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Abstract 

 

A plastic strain gradient theory incorporating the geometrically necessary dislocation density based on the low order displacement fi-

nite element method is proposed for calculation of the hardness value by Berkovich indentation. The obtained analysis results by this 

work are found to be in good agreement with the experimental data. Three-dimensional modeling technique of Berkovich indentation is 

also suggested. An empirical coefficient that includes the strain gradient effect into the yield stress formula is introduced and determined 

by reviewing area factors and hardness curves generated from the analyses. As pile-up occurs, classical plasticity theory gives a higher 

area factor and lower hardness value than those from experiment. However the strain gradient plasticity theory used in this work gives 

corrected area factor and hardness values. Dislocation density plots are generated that can explain the size effect during indentation and 

the availability of the three-dimensional modeling of Berkovich indentation.   
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1. Introduction 

Nano and micro indentation experiments have been carried 

out to determine mechanical properties, such as the elastic 

modulus and hardness since Oliver and Pharr [1] proposed a 

relevant method of interpreting test data. Such experiments 

eliminate the need for destructive testing or electron micros-

copy observations. Nano indentation experiments are rou-

tinely conducted by researchers as well as industry [2-6].  

Size effects are often observed for nano and micro depths of 

indentation. Size effects refer to an increase in the yield stress 

and hardening when the configuration size of the structure or 

micro-structure is reduced to the micron and sub-micron 

(hundreds of nanometers) level [7-9]. Such effects are ex-

plained by the presence of geometrically necessary disloca-

tions and can be modeled by strain gradient plasticity in con-

tinuum mechanics [7-12]. Hardness values obtained during 

nano indentation tests may exhibit strong size effects for nano 

and micro indentation depths [2-4, 9].  

Analytic methods that take into account size effects have 

been proposed by many researchers. Such approaches (e.g., 

finite element methods) differ in their implementation. Major 

theories include the higher order formulation of Fleck and 

Hutchinson [8], the low order formulation of MSG (Mecha-

nism-based Strain Gradient) and TNT (Taylor-based Non-

local Theory) by Nix and Gao [9], a phenomenological model 

developed by Abu-Al Rub and Voyiadjis [12], and a crystal-

lographic plasticity model devised by Kysar et al. [13]. With 

such theories and models, researchers are restricted in their 

use of finite element methods because limitations are encoun-

tered, especially when the most effective and versatile low 

order displacement-based elements such as linear triangular 

and hexahedral elements are adopted. Significant limitations 

stem from the requirements of higher order continuity and/or 

higher order polynomials of their field variables due to the 

terms of higher order tensor variables in their strain gradient 

formulations. Detailed features of limitations resolved are 

found in Park et al. [14, 15] who recently proposed low order 

finite elements with strain gradient plasticity using Abaqus. 

In this work, a finite element analysis method for estimation 

of hardness values considering with measurement by a nano 

indentation machine (Nano Indenter XP, MTS) is proposed. 

For pile-up materials, classical techniques of finite element 

with nano indentation measurements may lead to erroneous 

values of modulus and hardness. We have chosen commer-

cially available aluminum and copper as test materials which 

are industrially popular engineering metals that are widely 

used as one of base metals of coated and composite materials.  

The hardness measurements are conducted in separate work 
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by the authors. Specimens for the indentation were Al 6061 

T6 and C 12200, which have shown vivid pile-up phenomena. 

In this work, relevant theories and experiments are briefly 

mentioned. Modeling and post-processing aspects for a 

Berkovich indentation and a cone indentation are explained. 

An area factor indicating either pile-up or sink-in is introduced 

and reviewed for a comparison of the cone and Berkovich 

indenter models. An empirical coefficient that relates the 

strain gradient effect to the yield stress formula is character-

ized and determined by fitting analyses data to the experimen-

tal results. Finally, the hardness for both materials will be 

calculated and compared with the experimental data. The cal-

culated plastic strain gradient or density of geometrically nec-

essary dislocations for both materials will be plotted for 

Berkovich indentation. 

 

2. Theory 

2.1 Hardening by the plastic strain gradient 

According to the Taylor dislocation model, the flow stress 

of a material can be expressed as [16]: 

 

ssd gndmG bσ κ ρ ρ= +  (1) 

 

where ssdρ  and gndρ  are the densities of statistically stored 

dislocations and geometrically necessary dislocations, respec-

tively. m is the Taylor factor, G is the shear modulus, b is the 

magnitude of Burgers vector, and κ  is an empirical coeffi-

cient. Using the uniaxial plastic equation, ( )u pσ σ ε= , the 

Taylor model can be expressed as [14]: 

 

2
uσ σ η= +Ω  (2) 

 

where, 2( )mG r bκΩ =  and r  is the Nye factor. The fol-

lowing relationships are used in Eq. (2)  

 

2( / )ssd u mGbρ σ κ=  (3a) 

/gnd r bρ η=  (3b) 

 

where η  is the equivalent plastic strain gradient that must be 

calculated as described in the next section. The first term in Eq. 

(2) represents classical plasticity while the second term in Eq. 

(2) represents strains gradient dependency on the plastic be-

havior. The hardening due to the strain gradient is proportional 

to the geometrically necessary dislocation density as in Eq. 

(3b) which is proportional to the strain gradient and inversely 

proportional to the magnitude of Burgers vector. 

In this work, Eq. (2) is implemented by UHARD in Abaqus 

with the following derivative according to the material model 

used. 
 

1

2

u
u

p

d

d

σσ
σ η

ε σ σ

Ω
′ ′= +  (4) 

Here, ( ) ( ) pd dε′⋅ = ⋅ . For more detail steps regarding the 

implementation and calculation of strain gradient hardening, 

the reader is referred to the paper by Park et al. [14]. 

 

2.2 Calculation of the plastic strain gradient 

There exist several definitions of the plastic strain gradient 

on which formulation and length scales are based. Among 

these formulations and length scales, the following is used in 

this work [10]. 

 
1
2 ijk ijkη η η=  (5) 

 

Denoting ,
p

ijk jik ij kρ ρ ε= = , the components of the strain 

gradient are expressed as: 

 

, .= ≡ = + −ijk jik k ij kij kji ijkuη η ρ ρ ρ  (6) 

 

Calculation of the strain gradient matrix, [ ]ρ , with plastic 

variables averaged at nodes can be performed using the gradi-

ent of shape functions, [ ]B , and the Jacobi matrix, [ ]J , as 

follows: 

 
1[ ] [ ] [ ][ ]pJ Bρ ε−=  (7) 

 

where [ ]pε  is the averaged-at-nodal plastic strain matrix. Eq. 

(7) is implemented by URDFIL in Abaqus [14]. 

 

3. Experiments 

In this work, typical non-ferrous engineering metals are se-

lected because they may show pile-up phenomena during 

indentation. Specifically, the materials under investigation are 

aluminum Al 6061 T6 and copper C 12200. Tensile tests were 

carried out with sheet form 13B per KS B 0801 so as to obtain 

Young’s moduli and stress-strain curves as reference to the 

measurements by nano indentation. The test results are plotted 

in Fig. 1 and summarized in Table 1. 

The plastic part of the stress-strain curves in Fig. 1 exhibits 

linear hardening in case of the aluminum sample and linear 

softening in case of the copper specimen. The negative work 

hardening value of the copper specimen means strain soften-

ing in tensile experiment which is in agreement with the pub-

lished catalogue values. Therefore, the plastic stress-strain 

relationships are modeled by the Ludwick equation: 
 

0u p pEσ σ ε= +  (8) 

 

where uσ , 0σ , pE , and pε  are the uni-axial yield stress, 

initial yield stress, work hardening modulus, and plastic strain, 

respectively. 

Indentation tests were also carried out to obtain Young’s 

modulus and hardness values. Specimens were 

10 mm 10mm 5mm× ×  with the same batch samples as the 
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tensile test samples. A nano indentation machine (Nano In-

denter XP, MTS) was employed and six to nine indentation 

runs were performed at various locations on the same speci-

men up to a depth of 3000 nm. While electron microscopy 

images showed that both the aluminum and copper sample 

exhibited pile-up phenomena, the copper showed more pile-up. 

Hardness results from the nano indentation tests are shown 

in Fig. 2 where both the experimental and finite element anal-

ysis findings are displaced. The experimental values have 

been corrected by the enhanced technique of measuring the 

hardness for a pile-up situation. The hardness was measured 

as 1.1 and 1.0 GPa for the aluminum and copper samples, 

respectively, while it was 1.0 and 0.6 GPa from the finite ele-

ment analysis. The finite element analysis used here was 

based on the classical theory of plasticity. From Fig. 2, it can 

be seen that the finite element method without consideration 

of the strain gradient or geometrically necessary dislocations 

cannot predict the macro hardness as well as the micro hard-

ness. As such, the strain gradient plasticity finite element 

method which is described in the previous section is needed 

for more accurate analysis. 

 

4. Analyses 

4.1 Finite element modeling 

The modeling aspects of the indentation process will now 

be described. Since the theory presented in Section 2 is appli-

cable to a plane element as well as a solid element, a cone 

indenter will be used for the axi-symmetric plane element, 

while a Berkovich indenter will be employed for the three 

dimensional solid element. The Berkovich indenter is shown 

in Fig. 3(a) and the cone indenter is displayed in Fig. 3(b); 

pile-up and sink-in configurations with schematic illustrations 

of geometrically necessary dislocations are also represented. 

The conical indenter is an area-equivalent indenter that gives 

the same depth (h) to area (At) function as the Berkovich in-

denter [1]. 
 

224.56tA h=  (9) 

 

Axi-symmetric and three dimensional finite element models 

are presented in Fig. 4. Only a sixth of the full specimen for 

the solid model can be used when the repetitive symmetry of 

the Berkovich indentation is accounted. Boundary conditions 

can be given by such symmetry through the use of a coordi-

Table 1. Mechanical properties of the materials, as determined by the 

tensile tests. 
 

 Al 6061 T6 C 12200 

Young’s modulus (GPa) 75 115 

Poisson’s ratio§ 0.33 0.34 

Initial yield stress (MPa) 249 285 

Work hardening modulus (MPa) 867 -122 

0E σ , 0pE σ  300, 3.5 400, -0.43 

§ Poisson’s ratios were taken from widely accepted values. 

 

Table 2. Micro-nano material properties required for the analyses. 
 

 Al 6061 T6 C 12200 

Taylor factor 3.08 3.08 

Burgers vector (nm) 0.286 0.255 

Nye factor 1.85 1.93 

 

 
 

Fig. 1. Stress-strain curves of Al 6061 T6 and C 12200 obtained from 

the tensile tests. 

 

 

 
 

Fig. 2. Hardness from experiment (solid line) and classical finite ele-

ment analysis (dashed line): (a) Al 6061 T6; (b) C 1220. 
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nate transformation of the degrees of freedom. Once results 

are obtained for part of the geometry, results for the 360
◦
 

specimen can easily be recovered by mirroring and rotational 

patterning. For the solid model, 13485 linear hexahedral ele-

ments are used, while 12333 linear quadrilateral elements are 

employed for the axi-symmetric model. 

 

4.2 Contact area and hardness 

The finite element analysis software, Abaqus, gives the 

contact area as an output variable, CAREA. For the Berkovich 

indentation, this output variable can be equated to the follow-

ing side wall area (shown in Fig. 3(a)). 

 
2(3 4) tan 3 tanb tA c Aθ θ= = ⋅  (10) 

An area factor, φ , can be introduced as follows: 

 

.= =FEA FEA
b b c tA A A Aφ  (11) 

 

This area factor can be calculated through the relationship, 
FEA
bA CAREA= . In Eq. (11), FEA

cA  is the projected contact 

area by the analysis and φ  is indicative of whether the result 

reflects pile-up or sink-in phenomena. A similar way of apply-

ing finite element analysis with the conical indenter can be 

derived in a straightforward manner. 

The analysis results for Berkovich and cone indentations 

are shown in Fig. 5. The area factor φ  is displayed in Fig. 

5(a), while Fig. 5(b) shows the hardness values, H.  

 
FEA
cH P A=  (12) 

 

The strain gradient plasticity and classical plasticity results 

are shown in Fig. 5. The 2D conical model exhibits excessive 

zigzags as shown in Ref. [18] that are not present in the 3D 

Berkovich model. Such a discrepancy between the models is 

due to the fact that contact in the 3D model is made more 

gradually than in the axi-symmetric model. Therefore, the axi-
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Fig. 3. Indenter geometry with illustrations of the geometrically neces-

sary dislocations, as well as the pile-up and sink-in phenomena: (a) 

Berkovich indenter; (b) area-equivalent conical indenter. 

 

 
 

Fig. 4. Finite element meshes for the specimens: (a) axi-symmetric 

model (2D) for the equivalent conical indentation; (b) solid model (3D) 

for the Berkovich indentation. 

 

 

 
 

 
 

Fig. 5. Berkovich (3D) and cone (2D) indentation analysis by classical 

plasticity (κ = 0) and strain gradient plasticity (κ = 0.5) theory for C 

12200: (a) area factor, φ ; (b) hardness, H. 
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symmetric results must be smoothed to obtain the area factor 

and hardness. Smoothing was performed with a Gaussian 

kernel [17]; this is represented in Fig. 5 as a dashed line. As 

expected, the materials are strengthened by the plastic strain 

gradient during indentation due to geometrically necessary 

dislocations beneath the indenter tip. In addition, the pile-up 

phenomenon becomes smaller and the hardness value be-

comes larger due to the strengthening. A reduction in pile-up 

due to strain gradient effects is clearly shown in Fig. 6 for the 

copper specimen. The vertical displacement is reduced from 

1.4 to 0.3 µm by the strain gradient effect in Fig. 6. In Fig. 5, 

the empirical coefficient in Eq. (1) is assumed to be κ = 0.5; 

this will be more accurately determined in the next section. 

 

4.3 Characterization of the empirical coefficient  

In Eqs. (1) and (2), there is an empirical coefficient κ  that 

relates the strain gradient effect to the flow stress formula. If 

experimental results such as those in Fig. 2 are known, κ  

can be determined by comparing analysis results with the 

experimental values. 

The analysis results like Fig. 5 for κ = 0, 0.5, and 1.0 are 

believed to be appropriate to fit with the test results. From the 

analyses, the hardness curve for a particular value of κ  can 

be fitted with the following equation: 

 

( )
0( , ) ( ) bH h H a h κκ κ= +  (13) 

 

where 0H  is the approximated hardness when κ = 0 and a 

and b are the coefficients of fitting for κ = 0.5 and 1.0, re-

spectively. Based on the careful observation from the analysis 

behaviors with respect to the values of κ  such as Fig. 5, the 

coefficients themselves can be fitted with the variable κ  as 

follows: 

 

( )
m

a cκ κ=  (14a) 

0.5 1 0.5( ) 0.5( )b b b bκ κ= + −  (14b) 

 

where c and m are the fitted coefficients with 0(0)a a= , 

0.5(0.5)a a= , 1(1)a a= , 0.5(0.5)b b= , and 1(1)b b= . Finally, 

a particular κ  that fits the experimental data can be deter-

mined by minimizing the following least squares error: 
 

2
min. ( ( , )) .−∑ i i

i

H H hκ  (15) 

 

The process described here is illustrated in Fig. 7. The value 

of κ  for the copper sample must be between 0 and 0.5 in the 

figure. From the fitting, κ = 0.45 for Al 6061 T6 and κ = 

0.38 for C 12200. These values will be used to obtain final 

hardness values by the finite element analysis. 

 

4.4 Results and discussion 

Hardness values obtained with the present method are 

shown in Fig. 8 with the experimental data for comparison. 

The analysis results for both the macro and micro hardness are 

in good agreement with the experimental data. With the pro-

posed technique, hardness values for the pile-up materials are 

estimated with greatly improved accuracy. 

The equivalent plastic strain and strain gradient for both 

materials are shown in Fig. 9. The strains and dislocations 

present along the edges of the Berkovich tip were larger than 

those on the faces of the tip. When compared to the aluminum 

specimen, higher values were observed for the copper sample. 

Geometrically necessary dislocations in Fig. 9(b) are proved 

to contribute to the hardening or strengthening of the material 

by Eq. (1). 

If the conical modeling of Fig. 4(a) is used, the strains and 

strain gradients are axi-symmetric, which is quite different 

from the scenario in Fig. 9. While the axi-symmetric model 

can yield reasonable data (as in Fig. 5), the results are not 

equivalent to those obtained with the three-dimensional 

Berkovich model. Therefore, the three dimensional model 

can describe pile-up phenomena better than axi-symmetric 

model. 

 
 

Fig. 6. Pile-up displacement (vertical) for C 12200 at the maximum 

depth (h = 3000 nm) of the Berkovich indentation analysis by classical 

plasticity (κ = 0) and strain gradient plasticity theory ( κ = 0.5). 

 
 

 

Fig. 7. Determination of the material coefficient κ  by fitting finite 

element analysis data to the experimental results. 
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5. Conclusion 

Strengthening or hardening during micro indentation was 

evaluated by the finite element method based on a theory of 

strain gradient plasticity that incorporate geometrically neces-

sary dislocations. Hardening by the plastic strain gradient was 

considered with the Taylor dislocation model for Al 6061 T6 

and C 12200, which were modeled, respectively, as linear 

work hardening and softening materials in terms of their uni-

axial tensile behavior. Strain gradients were calculated via an 

isoparametric interpolation of the averaged-at-nodal plastic 

strain components. This method is proved to be efficient and 

versatile through an analysis of axi-symmetric conical inden-

tation and three-dimensional Berkovich indentation. The un-

known empirical coefficient of the strain gradient hardening 

model was determined by fitting several analytic hardness-

depth curves to the experimental values obtained by the nano 

indentation tests. 

With the classical plasticity theory, both the micro hardness 

and macro hardness cannot be calculated accurately. This 

limitation of the classical plasticity theory tends to increase for 

soft materials that exhibit more pile-up during indentation. In 

this study, C 12200 showed more pile-up than Al 6061 T6. 

The micro and nano hardness for both materials cannot be 

estimated by classical theory because there is no size effect. 

Even the macro hardness of the copper sample cannot be es-

timated by the classical plasticity. 

With the proposed technique using strain gradient plasticity 

theory, both the micro hardness and macro hardness can be 

calculated more accurately. Results of the analysis with the 

proposed Berkovich indentation model are in good agreement 

with the experiments carried out with the nano indentation 

machine. In addition, the present method can yield geometri-

cally necessary dislocation density plots that can help the in-

terpretation of the mechanisms relevant to the strength of ma-

terials. 
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