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Abstract 
 

The problem of robust finite-time chaos synchronization between two chaotic nonlinear gyroscopes with model uncertainties, external 

disturbances and unknown parameters is investigated. Appropriate adaptive laws are derived to tackle the unknown parameters. Based on 

the adaptive laws and the finite-time control technique, suitable adaptive control laws are designed to ensure the stability of the resulting 

synchronization error system in a given finite time. Numerical simulations and comparative examples are presented to illustrate the appli-

cability and usefulness of the proposed finite-time control strategy.    
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1. Introduction 

In recent years, synchronization of chaotic dynamical sys-

tems has attracted the attention of many researchers due to its 

powerful applications in physics and engineering sciences, 

such as secure communication, chemical reactions, optics, 

lasers, power convertors, biological systems, mechanical sys-

tems, etc (Chen and Dong, 1998). In this line, many effective 

control methodologies have been successfully applied to real-

ize chaos control and synchronization (Aghababa and Agha-

baba, 2011; Aghababa and Aghababa, 2012a; Aghababa and 

Aghababa, 2012b; Aghababa and Heydari, 2012; Aghababa 

and Akbari, 2012; Aghababa et al., 2011; Poon et al., 2003; 

Shah et al., 2012; Skowronski et al., 2003). 

The gyroscope is one of the most interesting dynamical sys-

tems. Gyroscopes have found useful applications in optics, 

navigation, aeronautics and space engineering fields. Recent 

research has recognized different kinds of the gyroscope sys-

tems with linear or nonlinear damping features. Furthermore, 

these systems display a diverse range of dynamic behavior 

including both sub-harmonic and chaotic motions (Chen, 

2002; Ge and Chen, 1996; Tong and Mrad, 2001; Van Dooren, 

2008). Synchronization of two gyroscopes is usually used in 

areas of secure communication (Chen and Lin, 2003), attitude 

control of long-duration spacecrafts (Zhou et al., 2006) and 

signal processing in optical gyroscopes.  

Lei et al. (2005) proposed an active control technique for 

synchronizing two identical gyroscopes. Hung et al. (2008) 

investigated the problem of generalized projective synchroni-

zation of chaotic gyroscopes with dead-zone nonlinearity in 

the control input. Yau (2007; 2008) developed a fuzzy rule 

based controller and a fuzzy sliding mode controller for syn-

chronization of two uncertain chaotic gyroscopes. Salarieh 

and Alasty (2008) introduced a Markov synchronization con-

trol law to synchronize two chaotic gyroscopes with stochastic 

based excitations and uncertain parameters. Recently, Yan et 

al. (2006) studied the problem of synchronizing two chaotic 

gyroscopes with unknown parameters via an adaptive sliding 

mode controller. 

However, all of the aforementioned methods and synchro-

nization strategies guarantee the asymptotic stability of the 

resulting synchronization error system. In other words, in the 

previous works, the trajectories of the response gyroscope 

system can approach to the trajectories of the drive gyroscope 

system with infinite settling time. Nevertheless, from a practi-

cal point of view, it is more valuable to synchronize two cha-

otic gyroscopes in a given finite time. To obtain faster conver-

gence in a control system, the finite-time control method is an 

effective technique. The finite-time control techniques have 

demonstrated better robustness and disturbance rejection 

properties (Bhat and Bernstein, 2000). On the other hand, in 

real applications some robust control methods should be taken 

into account to deal with system uncertainties and external 

disturbances (Zhang and Shi, 2012; Zhang et al., 2012; Zhang 
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et al., 2011a; Zhang et al., 2011b; Zhang et al., 2010a; Zhang 

et al., 2010b). However, to our best knowledge, there is less 

work in the literature about the problem of robust finite-time 

synchronization of two chaotic gyroscopes with model uncer-

tainties, external disturbances and fully unknown parameters.  

Therefore, this paper discusses the problem of robust syn-

chronization of two uncertain chaotic gyroscopes in a given 

finite time. It is assumed that both drive and response chaotic 

gyroscopes are perturbed by model uncertainties, external 

disturbances and fully unknown parameters. An adaptive ro-

bust finite-time controller is proposed to guarantee that the 

state trajectories of the response gyroscope system converge to 

the state trajectories of the drive gyroscope system in a given 

finite time. Numerical simulations are given to demonstrate 

the efficiency of the proposed synchronization scheme. The 

main contributions of this paper are as follows: a) design of a 

robust adaptive controller for finite-time synchronization of 

gyroscopes; b) considering the effects of both model uncer-

tainties and external disturbances in both drive and response 

systems; and c) dealing with the fully unknown parameters of 

both master and slave chaotic gyroscopes. 

The rest of this paper is organized as follows. The nonlinear 

dynamics of a symmetric gyroscope is briefly described in 

section 2. The synchronization problem is formulated in sec-

tion 3. In section 4, the design procedure of the proposed 

adaptive robust finite-time controller is included. Numerical 

simulations are performed in section 5. Finally, some conclu-

sions are presented in section 6.  

 

2. Dynamics of nonlinear chaotic gyroscopes  

The motion of a symmetric gyroscope with linear-plus-

cubic damping mounted on a vibrating base (see Fig. 1) in 

terms of the rotation angle θ , is governed by (Chen, 2002) 

 
2

2 3

1 23

(1 cos )
sin

sin

sin( )sin

c c

f t

θ
θ α β θ θ θ

θ
ω θ

−
+ − + + =&& & &
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where the term sin( )f tω  is a parametric excitation that 

models the base excitation, 
1

cθ&  and 3

2
c θ&  are linear and 

nonlinear damping terms, respectively, the term 
2 2 3
(1 cos ) / sin sinα θ θ β θ− −  is a nonlinear resilience, 

g
M  

is the gravity force, l  is the amplitude of the external excita-

tion disturbance, ω  is the frequency of the external excita-

tion disturbance and θ , φ  and ψ  are nutation, precession 

and spin Euler's angles, respectively.  

Defining 
1

x θ=  and 
2

x θ= & , the gyroscope system (1) can 

be transformed into the following normalized form: 
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The dynamics of this gyroscope system has been exten-

sively studied by Chen (2002) and Van Dooren (2008) for the 

values of f , in the range 32 36f< < . In particular, for the 

parameter values of 2 100α = , 1β = , 
1

0.5c = , 
2

0.05c = , 

2ω =  and 35.5f = , this gyroscope exhibits chaotic behav-

ior. The strange attractor of the gyroscope system (1) is illus-

trated in Fig. 2. More details about the chaotic dynamics of the 

gyroscope systems can be seen in Chen (2002). 

 

3. Synchronization problem formulation 

Consider two coupled, chaotic gyroscope systems with 

model uncertainties, external disturbances and unknown pa-

rameters in the following form: 

Drive gyroscope: 
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Fig. 1. A schematic picture of the gyroscope system (Chen, 2002). 
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Fig. 2. The phase plane trajectory of the chaotic gyroscope. 
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Response gyroscope: 
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where 
1 2

[ , ]Tx x x=  is the state vector of the drive system, 

( , )f x t∆  and ( )Dd t  are unknown model uncertainties and 

external disturbances of the drive system, respectively; 

1 2
[ , ]Ty y y=  is the state vector of the response system, 

( , )g y t∆  and ( )Rd t  are unknown model uncertainties and 

external disturbances of the response system, respectively; and 

1 2
( ) [ ( ), ( )]Tu t u t u t=  is the control input to be designed later.  

 

Assumption 1. Since the trajectories of chaotic gyroscope 

systems are always bounded (Curran and Chua, 1997), the 

uncertainties ( , )f x t∆  and ( , )g y t∆  are assumed to be 

bounded by 

 

| ( , ) | D Df x t a x b∆ ≤ +  and 

| ( , ) | R Rg y t a y b∆ ≤ +                           (5)                                      

 

where .  denotes the Euclidean norm in nR  and  

, ,D D Ra b a  and Rb  are given positive constants. 

 

Assumption 2. In general, it is assumed that the external 

disturbances are norm-bounded in 1C : 

 

| ( ) |
D Dd t D≤  and | ( ) |

R Rd t D≤                (6)                                                                          

 

where DD  and RD  are known positive constants. 

As a result, using Eqs. (5) and (6), one can obtain 

 

| ( , ) ( , ) ( ) ( ) |D R

D R

f x t g y t d t d t

a x a y σ

∆ − ∆ + − ≤

+ +
       (7)  

 

where D R D Rb b D Dσ = + + + .  

 

Assumption 3. The parameters 2α , 
1

c , 
2

c , β , f  and 

ω  are fully unknown in advance. Let Ψ =  
2

1 2 1 2 3 4
[ , , ,| | | |] [ , , , ]T Tc c fα β ψ ψ ψ ψ+ =  be as the unknown 

vector parameter. Then, the following assumption is made. 

 

Assumption 4. The unknown vector parameter ψ  is 

norm-bounded: 

 

ψ ≤ Ψ                                     (8)                                                                          

 

where Ψ  is a given positive constant. 

To solve the finite-time synchronization problem, the syn-

chronization error between the drive and response systems can 

be defined as 
1 2

( ) [ ( ), ( )] ( ) ( )Te t e t e t x t y t= = − . Therefore, 

with subtracting Eq. (4) from Eq. (3), the error dynamics is 

obtained as follows: 
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where 
2 2

1 1

1 1 3 3

1 1

(1 cos ) (1 cos )
( , )

sin sin

y x
h x y

y x

− −
= − . 

The main objective of this paper is that for any given drive 

gyroscope system and response gyroscope system described 

by Eqs. (3) and (4) respectively, with model uncertainties, 

external disturbances and unknown parameters, a suitable 

finite-time control law ( )u t  is designed such that the finite-

time stability of the resulting error system of Eq. (9) is 

achieved. 

 

4. Design of an adaptive robust finite-time controller 

Lemma 1 (Wang et al., 2009). Assume that a continuous, 

positive-definite function ( )V t  satisfies the following differ-

ential inequality: 

 

0 0
( ) ( ) , ( ) 0V t pV t t t V tζ≤ − ∀ ≥ ≥&       (10)               

 

where 0p > , 0 1ζ< <  are two constants. Then, for any 

given 
0

t , ( )V t  satisfies the following inequality: 
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and 
1

( ) 0V t t t≡ ∀ ≥  with 
1
t  given by 
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To guarantee the finite-time stability of the synchronization 

error system, the following finite-time control laws are pro-

posed. 
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where ˆ , 1,2,3,4
i

iψ =  are estimations for ,
i

ψ 1,2,3,4i = , 

respectively; (
1 2 3 4

ˆ ˆ ˆ ˆ ˆ[ , , , ]Tψ ψ ψ ψ ψ= ), sgn(.)  is the sign func-
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tion, 
1

k and 
2

k  are positive gains, 
1 2

min{ , } 0k kλ = >  is a 

constant and if ( ) 0e t = , then 
2

0, 1,2i
e

i
e

= = .  

Now, let the appropriate adaptive law to be proposed as fol-

lows: 

 

1 2 3 4 1 1 2

2 3 3

2 2 2 2 2 1 1

ˆ ˆ ˆ ˆ ˆ( ) [ , , , ] [ ( , ) ,

, ( ) ,| || sin sin |] .
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   (14) 

 

Theorem 1. If the error system (9) is controlled with the 

control laws in Eq. (13) and adaptive law in Eq. (14), then the 

trajectories of the error system converge to zero in finite time. 

Proof. Choose a positive definite function in the form of 

 
22 21 1

2 21 2
ˆ( ) ( )V t e e ψ ψ= + + − .           (15) 

 

Taking the time derivative of ( )V t , one has 
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Introducing 
1

e&  and 
2

e&  from Eq. (9) into the right hand 

side of Eq. (16), we have 
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It is obvious that 
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According to Eq. (7) and using the adaptive laws of Eq. (14), 

one has 
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Substituting 
1
( )u t  and 

2
( )u t  from Eq. (13) into the right 

hand of the above inequality yields 
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Using the fact that 
2 2

1 2

2 2
1

e e

e e
+ =  and  

2 3 3

1 1 2 2 2 2 2

2 1 1 1 1 1 2 2

3 3

3 2 2 4 1 1 2

ˆ [ ( , ) , , ( ) ,

ˆ ˆ| || sin sin |] ( , )

ˆ ˆ( ) | sin sin | sgn( ) .

T h x y e e x y e

e x y h x y e

x y x y e

ψ

ψ ψ

ψ ψ

− − −

− = − −

− + −

 

 

We have  
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Using assumption 4 and the fact ˆ ˆψ ψ ψ+ Ψ ≥ + ≥  

ψ̂ ψ− , one has 
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Therefore, from Lemma 1, the error trajectories 
1

e  and 
2

e  

will converge to zero in the finite time  

 

( )( )
1

2 22 22 1 1
2 21 2

ˆ(0) (0) (0)T e eλ ψ ψ= + + − .  

 

Hence, the trajectories of the response gyroscope system 

will approach to the trajectories of the drive gyroscope system 

in the finite time T  and the proof is achieved completely. 

 

5. Numerical simulations 

5.1 Example 1 

The simulations are carried out using the Matlab software. 

We set 2 100α = , 1β = , 
1

0.5c = , 
2

0.05c = , 2ω =  and 

35.5f = . As a result, Ψ  is chosen equal to 160 . Subse-

quently, the following model uncertainties and disturbances 
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are considered in the simulations. 

 

2
( , ) 0.3cos(2 ) 0.25sin(6 )f x t t x t∆ = − +   

2
( , ) 0.35cos(6 ) 0.25sin(3 )g y t t y t∆ = +   

( ) 0.5cos(2 )Dd t t= , ( ) 0.5sin(2 ) .Rd t t=    (24)                                                                          

 

Consequently, 0.3Da = , 0.35Ra = , 1.5σ = . The initial 

values of the drive gyroscope and response gyroscope systems 

are chosen as 
1
(0) 1x = , 

2
(0) 2x =  and 

1
(0) 2y = , 

2
(0) 1y = . 

Both gains 
1

k  and 
2

k  are chosen equal to 1. 

Synchronization errors between the drive gyroscope and the 

response gyroscope systems are depicted in Fig. 3, where the 

control inputs are applied at t = 5 s. It can be seen that the 

synchronization errors converge to zero quickly. This means 

that the trajectories of the response gyroscope reach to the 

trajectories of the drive gyroscope in a finite time, as illus-

trated in Fig. 4. Fig. 5 shows the time histories of the adaptive 

parameters , 1,2,3,4
i

iψ = . Obviously, all adaptive parameters 

converge to some bounded values. The simulation results 

indicate that the proposed finite-time controller is robust 

against model uncertainties, external disturbances and un-

known parameters and can synchronize two uncertain gyro-

scopes as quickly as possible. 

 

5.2 Example 2 

In this example, the efficiency of the proposed method is 

compared to the proposed adaptive sliding mode controller in 

Yan et al. (2006). All the system parameters, external distur-

bances and initial conditions are chosen same as those in Yan 

et al. (2006). In other words, the gyroscope system parameters 

are chosen as follows: 2 100α = , 1β = , 
1

0.5c = , 
2

0.05c = , 

2ω =  and 35.5f = . Moreover, the external disturbance in 

response system (4) is defined as 0.2cos2t . The initial states 

of the master system are selected as 
1
(0) 0.5x = , 

2
(0) 1x =  

and initial states of the slave system are
1
(0) 1y = , 

2
(0) 2y = . 

Fig. 6 shows the synchronization errors obtained by our 

method. The trajectories of the response gyroscope reach the 

trajectories of the drive gyroscope in a finite time, as illus-

trated in Fig. 7. The state trajectories of the master and slave 

systems obtained by the proposed method in Yan et al. (2006) 

are plotted in Fig. 8. One can see that the adaptive sliding 

mode controller proposed in Yan et al. (2006) can synchronize 

the gyroscope systems. However, its convergence time is 

longer than that of our method. This means that our proposed 
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finite-time controller outperforms the proposed sliding mode 

controller by Yan et al. (2006). The time histories of the se-

lected adaptive parameters in Yan et al. (2006) are illustrated 

in Fig. 9. One can see that similar to our results the adaptive 

parameters converge to some constants. 

6. Conclusions 

An adaptive robust finite-time controller is designed to syn-

chronize two chaotic gyroscopes with model uncertainties, 

external disturbances and fully unknown parameters. Suitable 

adaptive laws are proposed to undertake the unknown parame-

ters. For ensuring the convergence of the response gyro-

scope’s state trajectories to those of the drive gyroscope in a 

given finite time, appropriate finite-time control laws are de-

rived. The finite-time stability of the proposed method is 

mathematically proved. Simulation results and comparative 

studies reveal that the proposed controller works well for fi-

nite-time synchronization of two uncertain chaotic gyroscopes. 
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