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Abstract 
 

In reality, there are two phenomena should be considered to describe behaviors of nanostructures adequately and accurately. The first 

one is the surface properties, especially for a relatively high ratio of the surface area to the volume of structural. The second phenomenon 

is the information about bulk material, which contains the forces between atoms and the internal length scale. Therefore, the objective of 

the current work is to study the coupled effects of surface properties and nonlocal elasticity on the static deflection of nanobeams. Surface 

elasticity is employed to describe the behavior of the surface layer and the Euler-Bernoulli beam hypothesis is used to state the bulk de-

formation kinematics. Both, the surface layer and bulk volume of the beam are assumed elastically isotropic. Information about the forces 

between atoms, and the internal length scale are proposed by the nonlocal Eringen model. Galerkin finite element technique is employed 

for the discretization of the nonlocal mathematical model with surface properties. The present results are compared favorably with those 

published results. The effects of nonlocal parameter and surface elastic constants are figured out and presented.   
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1. Introduction 

Recently, there has been significant interest in developing 

of nanomechanical and nanoelectromechanical systems 

(NEMS), which can be contributed to industrial revolution. 

Extremely small size of nanostructures such as beams, sheets 

and plates in nanosize, which are commonly used as compo-

nents in NEMS devices, presents a significant challenge to 

researchers in nanomechanics, Li and Chou [1].  

Nowadays, it is still a challenge to study the mechanics of 

nanomaterials by means of experimental tests due to the diffi-

culties encountered on the nanoscale. Therefore, the theoreti-

cal methods such as atomistic simulations, multiscale compu-

tational models, and continuum mechanics theories are often 

used to analyze the behaviors of nanostructures, Hsu et al. [2]. 

It is known that using of an atomistic simulation method is an 

extremely time-consuming task and computationally intensive 

for relatively large scale nanostructures, Lee and Chang [3]. 

Multiscale computational models, based on atomistic 

/continuum coupling, have been recently developed for study-

ing properties of nanomaterials. However, these methods are 

incapable of capturing atomic-scale surface stress effects; 

furthermore, the inclusion of thermal effects in multiscale 

modeling of nanomaterials, Yun and Park [4].  

However, the continuum models have been proven to be 

important and efficient tools in the study of the nanostructures. 

Classical continuum mechanics is explicitly designed to be 

size-independent, Truesdell and Noll [5], which may call the 

applicability of classical continuum models on nanostructures 

into question. Several physical reasons may be ascribed to the 

breakdown of classical continuum mechanics, Maranganti and 

Sharma [6]. Among those reasons are the surface effects at 

nanoscale size and the discrete nature of the matter, as will be 

discussed briefly in the following: 

 

Surface effect: On the basis of surface elasticity, the effect 

of surface energies, strains and stresses on the size-dependent 

elastic behavior of structural elements have been investigated 

experimentally. The results have shown that surface effects 

become important and induce a significant size dependency, 

which pointed out the limitation of the applicability of classi-

cal continuum model in nanotechnology. The surface of a 

solid is a region with negligible thickness which has its own 

atom arrangement and property differing from the bulk. For a 

solid with a large size, the surface effects can be ignored be-

cause the volume ratio of the surface region to the bulk is very 

small. However, for minute solids with large surface-to-bulk 
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ratio, the significance of surface is important.  

Recently, mechanical experiments of nanoscale beams and 

plates indicate that the effective strength properties of these 

minute structural elements strongly depend on their size, Mil-

ler and Shenoy [7]. Classical elasticity lacks an intrinsic length 

scale, and thus cannot be used to model the size effect and 

cannot account for the significant surface contribution of those 

minute structural elements.  

Gurtin and Murdoch [8, 9] developed a surface elasticity 

theory for isotropic materials based on some rational princi-

ples of mechanics. In their model, the surface layer of a solid 

is treated as a membrane with negligible thickness and per-

fectly bonded to the underlying bulk material. Miller and 

Shenoy [7] developed a simple and effective model to predict 

the size dependency of the effective stiffness properties of 

nanosized as plates and beams structural element. This model 

based on the general continuum formulation including surface 

effects as developed by Gurtin and Murdoch. Shenoy [10] 

predicted the size dependent torsional rigidities of nanosized 

structural elements, caused by surface effects.  

Lim and He [11] investigated the surface effects on the 

large deflection of ultra-thin films by incorporating surface 

elasticity into the Von Karman plate theory using the Hamil-

ton’s principle. The model is applied to analyze the bending, 

buckling and vibration of simply supported micro- and nano-

films in plane strains. Chen et al. [12] experimentally meas-

ured the Young’s modulus of ZnO nanowire and found that 

the surface effects on the elastic property of the nanowire are 

significant. Lu et al. [13] improved Gurtin model by introduc-

ing normal stress, inside and on the surface of bulk substrate, 

to satisfy the equilibrium balance relations at the surface. Yun 

and Park [4] presented a multiscale, finite deformation formu-

lation for the thermoelastic analysis of nanomaterials includ-

ing surface stress effects on the dynamic, thermoelastic behav-

ior of 1D nanostructure. Fu et al. [14] investigated the effects 

of the surface energies on the critical buckling, post-buckling 

and linear free vibration of nanobeams with size dependency. 

Assadi and Farshi [15] studied the Size dependent vibration of 

curved nanobeams and rings including surface energies. Yun 

and Park [16] developed nonlinear multiscale finite element 

techniques which account for nanoscale surface stress and 

surface elastic effects to investigate the elastic properties of 

silicon nanowires as obtained through bending deformation.  

 

Discrete nature of matter: For realistic designing of nan-

odevices and nanostructures one must incorporate the small-

scale effects and the atomic forces in the analysis of nano-

components. The discrete nature of matter is usually associ-

ated with the long-range character of inter-atomic forces and 

may induce a nonlocal behavior which is in contradiction to 

the postulated local character of classical elasticity, Truesdell 

and Noll [5]. One promising theory which contains informa-

tion about the forces between atoms and the internal length 

scale is the nonlocal elasticity theory developed by Eringen.  

Linear theory of nonlocal elasticity, which has been pro-

posed independently by many authors, Kroner [17], Edelen et 

al. [18], and Eringen [19-22] incorporates many important 

features of the lattice dynamics. Therefore, it has been proved 

that nonlocal elasticity theory is consistent with the molecular 

dynamics. The theory led to the classical elasticity, at macro-

size limit and, therefore, the theory is capable of addressing 

small as well as large scale ratio phenomena. In the nonlocal 

elasticity theory, the stress state at a given point is regarded as 

being determined by the strain state of all points in the body; 

while the constitutive equations of classical elasticity is an 

algebraic relation between the stress and strain tensors only at 

the current location. In addition, the internal length scale is 

introduced into the constitutive equations as a material pa-

rameter. 

Applications of nonlocal continuum mechanics have been 

demonstrated in the areas of lattice dispersion of elastic waves, 

fracture mechanics, dislocation mechanics, wave propagation 

in composites, Peddieson et al. [23]. The application of nonlo-

cal elasticity to investigate the mechanical behavior of Euler–

Bernoulli beam in micro- and nano-size has received, recently, 

much attention among the nanotechnology community, 

McFarland and Colton [24] and Wang and Liew [25]. Reddy 

[26] reformulated the local elasticity beam theory in the con-

text of Eringen’s nonlocal elasticity model, where the material 

constitutive relations are given in a differential form, to study 

bending, vibration and buckling behavior of nanobeams. Ay-

dogdu [27] proposed a generalized nonlocal beam theory to 

study bending, buckling, and free vibration of Euler-Bernoulli 

nanobeams. Kong et al. [28, 29] solved analytically the static 

and dynamic problems of Bernoulli–Euler nanobeams on the 

basis of strain gradient elasticity theory.  

Pisano et al. [30, 31] developed a nonlocal finite element 

model to study the homogeneous and non-homogeneous two-

dimensional nonlocal elasticity problems. Pradhan and 

Murmu [32] and Civalek and Demir [33] developed a nonlo-

cal beam models and employ the differential quadrature 

method (DQM) as a solver, to investigate the bending–

vibration characteristics of a nano-size cantilever. Phadikar 

and Pradhan [34] presented finite element formulations for 

nonlocal elastic Euler–Bernoulli beam and Kirchhoff plate, 

based on the differential constitutive relations of Eringen. 

Mahmoud and Meletis [35] developed a nonlocal finite ele-

ment model for solving the elasto-static frictional contact 

problems of nanostructures and nano-size devices. Xia et al. 

[36] exploited DQM method to study the static bending, post-

buckling, and free vibration of nonlocal micro-beams. Eltaher 

et al. [37] presented a free vibration analysis of functionally 

graded (FG) size-dependent nanobeams using finite element 

method. The size-dependent FG nanobeam is investigated on 

the basis of the nonlocal continuum model of Eringen.  

Recently, much research has been focused on exploring the 

combined effect of long–range interactions and surface prop-

erties of a nanoscale structures. Lee and Change [38] investi-

gated analytically the effect of the surface properties on natu-

ral frequencies of nonlocal Timoshenko beam. Lee and 
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Change [3] studied the natural frequency of a nonuniform 

nanocantilever beam with consideration of surface effects by 

using the nonlocal elastic theory. Lee and Change [39] used 

Rayleigh–Ritz method to analyze the influences of surface and 

nanolocal effects on the critical buckling load of the nonuni-

form nanowire. Lei et al. [40] used an analytical procedure 

based on the nonlocal Timoshenko beam mode to investigate 

the vibrational behavior of double-walled carbon nanotubes 

adhered by surface materials. These works are based on ana-

lytical solutions. Mahmoud et al. [41] presented a nonlocal 

continuum model of the nanoscale beams incorporated by 

surface effect to investigate the free vibration characteristics of 

nanobeams by using a finite element method.  

In the present work a nonlocal finite element model is de-

veloped to study the static bending behavior of nanobeams, 

taking into account the surface effects. Euler-Bernoulli beam 

theory, incorporated with nonlocal differential constitutive 

relations of Eringen and surface constitutive relations of Gur-

tin and Murdoch, is used to derive the nonlocal equilibrium 

equations. The mathematical model is presented in detail in 

section 2. The details of nonlocal Galerkin finite element 

model for bending of the Euler-Bernoulli nanobeam, including 

surface effects, are presented in section 3. Section 4 contains 

numerical results and parametric studies. The results of the 

present model are addressed and compared with that previ-

ously published before. Concluding remarks are finally given 

in section 5. 

 

2. Mathematical formulation  

2.1 Local Euler-Bernoulli beam theory 

The beam, based on Gurtin and Murdoch continuum model 

[8, 9], is considered to have an elastic surface of mathemati-

cally zero thickness and perfectly bonded to its bulk material. 

The elastic surface has different material properties and ac-

counts for the surface energy effects. Assume we have a 

nanobeam with a rectangular cross section and consider the 

free-body diagram of an incremental beam element of length 

dx as shown in Fig. 1.  

As a result of the interaction between the surface layer and 

bulk material, the contact tractions Tx and Tz exist on the con-

tact surface between the bulk material and the surface layer. 

The bending moment and shear force of a bulk material cross 

section are denoted by M and Q, respectively. 

The vertical force and bending moment equilibrium equa-

tions of the element dx can be expressed as, 

 

( ) 0
Z

S

Q
T ds q x

x

∂
+ + =

∂ ∫   (1a) 

0
x

S

M
Q T z ds

x

∂
− + =

∂ ∫   (1b) 

 

where S is the perimeter of the cross section and q(x) denotes 

the magnitude of distributed vertical load on the beam. Differ-

entiating Eq. (1b) and substituting it into Eq. (1a), to eliminate 

the shear force Q, we can get the following equation: 
 

2

2
( ) 0

l

x z

S S

M
T zds T ds q x

x x

 ∂ ∂
+ + + = 

∂ ∂  
∫ ∫ .  (2) 

 

In the case of Euler-Bernoulli beam, the stress state of the 

bulk material is plane stress with stresses σxx, σxz, and σzz. The 

elastic surface of outward normal n has stresses τxx and τzx. The 

resultant bending moment M of a cross section is defined as, 

 
l

xx

A

M z dAσ= −∫   (3) 

 

where A is the area of the cross-section. The equilibrium rela-

tions of the surface layer can be expressed as given by Gurtin 

and Murdoch [8, 9], 
 

0
l

xx

x
T

x

τ∂
− =

∂
  (4a) 

0
l

zx

z
T

x

τ∂
− =

∂
  (4b) 

 

where Tx = τxjnj; Tz = τzjnj; τij are components of the bulk 

stresses; nj is the component of the surface orientation vector n. 

For the case of a rectangular cross-section the contact tractions 

are: Tx = τxz and Tz = τzz. By substituting Eq. (4) into Eq. (2) 

results the following equilibrium equation: 

 
2

2
( ) 0

l l l

xx zx

S S

M
zds ds q x

x x x x

τ τ ∂ ∂ ∂ ∂
+ + + = 

∂ ∂ ∂ ∂ 
∫ ∫ .  (5) 

 

We have to mention that the aforementioned equilibrium 

equations Eq. (5), is valid and applicable for both local and 

nonlocal elasticity fields. Assuming a homogenous isotropic 

material and neglecting any residual stress in the bulk material 

due to surface tension, the relevant bulk stress-strain relation of 

the beam, in the context of local elasticity, can be expressed as 

 

xx xx zz
Eσ ε υσ= +   (6) 

 
 

Fig. 1. Free-body diagram of nanobeam element. 
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where E and υ are the Young’s modulus and Poisson’s ratio, 

respectively. According to Gurtin and Murdoch model, the 

constitutive relations of the surface can be expressed as 

 

( )0 0 0
2l x

xx

u

x
τ τ µ λ

∂
= + +

∂
    at   

2

h
z = ±   (7a) 

0

l z

zx

u

x
τ τ

∂
=

∂
               at   

2

h
z = ±   (7b) 

 

where τ0 is the residual surface stress under unconstrained 

conditions; and µ0 and λ0 are surface Lame’s constants, which 

can be determined from atomistic calculations, Miller and 

Shenoy [7]. In classical beam theory, the stress component σzz 

is simply neglected. However, σzz must be considered to sat-

isfy the surface equilibrium Eq. (4). Following Lu et al. [13], 

the stress component σzz is assumed to vary linearly through 

the beam thickness such as, 
 

1

2
zz zz zz zz zz

z

h
σ σ σ σ σ+ − + −   = + + −      (8a) 

, , , ,

1

2
zx x zx x zx x zx x

z

h
τ τ τ τ+ − + −   = − + +      (8b) 

 

where σzz
+
 and σzz

- 
are stresses at the top and bottom fibers, 

respectively. It is noted that Eq. (8) is also suitable for anisot-

ropic materials. Substitute Eqs. (4) and (7) into (8) yields, 

 

2 2 2 2

0 02 2 2 2

1

2

z z z z

zz

u u z u u

x x h x x
σ τ τ

+ − + −      ∂ ∂ ∂ ∂
= − + +      

∂ ∂ ∂ ∂         
  (9) 

 

where uz
+
 and uz

-
 are vertical displacements of the top and 

bottom fibers, respectively. Assuming the displacement is 

continuous with no slipping between the surface layer and the 

bulk. So, the displacement field at a point of the Euler-

Bernoulli beam can be expressed as, 

 

( )
x

w x
u z

x

∂
= −

∂
  (10a) 

( )
z
u w x=   (10b) 

 

where u(x) is the displacement component along the x-axis of 

the midplane. The geometrical fit condition in case of small 

deformation can be described by  

 
2

2

( )
x

xx

u w x
z

x x
ε

∂ ∂
= = −
∂ ∂

.  (11) 

 

By substituting Eqs. (10) and (11) into Eqs. (7) and (9), then 

into Eqs. (6) and (3), the following equations can be obtained, 

 
2 2

02 2

( ) 2 ( )l w x I w x
M EI

x h x

ν
τ
 ∂ ∂

= −  
∂ ∂ 

  (12a) 

( )
2

0 0 0 2

( )
2l

xx

w x
z

x
τ τ µ λ

 ∂
= + + − 

∂ 
  (12b) 

0

( )l

zx

w x

x
τ τ

∂
=

∂
  (12c) 

 

where 
2

A

I z dA= ∫  is the moment of inertia of the beam cross  

section. Substituting Eq. (12) into Eq. (5) yields the following  

governing equilibrium equation of the local Euler-Bernoulli 

beam, including the surface effect, 

 

( )
4 2

0

0 0 0 0 04 2

2
2 ( )

I w w
EI I S q x

h x x

ν τ
µ λ τ

∂ ∂ 
− + − + = −    ∂ ∂ 

  (13) 

 

where 
2

0

S

I z dS= ∫  is the perimeter moment of inertia and 

0

S

S dS= ∫ . 

 

2.2 Nonlocal Euler-Bernoulli beam theory 

According to Eringen’s nonlocal elasticity theory [21], the 

stress at a point x in a body depends not only on the strain at 

point x but also on those at all other points of the body. Thus, 

the nonlocal stress tensor σ at point x is expressed as follows: 

 

( ) ( ), t
V

x x x dxσ α τ′ ′ ′= −∫   (14a) 

t( ) ( ) : ( )x C x xε=   (14b) 

 

where t (x) is the classical local stress tensor at point x; ε(x) is 

the strain tensor; C (x) is the fourth-order elasticity tensor; 

( ),x xα τ′ −  is the nonlocal modulus or attenuation function 

which incorporating into the constitutive equations the nonlo-

cal effects at the reference point x produced by the local strain 

at any source point x
’
; x x′ −  is the Euclidean distance; and 

0
e a lτ =  is considered as a scale factor, where e0 is a mate-

rial constant to be determined experimentally, a and l are the 

internal (e.g. lattice parameter, granular size, distance between 

C-C bonds) and external (e.g. crack length, wave length) char-

acteristic length, respectively. 

The properties of the nonlocal attenuation function  

( ),x xα τ′ −  have been discussed in detail by Eringen [21].  

When ( )xα  takes on a Green’s function of a linear differ 

ential operator, L, such that ( ) ( ),L x x x xα δ ′ ′− = −   the  

non-local integral constitutive relation (14a) is reduced to the  

differential equation ( ) t( )L x xσ =   . 

Thus, Eringen proposed a nonlocal model with a linear dif-

ferential operator defend by, 2 2 2(1 ),L lτ= − ∇  and therefore 

the constitutive relation with this attenuation function may be 

simplified to 

 
2 2 2(1 ) tlτ σ− ∇ = .  (15) 
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For nonlocal Euler-Bernoulli beam, Eq. (15) can be written as 

 
2

2
txx

xx xx
x

σ
σ µ

∂
− =

∂
,    2 2

0
( )e aµ =    (16) 

 

where 
xx xx
t Eε= . According to Eq. (16) the relation between 

nonlocal ( ), ,nl nl nl

xx zx
M τ τ  and local ( ), ,l l l

xx zx
M τ τ  moment re-

sultant and surface stresses, respectively, can be expressed as, 

 

( )21
nl l

b
M Mµ− ∇ =    (17a) 

( )21
nl l

s xx xx
µ τ τ− ∇ =    (17b) 

( )21
nl l

s xzx zx
µ τ τ− ∇ =    (17c) 

 

where ,
b
µ  and 

s
µ  are the nonlocal parameters the bulk and 

surface materials, respectively, which should be evaluated 

experimentally. Since the atomic arrangement of the surface is 

different than that of the bulk material, therefore, the nonlocal 

parameter µ for each of them should be different. For sake of 

simplicity, we assume that the nonlocal parameter for both 

bulk and surface are identical, ( ).
s b
µ µ µ= =  

 

2.3 Nonlocal beam theory including surface effects 

In case of nonlocal elasticity, the equilibrium equation is 

similar to that given by Eq. (5) and has the following form: 

 
2

2
( ) 0

nl nl nl

xx zx

S S

M
zds ds q x

x x x x

τ τ ∂ ∂ ∂ ∂
+ + + = 

∂ ∂ ∂ ∂ 
∫ ∫ .  (18) 

 

Multiplying Eq. (18) by the nonlocal operator, 2(1 ),µ− ∇  

the nonlocal governing equation of the nanobeam including 

surface effects are reduced to, 

 

( )
2

2

2
1 ( ) 0

l l l

xx zx

S S

M
zds ds q x

x x x x

τ τ
µ

 ∂ ∂ ∂ ∂
+ + + − ∇ = 

∂ ∂ ∂ ∂ 
∫ ∫ . (19) 

 

Substituting Eq. (12) into Eq. (19) yields the following 

equilibrium equation in terms of transverse displacement: 

 

( )

( )

4 2

0

0 0 0 0 04 2

2

2
2

1 ( ) 0.

I w w
EI I S

h x x

q x

ν τ
µ λ τ

µ

∂ ∂ 
− + − + +    ∂ ∂ 

− ∇ =

  (20) 

 

We have to notice that the natural boundary conditions of 

the beam, which represent the moment and shear force at the 

boundary points, should be expressed in terms of nonlocal 

stress or nonlocal stress resultants, as given in the appendix. 

It is obviously clear that if the surface effect is completely 

neglected, (
0 0
,µ λ  and 

0
τ  are all set to zero), Eq. (20) is 

reduced to that of the nonlocal Euler-Bernoulli beam. In addi-

tion, if the nonlocal parameter µ  is set to zero, the nonlocal-

ity would be eliminated and the equilibrium equation is trans-

formed to the classical beam theory. 

 

3. Numerical finite element formulation  

While the minimum potential energy principle is only valid 

to apply on the level of the whole volume of nonlocal elastic 

continuum, it is not valid to apply on one element or sub-

domain of the continuum, Polizzotto [42]. Therefore, to de-

velop a finite element model for a nonlocal elasticity problem, 

the weighted residual methods are more appropriate to derive 

the equivalent variational statement of the weak solution of 

the problem. 

In the present work, a finite element model for nonlocal 

Euler-Bernoulli beam, including surface effects is developed. 

The conventional Galerkin technique is employed to derive 

the weighted residual variational functional of the equilibrium 

Eq. (20). 

Firstly, the domain of the beam is discretized into a set of 

elements, each of them has a sub-domain 
1

( , )e

e e
x x +Ω =  and 

of length L. The variational statement of the weighted residual 

functional of the equilibrium Eq. (20) for a generic element, 

after performing the required partial integration, is expressed 

as, 

 
2 2

0

0 0 0 2 2

2
0 0

0 0 2

2
(2 )

0

LL

I w
EI I

h x x
dx V M

xw
S q q

x x x

ν τ χ
µ λ

χ
χ

χ χ
τ χ µ

 ∂ ∂ 
− + − +   ∂ ∂  ∂  

+ + =   ∂ ∂ ∂ ∂   + −  ∂ ∂ ∂  

∫   

 (21) 

 

where χ denotes the Galerkin’s weight function and the over 

bar quantities denote the µ  specified stress resultant at the 

two boundary points xe and xe+1. The deflection along the ele-

ment, in a local coordinate system, is given in terms of the 

Hermite interpolation functions as 

 
4

1

( )
i i

i

w x N U
=

=∑   (22) 

 

where Ui denotes the nodal degrees of freedom, representing 

the deflection and rotation at each terminal node of the ele-

ment; and Ni, i = 1, 2, 3, 4 are the Hermite interpolation func-

tions which are given as follows: 

 
2 3

1 2 3

3 2
1

x x
N

l l
= − +   (23a) 

2 3

2 2

2x x
N x

l l
= − +   (23b) 

2 3

3 2 3

3 2x x
N

l l
= −   (23c) 

3 2

4 2

x x
N

l l
= − .  (23d) 



3560 F. F. Mahmoud et al. / Journal of Mechanical Science and Technology 26 (11) (2012) 3555~3563 

 

 

By substituting Eq. (23) into the modified weak form, Eq. 

(21), and performing the integration, we get the following 

element equilibrium equation, 

 

( )[ ] [ ] { } { } { }
c S

K K U F Q+ = +   (24) 

 

where [ ], [ ], { } and { }
c S

K K F Q  are the classical element 

stiffness matrix, surface stiffness matrix, distributed force 

vector, and concentrated force vector, respectively. The ele-

ment equations can be assembled to form the system of global 

equilibrium equations. Finally, we have to focus the attention 

that the natural boundary conditions such as moments and 

shear forces should be expressed in terms of nonlocal stresses 

or nonlocal stress resultants. 

 

4. Numerical results  

This section is divided into three parts, the first one presents 

a comparison between the results of the proposed nonlocal 

finite element model, with and without surface effects, and the 

results that published before. In the second and third parts the 

effects of surface elastic constants and nonlocal parameter on 

the rigidity and deflection of nanobeams are presented and 

discussed. 

All numerical computations have been implemented on 

simply supported nanobeams having two different materials 

constants as given in Gurtin and Murdoch [9], 

 

Iron film on glass substrate (M1):  

E = 5.625 × 1010 N/m2
; υ = 0.25; λ0 = 7 × 10

3
 N/m; µ0 = 

8 × 103 N/m; τ0 = 110 N/m. 

Iron free surface (M2): 

E = 17.73 × 1010 N/m2 
; υ = 0.27; λ0 = -8 N/m; µ0 = 2.5 

N/m; τ0 = 1.7 N/m. 

 

4.1 Model verification 

A study of the static bending behavior of nonlocal beam 

under uniform distributed load of unit amplitude (q0 = 1) is 

carried out. Surface effect is taken into account for both mate-

rials, M1 and M2. A nonlocal beam of the following geomet-

rical parameters have been considered for verifications, Reddy 

[26]: L = 10 m; L/h = 100; and b = h. 

To verify the proposed model, non-dimensional central de 

flection w , 
max 4

0

100* *
EI

w
q L

δ
 
=  

 
, is calculated and com 

pared with previous published results. The comparison is pre- 

sented in Table 1. As can be noted, the obtained results are 

identical for analytical solution and a good agreement with 

those of Reddy [26], Aydogdu [27], and Civalek [33] [Er-

ror = % 0.8448] for a local beam, 0µ = . For the nonlocal 

behavior, the current work is very close to the previously pub-

lished work as shown in Table 1. 

Furthermore, it is noticed that as the nonlocal parameter in-

creases the non-dimensional deflection increases slightly as a 

result of the size-dependency increased. Meanwhile, surface 

stress has no significant effect for the cases of macro-size 

scale since the ratio of the surface to the bulk volume is very 

small. 

 

4.2 Surface effects 

To investigate the surface effects on the rigidity and static 

deflection of a simple support beam irrespective of the nonlo-

cality, (µ = 0), the proposed finite element model has been 

used to study the bending behavior of a beam having the fol-

lowing dimensions: L = 1 × 10-3 m; b = 1 × 10-6 m; and h = 

varied. 

The variation of the non-dimensional maximum deflection 

and rigidity ratio versus the thickness h is shown in Fig. 2 for 

both materials M1 and M2. The rigidity ratio is defined as the 

ratio between the rigidity of beam with surface effect (D) to 

the rigidity of classical beam (Dc = EI). 

For Material M1, Fig. 2(a) shows that as the thickness in-

creased the rigidity decreased and the non-dimensional central 

deflection, consequently, increased. Beyond the thickness 

value of 10 µm, there is no significant effect on both rigidity 

and deflection, and the behavior of beams is almost identical 

to that of the local classical theory. For the case of material 

M2, thickness has different effect on the rigidity and deflec-

tion as shown in Fig. 2(b) As the thickness increases, the rigid-

ity will also increase and consequently the deflection de-

creases gradually until a thickness value of 1 nm. 

Lim and He [11] concluded that in their work “The size ef-

fect is obvious and the influence is determined by the intrinsic 

length scale: for Material M1 it is significant when the thick-

ness of the film is smaller than 10 µm, while for Material M2 

it is significant when the film thickness is of order of 1 nm”. 

The current results are completely agreed with the conclu-

sions given by Lim and He [11]. It is also shown that by the 

reduction of thickness, the bending rigidity increases noticea-

bly for material M1, while decreases for material M2. The 

Table 1. Comparison of non-dimensional central deflection ( )w  with 

previous work for S-S beam. 
 

 µ = 0 µ = 1 µ = 2 µ = 3 µ = 4 

Analytical 1.302 - - - - 

Reddy [26] 1.313 1.4487 1.5844 1.7201 1.8558 

Aydogdu [27] 1.313 1.4487 1.5844 1.7201 1.8558 

Civalek [33] 1.313 1.4487 - - 1.8558 

Present (M1) 

no surface effect 
1.30208 1.42708 1.55208 1.67708 1.80208 

Present (M1) 

surface effect 
1.30204 1.42703 1.55203 1.67703 1.80202 

Present (M2) 

no surface effect 
1.30208 1.42708 1.55208 1.67708 1.80208 

Present (M2) 

surface effect 
1.30208 1.42708 1.55208 1.67708 1.80208 
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different effect of the thickness size, for the two materials, is 

directly correlated to their surface elastic constants. 

 

4.3 Nonlocal parameter effect 

The effect of nonlocal parameter µ on the bending behavior 

of nanobeam is investigated and shown in Fig. 3. The figure 

presents the variation of the non-dimensional maximum de-

flection, wmax, for the aforementioned simply supported nano-

beam, versus the thickness, h, and for different nonlocal pa-

rameter µ. It is obviously clear that wmax increases noticeably 

by increasing the nonlocal parameter, µ, for the both two ma-

terials. 

Meanwhile, for any given value of µ, Fig. 3(a) shows that 

the non-dimensional deflection of the first material (M1) is 

gradually increasing by increasing the thickness value up to 

10µm; beyond this value wmax is shown to be almost stationary, 

whatever the increasing of the thickness value. On the con-

trary, Fig. 3(b) shows that the non-dimensional deflection of 

the second material (M2) is gradually decreasing by increas-

ing the thickness up to about 1nm, which means that the trend 

of wmax depends mainly on the elastic constants of the surface. 

5. Conclusions 

A nonlocal finite element model is developed for investiga-

tion of bending behavior of Euler-Bernoulli nanobeam, in-

cluding surface effects. Natural boundary conditions such as 

the end moments and forces are expressed in terms of nonlo-

cal stresses rather than the local one. Several computational 

experiments have been carried out to investigate the size de-

pendent behavior due to the nature of nonlocal elasticity and 

surface effects. 

Two materials of different bulk and surface elastic constants 

are used to study the effects of surface elastic constants on the 

rigidity and bending behavior of nanobeams. The stiffness, 

rigidity and bending behavior are found to be size-dependent 

and this dependency is more significant for slender nano-

beams. The size effect for Material M1 is significant when the 

thickness of the film is smaller than 10 µm, while for Material 

M2 it is significant when the film thickness is of order of 1 nm. 

The results show that the size effects tends to be significant 

when the thickness of the beam decreases towards the intrinsic 

length scale of the material which is, generally, in agreement 

with the results from atomistic simulation. 

 

(a) 

 

 

(b) 
 

Fig. 2. (a) Effect of a beam thickness on beam rigidity and deflection 

including surface effects (M1); (b) Effect of a beam thickness on beam 

rigidity and deflection including surface effects (M2). 

 

 

 

(a) 

 

 

(b) 
 

Fig. 3. (a) Nonlocality effect on the beam deflection for M1; (b) 

Nonlocality effect on the beam deflection for M2. 
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The effect of nonlocal parameters on the deflection of 

Euler-Bernoulli nanobeam is investigated. The results show 

that the nonlocal effect on the deflection is significant, practi-

cally for a smaller thickness. Increasing the nonlocal parame-

ter increased the deflection of nanobeams. 
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Appendix 

Derivation of the nonlocal bending moment and shear forces. 

According to the differential constitutive relations proposed 

by Eringen, the nonlocal bending moment can be expressed as: 
 

2

2
1 nl lM M

x
µ

 ∂
− = 

∂ 
  (A1) 

 
where 
 

2

0

2

2l I w
M EI

h x

ν τ ∂ 
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.  (A2) 

 

 

By substituting M 
l 
into Eq. (A1), M 

n1 
can be written as: 
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nl M I w
M EI
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where 
2

2

nlM

x

∂
∂

 is given by Eq. (18). Consequently, Eq. (A3)  

can be reduced to the following, 
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For the sake of simplicity, we can assume 
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By substituting Eqs. (A5) and (A6) into Eq. (A4), the 

nonlocal moment resultant nlM  can be presented as 
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  (A7) 
 

To obtain the expression of nonlocal shear force nl
Q , sub-

stitute Eq. (A7) into Eq. (1b), which produces  
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