from left to right, the longitu-

dinal positions of the wheel of the vehicle are, respectively, 

 

1 2 1 3 1 1 0 2 2

4 1 1 0 2 2

, , ,

.

x vt x vt l x vt a l l a l

x vt a l l b l

= = − = − − +

= − − −
  (15) 

 

The equation of forced vibration for a bridge is obtained as  
 

{ } { } { } { }
1

nf

b b b k bk

k

M w C w K w Fδ
=

+ + =           ∑ɺɺ ɺ   (16) 

 

where [Mb], [Cb] and [Kb] denote mass, damping and stiffness 

matrices of the bridge system, respectively. With, nf is the 

number of interaction forces,
k

δ is Dirac function. 

The force Fbk transferred to the bridge can be written as 

 

.
bk wk wk wk wk

F m z F Rɺɺ= − +   (17) 

 

The static vehicular loads acting on the bridge are given by: 

 

1 1 0 0 1 1
( ( ) )

w w
R b b m m m g= + +   (18a) 

2 1 0 0 1 2
( ( ) )

w w
R a b m m m g= + +   (18b) 

3 2 0 0 2 3
( ( ) )

w w
R b a m m m g= + +   (18c) 

4 2 0 0 2 4
( ( ) ) .

w w
R a a m m m g= + +   (18d) 

 

Substituting the acceleration of the wheel 
wk
zɺɺ (Eq. (3)) into 

Eq. (17) yields: 

 
2 2( 2 ) .

bk wk k k k k wk wk
F m w vw v w v r F Rɺɺ ɺ ′ ′′ ′′= + + + − +   (19) 

 

By modal superposition and separation of variables, the de-

flection of the bridge can be expressed as  

 

1

( , ) ( ) ( )
n

j j

j

w x t x q tφ
=

=∑   (20) 

 

where {qj(t), j = 1,2,…,n} are the generalized coordinates, n is 

the number of the adopted vibration modes. 

However the vibration modes are assumed by 
 

( ) sin( ) .
j
x j x Lφ π=   (21) 

 

The coupling of Eqs. (13) and (16) gives a system contain-

ing the modal components of the bridge and the physical com-

ponents of the vehicle: 
 

2
0

0

2

Tsk

bbbb

l

v v v

sk v

Tsk

bb bb

l

v vv

sk sk v

c
CM q q

m L
M z z

c C

k
K q F

m L
z F

k vc K

 
− Φ     + +      

      − Φ 

 
− Φ      =    

    ′− Φ − Φ 

ɺɺ ɺ

ɺɺ ɺ

  (22) 

 

where each sub-matrix of the matrices involved is given be-

low: 

 

1

2 nf
T

bb k wk k

kl

M I m
m L

φ φ
=

= +   ∑   (23a) 

( )
1

2
2 2 k

nf
T T

bb j j k wk k sk k

kl

C diag v m c
m L

ξ ω φ φ φ φ
=

  ′= + +  ∑   (23b) 

2 2

1

2
( )

nf
T T T

bb j k wk k k sk k k sk k

kl

K diag v m v c k
m L

ω φ φ φ φ φ φ
=

  ′′ ′= + + +  ∑   

  (23c) 



954 K. Youcef et al. / Journal of Mechanical Science and Technology 27 (4) (2013) 951~962 

 

 

( ) 2

1

2 ( )
nf

T

bb l wk wk k sk k sk k k

k

F m L R v m r vc r k r φ
=

′′ ′= − + + +∑  (23d) 

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

0

0

s s

s s

s s

vv

s s

vc r k r

vc r k r

vc r k r
F

vc r k r

′+ 
 ′ + 
 ′ + 

=  ′ + 
 
 
  

  (23e) 

{ }1 2
( ) ( ) ( ) ,

k k k n k
x x xφ φ φ φ= ⋯   (23f) 

1 1 2 1 1

1 2 2 2 2

1 3 2 3 3

1 4 2 4 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0

n

n

n

n

x x x

x x x

x x x

x x x

φ φ φ
φ φ φ
φ φ φ
φ φ φ

 
 
 
 

Φ =  
 
 
 
  

⋯

⋯

⋯

⋯

⋯

⋯

  (23g) 

 

where ml, E, I, ωj and ξj are, respectively, the per-unit-length 

mass, the Young’s modulus, the flexural moment of inertia, 

the jth undamped natural pulsation and modal damping ratio 

of the bridge. 

The natural frequency of the beam is given by 
 

( )2 .
j l

j L EI mω π=   (24) 

 

The system of differential Eq. (22) can be solved with dif-

ferent integration techniques. In this study, the Eq. (22) are 

solved using implicit newmark integration scheme [29] and ∆t 

= 2.5e-4 s. This method yields a stable and accurate solution, 

with Newmark’s parameters γ = 0.5 and β = 0.25. A computer 

program in FORTRAN is developed for the analysis of rail-

ways defects on the dynamic response of a bridge. 

Bridge response is defined in terms of the dynamic amplifi-

cation factor (DAF), which is a ratio of the maximum re-

sponse resulting from moving loads, to the maximum static 

response. The dynamic effects induced by the moving train on 

the railway bridge were investigated by computing the DAF, 

defined as 

 

( ) ( )
d s

DAF R x R x=   (25) 

 

where Rd (x) is the maximum dynamic displacement and Rs (x) 

is the maximum static displacement (null speed) at the mid-

span of the bridge.  

The dimensionless frequency parameter as α = fv / fb is de-

fined as the ratio of the excitation frequency of the moving 

train, to the natural frequency of vibrations of the bridge. 

When fv equals fb (α = 1), the resonance of the bridge and 

trainload is very obvious. The critical speeds to resonate under 

the passage of the train are provided [30]: 

 

, 1,2,3, 1,2,3, ,
cr bj
v df k j k= = =… …   (26) 

 

where v is the train speed and d is the vehicle length. 

The dynamic response of the bridge is estimated by super-

position of the modes up to the 20
th
.  

 

3. Validation 

To validate the present algorithm, a simple example is con-

sidered (Fig. 3), which has been studied by several authors 

[31]. In these studies, the analytical solution of the interaction 

problem between a simply supported beam and a single de-

gree of freedom (SDOF) moving mass-spring system (MS), 

where damping of the bridge and of the vehicle was ignored, 

as suggested in Ref. [2].  

As shown in Fig. 3, a simple beam of span length L = 25 m 

is subjected to a moving mass-spring. The flowing data are 

adopted: Young’s modulus E = 2.87 GPa; moment of inertia I 

= 2.90 m
4
, mass per unit length ml = 2303 kg/m, suspended 

mass mv = 5750 kg, suspension stiffness kv = 1595 kN/m, and 

speed v = 100 km/h (27.78 m/s). The results obtained are pre-

sented in Fig. 4 and compared to those obtained in Ref. [2]. 

From comparison, one can note that the present algorithm is in 

very good agreement with this reference. 

 

4. Numerical study 

This example serves to illustrate the effects of rail rough-

ness and rail imperfections on the dynamic behavior of bridge 

and vehicle. Let us consider the train model, which is shown 

in Fig. 1, consisting of five identical vehicles (Nv = 5), travel-

ing over a simply-supported bridge. The distance between the 

rear wheel of a vehicle and the front wheel of the following 

vehicle is 4 m. The data assumed below in Table 1 are close to 

those used in the case of high-speed train and railway bridges.  

The first natural frequency of the bridge is fb = 3.24 Hz. 

From Eq. (26), we obtain vcr1 = 77.80 m/s. Similarly, the sec-

ond, the third, and the fourth speeds are vcr2 = 38.9 m/s, vcr3 = 

25.93 m/s, and vcr4 = 19.45 m/s. 

 

4.1 Effects of random irregularities 

The rail irregularities are a second source of bridge vibra-

tions, and a first source of train vibrations. Rail irregularities 

can be divided into random and non-random irregularities. 

The roughness of the rails is included in the category of ran-

dom irregularities. The sample of rail irregularities can be 

produced by inverse Fourier transform shown as follows: 

 
 

Fig. 3. Beam subjected to a moving mass-spring system. 
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( ) ( )2

0

1

( ) 4 cos
N

r sk s sk k

k

r x A xω ω ω ω ϕ
−

=

= ∆ −∑   (27) 

 

where Ar is the magnitude parameter (m
3
/cycle), ωs0 = 1/(2π), 

the frequency of discontinuity (cycle/m), ωsk = k.∆ω, the num-

ber of waves (cycle/m), it is the frequency within the interval 

[ωmin, ωmax], the frequency increment is defined as ∆ω = 

2π/(Nλc), λc = 2L, L is the length of the bridge, N is the total 

number of terms used to determine the rail surface roughness 

and x is the position measured from the left end of bridge. 

Introducing the last expressions in Eq. (27), from where: 

 

( )
2

1 0

2 2
( ) 4 cos .

N

r sk k

k c s c

k
r x A x

π π
ω ϕ

λ ω λ

−

=

 
= −  

 
∑   (28) 

 

By using FFT algorithm with Monte Carlo simulation to 

generate a random number φk uniformly distributed between 0 

and 2π [32]. The railway track quality is categorized into clas-

ses ranging from the poorest in class 1 to the finest in class 6 

designated by the federal railroad administration (FRA), USA. 

To investigate the effect of track irregularity, we shall con-

sider three classes of track irregularity: class 4, class 5 and 

class 6. For track class 4, the route frequency parameters are 

ωmin = 0.0233 (cycle/m) and ωmax = 0.131 (cycle/m) and the 

value of the spectral roughness coefficient is Ar = 2.75 × 10
-8
 

(m
3
/cycle) [33]. For the other classes of track irregularity, i.e. 

classes 5 and 6 are generated accordingly by proportion. The 

irregular profiles r(x) of the three classes of tracks are com-

puted with N = 180 and plotted in Fig. 5. In this study the 

frequency increment is defined as ∆ω = 2π/ (N × λc) = 
2π/(180× 2× 30) = 5.81e-4 (cycle/m). Then in Ref. [1] the 
frequency increment is given by ∆ω = (ωmax - ωmin)/N = (0.131 

- 0.0233)/180 = 5.9e-4 (cycle/m), the result is the same. 

To carry out the analysis, the computations of the dynamic 

amplification factor (DAF) are made in the interval [0, 90 m/s] 

with a step of 5 m/s. Fig. 6 shows the dynamic amplificatory 

factor as a function of the speed for the smooth track and with 

tree different classes of track irregularity. The dynamic ampli-

fication factor increases as the train speed increases and reach-

es its maximum at v = 77.5 m/s which coincides very well 

with critical speed (vcr1 = 77.8 m/s) predicted by the formula 

(26). For bridge subjected to high-speed trains, the excessive 

vibration occurs due to resonance phenomenon. Also, from 

Table 1. Parameters of the vehicle, and of the bridge. 
 

Mass of car body (t) 41.75 

Mass of bogie (t) 3.04 

Mass of wheel (t) 1.7 

Mass moment of inertia of car body (t-m2) 2086 

Mass moment of inertia of bogie (t-m2) 3.93 

Stiffness of primary suspension system (kN/m) 530 

Stiffness of secondary suspension system (kN/m) 1180 

Damping of primary suspension system (kN-s/m) 90.2 

Damping of secondary suspension system (kN-s/m) 39.2 

Distance between centers of gravity of bogies (m) 17.5 

Distance between two centers of axles (m) 2.5 

Length of the vehicle (m) 24 

Coefficients of length 0.5 

Young’s modulus of the bridge (GPa) 200 

Per-unit-length mass (t/m) 10 

Flexural moment of inertia (m4) 0.17238 

Damping coefficient (%) 2.5 

Length of bridge unit (m) 30 

Mass of car body (t) 41.75 

Mass of bogie (t) 3.04 
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Fig. 4. The dynamic response of the beam and spring-mass. 
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Fig. 5. Profiles for three classes of railway track quality. 
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Fig. 6, we notice that the differences between the two cases 

Smooth and FRA class 6 are slight. On the other hand for the 

two other cases, one notes that the difference is more signifi-

cant and almost independent the speed of the train. The ran-

dom irregularities lead to a little increase of the dynamic am-

plification factor for FRA classes 4, 5, and 6 of about 0.89%, 

3.11%, 7.11%, respectively.  

The time history deflection of the midpoint of the bridge 

with and without rail roughness (FRA class 5) has been plot-

ted in Fig. 7 for vcr4 = 20 m/s. As shown in this figure, the rail 

roughness FRA class 5 has little effect on the vertical dis-

placement of the bridge. The random irregularities affect little 

the dynamic responses of the bridge. 

The vertical displacement, rotation displacement, vertical 

acceleration and rotation acceleration of the first vehicle body 

versus time t with and without rail roughness (FRA class 5) 

with v = 20 m/s are shown in Figs. 8(a)-(d) respectively. 

As shows in Figs. 8, the rail roughness FRA class 5 affects 

the dynamic response of the train. The riding comfort of trains 

is a parameter of great importance for the vehicles, especially 

for high-speed trains. The accelerations response of the train 

serves as a measure of the riding comfort. The maximum ver-
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(b) Rotation displacement 
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(c) Vertical acceleration 
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(d) Rotation acceleration 
 

Fig. 8. Dynamic responses of the train with and without rail roughness 

(train speed v = 20 m/s). 
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Fig. 6. DAF of bridge at mid-span under three classes of track irregu-

larity. 
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Fig. 7. Mid-span deflection versus time t for a bridge with and without 

rail roughness (train speed v = 20 m/s). 
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tical accelerations of the train for the three classes of track 

irregularity under different train speeds have been plotted in 

Fig. 9. 

Only the case FRA class 4 exceed the tolerance limit of 

0.49 m/s
2
 (= 0.05 g) tentatively adopted by the Taiwan high 

speed rails [33] and France-SNCF [34] concerning passen-

gers’ riding comfort. The maximum vertical acceleration of 

the train moving over irregular tracks of the class 4 reaches the 

limit value a = 0.6 m/s
2
 at train speed v = 75 m/s which is 

almost coincident with vcr1 = 77.78 m/s.  

The vertical acceleration of the train is significantly affected 

by the rail roughness. It remains nearly independent of the 

train speed in the moderate to high speed range. The estimated 

asymptotic values for FRA classes 4, 5, 6 and smooth are 0.6, 

0.4, 0.3 and 0.2 m/s
2
, respectively. Then for the less strict limit 

of 1.0 m/s
2
 suggested by Eurocode [35], all classes of track 

irregularity are acceptable (Fig. 9). 

Maximum rotation acceleration of the train is presented in 

Fig. 10 for the three different classes of track quality, which 

shows a trend of increase for higher train speeds. The rotation 

acceleration of the train increases with a lower railway track 

quality and it is proportional to the magnitude of the rough-

ness.  

The effect of rail irregularities is generally small on the 

bridge response, i.e. bridge dynamic displacement and DAF. 

However, it can affect drastically the rotation acceleration and 

vertical acceleration of the train. The reason for this is that the 

exciting frequencies induced by track irregularities are filtered 

out by the suspension system of vehicle in transmission to the 

car body. 
 

4.2 Effects of non-random irregularities 

The non-random irregularities on the rail surface can be 

classified in two categories: periodic and discrete irregularities. 

The non-random irregularities can be mathematically ex-

pressed by the following function, which is used in Ref. [33]: 
 

( ) ( )1
1 cos2 / .

2
d
r x xζ π η= −   (29) 

 

For a series of non-random irregularities, we obtain the fol-

lowing:  

 

( )
1 2 ( )

1 cos ,
2

0, ,

d

x C
forC x C

r x

elsewhere

π
ζ η

η

   −
− ≤ ≤ +    =    




  (30) 

 

where 
 

( ), 0,1, ,
i

C B k A k Nη= + + = K   (31) 

 

and 

 

( ) ( ) .
i

N L B A η= − +   (32) 

 

Nj is the imperfection number, ζ, η denote the depth and 

length of the imperfection, respectively, A is the rail length 

between two imperfections, B is the distance from the origin 

to the first imperfection.  

The non-random irregularities exist in a number of different 

forms. Two cases of non-random irregularities that are often 

observed in practice are considered in this study (Fig. 11) in 

order to analyze their effects on the dynamic behavior of the 

bridge and of the train. The first case represents the discrete 
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Fig. 9. Maximum vertical acceleration of the train for three classes 

FRA class 4, 5 and 6. 

 

0 10 20 30 40 50 60 70 80 90
0,00

0,03

0,06

0,09

0,12

0,15

0,18

0,21

M
a
x
. 
ro

ta
ti
o
n
 a

c
c
e
le

ra
ti
o
n
 o

f 
tr
a
in

 (
ra

d
/s

2
)

Train speed (m/s)

 Smooth

 FRA class 6

 FRA class 5

 FRA class 4

 
 

Fig. 10. Maximum rotation acceleration of the train for three classes 

FRA class 4, 5 and 6. 
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Fig. 11. Cases of the non-random irregularities. 

 

 



958 K. Youcef et al. / Journal of Mechanical Science and Technology 27 (4) (2013) 951~962 

 

 

irregularities, as possible rail welds or corrugation, Fig. 11(a); 

the weld geometry is dominated by an irregularity with a 

longer length-scale and has a very bad quality. The second 

case represents the corrugation wavelengths (periodic irregu-

larities) on the rail surface that can be caused by a phenome-

non of fatigue of the rail due to dynamic behavior of the track, 

Fig. 11(b).  

The non-random irregularities parameters of Fig. 11 are re-

ported in Table 2. For case 1 if B = (L-η)/2 = 12.5 m, i.e., the 

imperfection of the rail is located at the mid-span of bridge. 

However, for case 2, the imperfection of the rail is located at B 

= 0 m. 

In Fig. 12, we assumed that the velocity of the train in-

creases from 0 to 90 m/s with an increment of 5 m/s. This 

shows the DAF versus speed for the perfect track and with 

different cases of the non-random irregularities (cases 1 and 2). 

As can be seen from Fig. 12 for case 1 and 2, the introduc-

tion of non-random irregularities on rail significantly increases 

the dynamic response of the bridge (DAF) and particularly 

around the peak response caused by the resonance. Which is 

true for a great range of vehicle speeds (more than 60 m/s) 

representing a moderate to high vehicle speed.  

Fig. 13 shows the time history of the bridge deflection with 

and without non-random irregularities for cases 1 and 2, with 

v = 80 m/s near the critical speed (vcr1 = 77.8 m/s). As shown 

in Fig. 13 the non-random irregularities lead to an increase of 

the maximum vertical displacement of bridge for cases 1 and 

2 of about 37.23%, 23.87% , respectively.  

The vertical displacement, vertical acceleration, rotation 

displacement and rotation acceleration of train versus time t 

for two cases 1 and 2 with v = 80 m/s are shown in Figs. 

14(a)-(d), respectively. The moments of entry of the wheels 1, 

2, 3 and 4 in the rail imperfection are 0.156 s, 0.187 s, 0.375 s 

and 0.406 s, respectively, as shown in Figs. 14(c) and 14(d). 

Figs. 14 shows the sensitivity of the dynamic response of the 

train due to the presence of the non-random irregularities par-

ticularly of the vertical acceleration. The vertical acceleration 

of the train has a significant variation when the vehicle arrives 

at the position of non-random irregularities, as shown in Fig. 

14(c). It should be noted that the acceleration of the car body 

has been taken as a measure of the passenger’s riding comfort.  

The effect of the imperfection depth (ζ) on the maximum 

vertical acceleration of the train for cases 1 and 2 under differ-

ent train speeds (0 to 130 m/s) is plotted in Figs. 15(a) and 

15(b), respectively. The vehicles on the structure increased the 

unit mass and generally lowered the natural frequencies of 

vibration and decrease the impact. The maximum vertical 

accelerations of the train shown in Figs. 15(a) and 15(b) tend 

to increase when ζ is augmented. It generally increases as the 

train speed increases. The non-random irregularities have a 

considerable effect on train vertical acceleration for high 

speeds (more than 40 m/s) representing a moderate to high 

speed train for cases 1 and 2. 

It is interesting to note that, for low speeds (less than 40 

m/s) the effect of the non-random irregularities on vertical 

acceleration of the train is smaller Fig. 15(a) (case 1). One 

notes that the allowable maximum vertical acceleration of 

0.49 m/s
2
 recommended by France-SNCF was exceeded only 

when ζ = 10 mm, in the case 1 for the train speed more than 

70 m/s (Fig. 15(a)) and in the case 2 for the train speed more 

than 45 m/s (Fig. 15(b)).This is certainly harmful if the riding 

comfort of the train is concerned. Then for the less strict limit 

of 1.0 m/s
2
 suggested by Eurocode [35], all cases are accept-

able. 

To investigate the influence of the distance B on the vertical 

acceleration of the train, nineteen different values of B are 

used.  
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Fig. 13. Mid-span deflection of the bridge versus time t for cases 1 and 

2 (train speed v = 80 m/s). 

 

Table 2. The non-random irregularities parameters. 
 

 Case 1 Case 2 

A (m) 0 5 

B (m) 12.5 0 

ζ (m) 0.005 0.005     

η (m) 5 5 

Ni 1 3 
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Fig. 12. DAF of bridge at mid-span for cases 1 and 2. 
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The value of B is calculated as follows: 
 

/ 30, 1,2, ,
B B B

B i L i N= × = K   (33) 

 

where NB is the number of B values. 

Fig. 16 shows the effect of B on the vertical acceleration of 

the train for case 1 under different values of ζ and with v = 80 

m/s. The maximum vertical acceleration of the train is 0.58 

m/s
2
 for B = 11 m and 16 m. However, if the imperfection is 

located at mid-span B = (L-η)/2 = 12.5 m, the vertical accel-
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Fig. 14. Dynamic responses of the train for cases 1 and 2 with train speed v = 80 m/s. 
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Fig. 15. The comparison of the effect of ζ on the vertical acceleration of the train for cases 1 and 2 under different train speeds. 
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eration of the train is only 0.54 m/s
2
. It is obvious, since the 

optimal dynamic response is not forcing in the medium of the 

beam like the case of the static response. In general, the posi-

tion of the imperfection corresponding to the maximum value 

of the vertical acceleration of the train is around the mid-span 

of bridge. 

 

5. Conclusions 

The dynamic responses of the railway bridge and of the 

train are investigated by a modal superposition method. The 

riding comfort which is a key factor in the design of the high 

speed train is evaluated by the vertical acceleration of the car 

body. The following conclusions can be drawn from this 

study: 

(1) The critical speed for resonance solved by the present 

method coincides very well with that predicted using Eq. (26) 

derived in Ref. [30]. For bridge subjected to high-speed trains, 

the excessive vibration occurs due to resonance phenomenon.  

(2) The presence of the rail random irregularities affects lit-

tle the responses of the bridge. However, it can affect consid-

erably the dynamic responses of the train, i.e. the rotation ac-

celeration and vertical acceleration, which can be harmful for 

the riding comfort of the train. The vertical acceleration re-

mains nearly independent of the train speed in the moderate to 

high speed range (more than 40 m/s).  

(3) The introduction of non-random irregularities on the rail 

significantly increases the dynamic response of the bridge 

(DAF) and particularly around the peak response caused by 

the resonance.  

(4) The dynamic responses of the train are very sensitive to 

the non-random irregularities; it tends to increase when depth 

of the imperfection (ζ) is augmented and it increases as the 

train speed increases. The vertical acceleration has significant 

variation when the vehicle arrives at the position of non-

random irregularities. This fact is certainly harmful for the 

passenger’s riding comfort of the trains.  

(5) In general, the dynamic vertical acceleration of the train 

attains its maximum value when the imperfection is located 

around the mid-span of bridge. Therefore, maintaining a 

smooth track surface in railway engineering is very important. 

 

Nomenclature------------------------------------------------------------------------ 

m0     : Mass of car body    

m1,2    : Mass of bogie 

mwk   : Mass of wheel 

I0 : Mass moment of inertia of car body  

I1,2  : Mass moment of inertia of bogie 

kp1,2    : Stiffness of primary suspension system 

ksk  : Stiffness of secondary suspension system 

cp1,2    : Damping of primary suspension system 

csk    : Damping of secondary suspension system 

l0  : Distance between centers of gravity of bogies  

l1,2 : Distance between two centers of axles  

d  : Length of the vehicle 

ai, bi   : Coefficients of length  

Eb  : Young’s modulus of the bridge 

mb     : Per-unit-length mass  

Ib     : Flexural moment of inertia  

ξ     : Damping coefficient of the bridge 

L : Length of bridge unit 
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Appendix A  

The mass, damping and stiffness matrices of the vehicle are 

respectively: 
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