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Abstract 
 

This paper addresses the free vibration of multi-directional functionally graded circular and annular plates using a semi-

analytical/numerical method, called state space-based differential quadrature method. Three-dimensional elasticity equations are derived 

for multi-directional functionally graded plates and a solution is given by the semi-analytical/numerical method. This method gives an 

analytical solution along the thickness direction, using a state space method and a numerical solution using differential quadrature me-

thod. Some numerical examples are presented to show the accuracy and convergence of the method. The most of simulations of the pre-

sent study have been validated by the existing literature. The non-dimensional frequencies and corresponding displacements mode shapes 

are obtained. Then the influences of thickness ratio and graded indexes are demonstrated on the non-dimensional natural frequencies.   
 

Keywords: Circular plates; Differential quadrature method; Free vibration; Functionally graded materials (FGM); Multi-directional; State space-based 
formulation  
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1. Introduction 

The concept of functionally graded materials (FGMs) was 

first introduced in 1984 as ultrahigh-temperature-resistant 

materials for aircraft, space vehicles and other engineering 

applications. FGMs are composite materials that are micro-

scopically inhomogeneous, and their mechanical properties 

vary continuously in one or more directions. This is achieved 

by gradually varying the volume fraction of the constituent 

materials. The continuity of the material properties reduces the 

influence of the presence of abrupt interfaces and avoids high 

interfacial stresses. Furthermore, functionally graded materials 

can be designed to achieve particular desired properties and 

the gradation in properties of material can optimize the stress 

distribution. 

By an increasing attention to FGMs, many researches have 

been done about these materials. For example, Prakash and 

Ganapathi [1] analyzed the asymmetric flexural vibration and 

thermoelastic stability of FGM circular plates. They used a 

finite element method to solve the problem. Efraim and Ei-

senberger [2] studied the exact vibration analysis of variable 

thickness thick annular isotropic and FGM plates. The motion 

equations which they obtained by first order shear deforma-

tion theory was solved by exact element method. Dong [3] 

presented analysis of three-dimensional free vibration of func-

tionally graded annular plates via Chebyshev-Ritz method. 

Allahverdizadeh et al. [4] discussed the nonlinear free and 

forced vibration of thin annular plates which made of func-

tionally graded material. They used assumed-time mode 

method and Kantorovich time averaging technique to solve 

the axisymmetric vibration problem. Nie and Zhong [5] stud-

ied the vibration of a sectorial annular FGM plate with simply 

supported radial edges. Analytical investigation on axisym-

metric free vibrations of moderately thick circular functionally 

graded plate integrated with piezoelectric layers was presented 

by Rastgoo [6]. Malekzadeh et al. [7] analyzed the in-plane 

free vibration of functionally graded circular arches with tem-

perature-dependent properties under thermal environment. 

They assumed that the material properties and temperature 

vary along thickness direction, the government equation and 

boundary conditions were obtained by Hamilton principle. 

Ebrahimi [8] studied geometrically nonlinear vibration of 

piezoelectrically actuated FGM plate with an initial large de-

formation, based on Kirchhoff’s-Love hypothesis with von-

Karman type geometrical large nonlinear deformation. 

Ghorbanpour Arani et al. [9] obtained a semi-analytical solu-

tion of magneto-thermo-elastic stresses for functionally graded 

variable thickness rotating disks. Malekzadeh et al. [10] ana-

lyzed the three-dimensional free vibration of thick function-

ally graded annular plates in thermal environment. They used 

the three-dimensional thermoelastic equilibrium equations and 

Hamilton principle to derive the motion equations. A novel 
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approach for in-plane/out-of-plane frequency analysis of func-

tionally graded circular/annular plates was obtained by 

Hosseini et al. [11]. Second-order shear deformation theory 

was employed to analyze vibration of temperature-dependent 

solar functionally graded plates by Shahrjerdi et al. [12]. Hao 

et al. [13] discussed the nonlinear dynamic response of a sim-

ply supported rectangular functionally graded material plate 

under the time-dependent thermal mechanical loads. 

In the above-mentioned papers, material properties were 

variable in one-direction. Fabrication of engineering compo-

nents with variable properties in two or more directions is a 

novel idea of using FGMs. Qian and Batra [14] designed bi-

directional functionally graded rectangular plate for optimal 

natural frequencies. Axisymmetric bending of two-directional 

functionally graded circular and annular plates was studied by 

Nie and Zhong [15]. Lu et al. [16] obtained a semi-analytical 

solution for bi-directional functionally graded beams. Elastic-

plastic analysis of two-dimensional functionally graded mate-

rials under thermal loading was presented by Nemat-alla et al. 

[17]. Lu et al. [18] analyzed 3-D elasticity problem for multi-

directional functionally graded rectangular plates. Nie and 

Zhong [19] achieved dynamic analysis of multi-directional 

functionally graded annular plates using the state space-based 

differential quadrature method. Sobhani Aragh et al. [20] con-

sidered a novel 2-D parameter power-low distribution and 

investigated free vibration and vibrational displacements of 

two-dimensional functionally graded fiber-reinforced curved 

panels. 

The differential quadrature method is a numerical technique 

that is used in some of the above-mentioned papers. This re-

cent method was extensively used in vibration analysis, for 

example, Liew and Liu [21] presented the vibration analysis 

of shear deformable annular sectorial plates by differential 

quadrature method. Kitipornchai et al. [22] used a combina-

tion of differential quadrature method, Galerkin technique, 

and an iteration process to solve the nonlinear vibration of 

laminated FGM plates with geometric imperfections. Three-

dimensional free vibration of inhomogeneous thick orthotrop-

ic shells of revolution using differential quadrature was stud-

ied by Redekop [23]. Kang [24], used differential quadrature 

method to solve the vibration analysis of thin-walled curved 

beams. Krowiak [25] presented the methods based on the 

differential quadrature and their application to the free vibra-

tion analysis of plates. Tornabene [26] studied free vibration 

analysis of functionally graded conical, cylindrical, shell, and 

annular plate structures with a four-parameter power-law dis-

tribution. He used generalized differential quadrature method 

to solve the motion equations which were obtained via first-

order shear deformation theory (FSDT), and linear elasticity 

theory. In another work Tornabene et al. [27] obtained a 2-D 

differential quadrature solution for vibration analysis of func-

tionally graded conical, cylindrical, shell, and annular plate 

structures. Hosseini et al. [28] studied vibration of radially 

FGM sectorial plates of variable thickness on elastic founda-

tion; the solution of this problem was obtained by differential 

quadrature method. 

In the present paper, the state space based differential quad-

rature method is used to analyze the free vibration problem. 

This method is a semi-analytical method which uses analytical 

state space method to solve problem in one direction, and 

numerical differential quadrature method to obtain the solu-

tion in another direction. This solution procedure was com-

monly used in vibration problems and some of them were 

mentioned previously. Furthermore, Chen et al. [29] used state 

space based differential quadrature method to present free 

vibration analysis of generally laminated beams. Nie and 

Zhong [30] used a semi-analytical state space based differen-

tial quadrature method for three-dimensional vibration analy-

sis of circular FGM plates. Free vibration of a functionally 

graded piezoelectric beam via state space based differential 

quadrature was discussed by Yang and Zhifei [31]. Three-

dimensional analysis of functionally graded annular plates 

using state space based differential quadrature method and 

comparative behavior modeling by artificial neural network 

investigated by Jodaei et al. [32]. 

Our contribution in this research is analyzing the free vi-

brations of circular and annular plates that are made of multi-

directional functionally graded materials. In the above-

mentioned papers, except [19], the material properties, in 

vibration problem of circular and annular plates, varied only 

in the thickness direction. In this paper, like Nie and Zhong’s 

work [19], the material properties are variable in both radial 

and thickness directions. The difference between this work 

and Ref. [19] is in geometry and boundary conditions of plate. 

In addition, we demonstrate the influence of different pa-

rameters on natural frequencies and determine the corre-

sponding mode shapes. We obtain the natural frequencies of 

free vibration of multi-directional functionally graded circular 

and annular plates by the state space-based differential quad-

rature method. 

The remainder of the paper is organized as follows: In sec-

tion 2, the equations of motion for a multi-directional func-

tionally grade circular plate is obtained. In section 3, the dif-

ferential quadrature method is used in radial direction and the 

equations are solved analytically in thickness direction by the 

state space method. In section 4, the numerical results are 

presented and the influences of different parameters on the 

natural frequencies of the plate are demonstrated. In section 5, 

the conclusions of the numerical results are discussed. 

 

2. Basic formulation 

Consider an isotropic annular plate with outer radius a, in-

ner radius b and thickness h, as shown in Fig. 1. A cylindrical 

coordinate system (r, θ, z) with the origin O at the center of 

the bottom surface is employed to describe the plate geometry 

and displacements.  

The 3D equations of motion in cylindrical polar coordinates, 

in the absence of body forces, are [19]: 
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The constitutive equations for a linear, isotropic, function-

ally graded material can be written as [30]: 
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The 0

ij
C  are the elastic stiffness components [3]: 
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The 3D linearized strain-displacement relations are [30]: 
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In FGMs, the material properties are a function of coordi-

nates (r, θ, z) and vary continuously in one or more directions. 

In multi-directional functionally graded materials, the proper-

ties are variable in more than one direction. In the present 

paper, we assume that the material properties have the follow-

ing exponential distributions in the thickness and radial direc-

tions of the plate [19]: 
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Delale and Erdogan [33] indicated that the effect of Pois-

son’s ratio on the deformation is much less than that of 

Young’s modulus. Thus, Poisson’s ratio of the plate is as-

sumed to be constant. Substituting Eqs. (2)-(5) in Eq. (1), the 

dynamic equilibrium equations can be written in a state space 

form [19]: 

 

1 2

0
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I
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  (6) 

 

For an annular plate, the kinematic boundary conditions at 

inner edge (r = b) and outer edge (r = a) are expressed as fol-

low [19]: 

Clamped: 

 

: 0, 0, 0 .
r z

at r b or r a u u uθ= = = = =   (7) 

 

Simply supported: 

 

: 0, 0, 0 .
r z

at r b or r a u uθσ= = = = =   (8) 

 

Free: 

 

: 0, 0, 0 .
r r rz

at r b or r a θσ τ τ= = = = =   (9) 

 

For a solid circular plate the edge boundary condition is one 

of the above equations and the regularity conditions on the 

central point are [30]: 
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u
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For free vibration problems, the stress boundary conditions 

at the bottom and top plate surfaces are assumed as the follow-

ing [19]: 

 

0 : 0, 0, 0
rz z z

at z θτ τ σ= = = =   (11) 

: 0, 0, 0 .
rz z z

at z h θτ τ σ= = = =   (12) 

 

3. Solution 

Obtaining an analytical solution for the state space formula-

tion (6) is difficult. Thus, a semi-analytical solution is used to 

analyze the free vibration of multi-direction functionally 

graded circular and annular plates, which gives an analytical 

 
 

Fig. 1. A functionally graded annular plate. 
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solution in thickness direction and a numerical solution in 

radial direction. The analytical solution in the thickness direc-

tion is obtained by the state space description and the one-

dimensional differential quadrature method is used to obtain a 

numerical solution in the radial direction of the plate. When a 

circular or annular plate is vibrating with natural frequency ω, 

the displacement field can be assumed as follows [19]: 
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By introducing the following non-dimensional parameters 

[19]: 
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Substituting Eq. (13) into Eq. (6), the state space equations 

can be given as [19]: 
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By applying the one-dimensional differential quadrature 

Method in the radial direction, the solution of the state space 

Eq. (15) will be obtained. The differential quadrature Method 

is a numerical method which divides the continuous solution 

domain into a set of finite points and replaces the derivatives 

of an arbitrary unknown function with the weighted summa-

tion of the functions values in the discretized points. The dif-

ferential quadrature rule for nth-order derivative of a function 

f(R), at point i can be expressed as follows [34]: 
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There are different ways for calculating the weighting coef-

ficient matrix, because different functions may be used as test 

functions. For polynomial basis functions used in DQM, a set 

of Lagrange polynomials are employed as the test functions; 

thus, the weighting coefficients for the first-order derivatives 

in the R-direction are thus determined as: 
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The weighting coefficients of the higher-order derivatives 

can be obtained as [34]: 
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A usual choice of the point grid distribution is a uniform 

grid spacing rule. It was found that non-uniform grid spacing 

yields better accuracy. In this study, the Chebyshev-Gauss-

Lobatto quadrature points are used [34]: 
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Substituting Eq. (16) into Eq. (14), the state space equations 

can be written as [19]: 
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The solution of Eq. (20) can be written as [35]: 
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variables at arbitrary plane Z and the reference bottom plane 

Z = 0, respectively. From Eq. (21), for the values of the state 

variables at the top plane, Z = 1, we get [19]: 
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Rewriting the boundary conditions in a non-dimensional 

form and discretizing by DQM, we obtain the following form 

of the boundary conditions for the center, inner and outer 

edges of the plate [30]: 

Clamped: 

 

1 1 1 1
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R Z
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Simply supported: 
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: 0, 0, 0.
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Regularity conditions: 
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For the bottom and top plate surfaces, Z = 0 and Z = 1, the 

discretized boundary conditions can be expressed as follows: 
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These equations can be written in a matrix form [19]: 
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Substituting Eq. (30) into Eq. (22), and applying the bound-

ary conditions, Eqs. (23)-(28), a set of linear algebraic and 

homogeneous equations for the plate free vibrations can be 

obtained [19]: 

 

( )
( )
0

0 .
1

i

i

B
 ′Π

= 
′Π  

  (32) 

 

The non-trivial solution of Eq. (32) is obtained by setting 

[19]: 

 

( )det 0.B =   (33) 

 

Solving the above equations determines the non-

dimensional natural frequencies for the free vibrations of the 

multi-directional functionally graded circular or annular plates. 

 

4. Numerical results and discussion 

4.1 Circular plate with clamped edge 

A multi-directional functionally graded circular plate with 

the radius a = 1 and thickness h = 0.2 assumed. Material prop-

erties at the center of the bottom surface of the plate are 

E
0
 = 380 GPa, ρ

0
 = 3800 kg/m

3
 and � = 0.3. These properties, 

except the Poisson’s ratio, are assumed to have an exponential 

distribution in the thickness and radius of the plate. According 

to Eq. (5): 

– If λ1 = λ2 = 0 the plate is homogenous. 

– If λ1 ≠ 0 and λ2 = 0 the material properties vary only in 

thickness direction. 

– If λ1 = 0 and λ2 ≠ 0 it is a plate with variable properties in 

radial direction. 

– If λ1 ≠ 0 and λ2 ≠ 0 the plate’s material is multi-directional 

functionally graded with exponential distribution in both 

thickness and radial directions. 

 

First, consider the plate is homogenous (λ1 = λ2 = 0), the 

lowest five non-dimensional frequencies for two different 

numbers of circumferential waves are demonstrated in Table 1, 

and the accuracy of results is validated with those of Ref. [36]. 

The state space-based differential quadrature method is used 

to solve the equations. In the numerical solution, 10 discrete 

points are used. 

From Table 2, it can be found that the present results for the 

case of λ1 ≠ 0 and λ2 = 0 are in a good agreement with those in 

Ref. [30]. Table 3 illustrates the lowest five non-dimensional 

frequencies for the free vibrations of the circular plate with vari-

able properties in the radial direction only (λ1 = 0 and λ2 ≠ 0). 

The first five non-dimensional frequencies for different 

thickness-to-radius ratios are listed in Table 4. The conver-

gence of the method for the first three natural frequencies of 

bi-directional functionally graded circular plate with clamped 

edge is shown in Fig. 2. The influence of the graded indices on 

the first three natural frequencies is demonstrated in Figs. 3 

and 4. 

Fig. 3 indicates that the natural frequency for the symmetric 

values of thickness graded index is equal, because when the 

Table 1. The comparison of the lowest five non-dimensional frequen-

cies of the circular plate (h/a = 0.2 and λ1 = λ2 = 0). 
 

m Ω1 Ω2 Ω3 Ω4 Ω5 

Ref. [36] 0.097 0.320 0.410 0.603 0.693 
0 

Present 0.097 0.320 0.410 0.603 0.693 

Ref. [36] 0.192 0.393 0.454 0.594 0.755 
1 

Present 0.191 0.390 0.453 0.593 0.755 

 

Table 2. The comparison of the first five non-dimensional frequencies 

of the circular plate (h/a = 0.2, λ1 = 1 and λ2 = 0). 
 

Ref. [30] Present 
m 

Ω1 Ω2 Ω3 Ω4 Ω5 Ω1 

0 0.096 0.095 0.314 0.410 0.593 0.693 

1 0.186 0.187 0.390 0.445 0.593 0.746 

2 0.277 0.280 0.553 0.569 0.738 0.882 

 

Table 3. The lowest five non-dimensional frequencies of the clamped 

circular plate (h/a = 0.2, λ1 = 0 and λ2 = 1).  
 

m Ω2 Ω3 Ω4 Ω5 Ω1 

0 0.113 0.335 0.453 0.617 0.709 

1 0.203 0.436 0.465 0.621 0.765 

2 0.297 0.575 0.589 0.758 0.904 
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sign of the thickness graded index changes is the same as the 

state in which the direction of z-axis changes. In addition, 

according to Fig. 3, when the absolute value graded index in 

thickness direction increases the natural frequencies of circular 

clamped plate decrease.  

Fig. 4, shows that the natural frequencies of multi-

directional functionally graded circular plate with clamped 

edge increase with an increase in radial graded index. 

When the natural frequencies have been determined, the 

corresponding mode shapes can be evaluated by Eq. (32). The 

displacement mode shapes according to the first natural fre-

quencies of circular clamped plate when, m = 0, 1, 2 are 

shown in Figs. 5-7, respectively. The nodal diameters are ob-

Table 4. The lowest five non-dimensional frequencies of the clamped 

circular plate (λ1 = λ2 = 1).  
 

h/a m Ω2 Ω3 Ω4 Ω5 Ω1 

0 0.030 0.098 0.200 0.227 0.325 

1 0.056 0.144 0.218 0.259 0.311 0.1 

2 0.086 0.190 0.287 0.315 0.379 

0 0.110 0.329 0.453 0.607 0.709 

1 0.199 0.436 0.457 0.621 0.752 0.2 

2 0.291 0.575 0.579 0.758 0.890 

0 0.225 0.609 0.680 1.057 1.062 

1 0.386 0.654 0.816 0.932 1.284 0.3 

2 0.545 0.864 1.014 1.136 1.439 

0 0.360 0.903 0.907 1.406 1.518 

1 0.590 0.876 1.181 1.245 1.819 0.4 

2 0.814 1.151 1.454 1.513 2.030 

0 0.504 1.133 1.201 1.742 1.953 

1 0.800 1.095 1.545 1.557 2.036 0.5 

2 1.087 1.436 1.878 1.889 2.248 

 

 
 

Fig. 2. The convergence of the first three natural frequencies (h/a = 0.2 

and λ1 = λ2 = 1). 

 

 
 

Fig. 3. The natural frequencies of circular clamped plate for different 

values of graded index in the thickness direction (h/a = 0.2 and λ2 = 1). 

 

 
 

Fig. 4. The natural frequencies of circular clamped plate for different 

values of graded index in the radial direction (h/a = 0.2 and λ1 = 1). 

 

 
 

Fig. 5. Displacement mode shapes of a clamped circular plate corre-

sponding to the first frequency of m = 0 (h/a = 0.2 and λ1 = λ2 = 1). 

 

 
 

Fig. 6. Displacement mode shapes of a clamped circular plate corre-

sponding to the first frequency of m = 1 (h/a = 0.2 and λ1 = λ2 = 1). 

 

 
 

Fig. 7. Displacement mode shapes of a clamped circular plate corre-

sponding to the first frequency of m = 2 (h/a = 0.2 and λ1 = λ2 = 1). 
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vious in these figures. The mode shapes of thickness dis-

placement corresponding to the first three frequencies of cir-

cular clamped plate with zero wave number are demonstrated 

in Fig. 8. 

 

4.2 Circular plate with simply supported edge 

Consider a plate with the same properties as the plate of 4.1, 

which is simply supported. The lowest three non-dimensional 

natural frequencies of a simply supported circular plate for 

different kind of material distribution are listed in Table 5. 

According to Table 5, a plate with material property distribu-

tion in only radial direction has the largest natural frequencies. 

The lowest five dimensionless natural frequencies of simply 

supported bi-directional functionally graded circular plate for 

different thickness-to-radius ratios are presented in Table 6. 

Figs. 9-11 show the displacements mode shape correspond-

ing to the lowest natural frequencies of simply supported func-

tionally graded circular plate. 

 

4.3 Annular plate with simply supported inner and clamped 

outer edges 

Consider an annular plate with inner radius b, outer radius a, 

and thickness h; which its inner and outer edges are simply 

supported and clamped, respectively. The material properties 

of this plate are the same as plates were discussed in 4.1 and 

4.2. The lowest three natural frequencies for four different 

case of graded material are presented in Table 7.  

The lowest five dimensionless natural frequencies of bi-

directional annular plate with simply supported inner and 

clamped outer edges via different inner radius-to-outer radius 

ratios and thickness-to-outer radius ratios are listed in Tables 8 

and 9, respectively. Table 8, shows that the increase of the 

Table 5. The lowest three non-dimensional natural frequencies of a 

simply supported functionally graded circular plate (h/a = 0.1 and N = 

12). 
 

m λ1 = λ2 = 1 λ1 = 0, λ2 = 1 λ1 = 1, λ2 = 0 λ1 = λ2 = 0 

0 0.0121 0.0124 0.0120 0.0123 

1 0.0361 0.0370 0.0356 0.0365 

2 0.0624 0.0639 0.0622 0.0637 

 

Table 6. The lowest five non-dimensional frequencies of the simply 

supported circular plate (λ1 = λ2 = 1 and N = 8). 
 

h/a m Ω2 Ω3 Ω4 Ω5 Ω1 

0 0.012 0.074 0.153 0.171 0.227 

1 0.036 0.064 0.116 0.231 0.310 0.1 

2 0.062 0.096 0.161 0.287 0.365 

0 0.047 0.263 0.305 0.453 0.551 

1 0.132 0.135 0.393 0.620 0.675 0.2 

2 0.192 0.225 0.524 0.729 0.850 

0 0.103 0.457 0.515 0.680 0.998 

1 0.208 0.271 0.738 0.930 0.978 0.3 

2 0.288 0.446 0.956 1.093 1.314 

0 0.176 0.608 0.796 0.906 1.466 

1 0.290 0.436 1.104 1.244 1.293 0.4 

2 0.384 0.694 1.400 1.475 1.712 

0 0.264 0.757 1.088 1.133 1.896 

1 0.366 0.614 1.473 1.556 1.589 0.5 

2 0.479 0.953 1.763 1.824 1.869 

 

 
 

Fig. 8. Thickness displacement mode shapes of a clamped circular 

plate corresponding to the first three frequencies of m = 0 (h/a = 0.2 

and λ1 = λ2 = 1). 

 

 
 

Fig. 9. Displacement mode shapes of the simply supported circular 

plate corresponding to the first frequency of m = 0 (h/a = 0.1 and λ1 =

λ2 = 1). 

 

 
 

Fig. 10. Displacement mode shapes of the simply supported circular 

plate corresponding to the first frequency of m = 1 (h/a = 0.1 and λ1 =

λ2 = 1). 

 

 
 

Fig. 11. Displacement mode shapes of the simply supported circular 

plate corresponding to the first frequency of m = 2 (h/a = 0.1 and λ1 =

λ2 = 1). 
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inner radius-to-outer radius ratio increases the natural frequen-

cies of the annular functionally graded plate with simply sup-

ported inner and clamped outer edges. According to Table 9, 

the natural frequencies increase when the thickness-to-outer 

radius ratio increases.  

Displacement mode shapes of functionally graded annular 

plate with mentioned supports are illustrated in Figs. 12-15. 

 

5. Conclusions 

The three-dimensional free vibrations of multi-directional 

graded circular and annular plates are analyzed by the state 

space based differential quadrature method, which solves di-

mensionless equations of motion analytically along thickness 

direction and numerically along radial direction of the plate. The 

natural frequencies and corresponding displacement mode 

shapes are obtained. The accuracy and convergence of the 

method are shown and it is illustrated that the method has 

proper accuracy and rapid converge. The numerical results are 

Table 7. The lowest three non-dimensional natural frequencies of the 

functionally graded annular plate with simply supported inner and 

clamped outer edges (h/a = 0.2, b/a = 0.1 and N = 12). 
 

m λ1 = λ2 = 1 λ1 = 0, λ2 = 1 λ1 = 1, λ2= 0 λ1 = λ2 = 0 

0 0.195 0.199 0.189 0.193 

1 0.219 0.223 0.209 0.213 

2 0.294 0.299 0.283 0.288 

 
Table 8. The lowest five non-dimensional frequencies of the annular 

plate with simply supported inner and clamped outer edges via differ-

ent inner radius-to-outer radius ratios (h/a = 0.1, λ1 = λ2 =1 and 

N = 10). 
 

b/a m Ω2 Ω3 Ω4 Ω5 Ω1 

0 0.057 0.151 0.231 0.277 0.343 

1 0.064 0.161 0.241 0.289 0.330 0.1 

2 0.078 0.193 0.293 0.324 0.383 

0 0.068 0.182 0.244 0.327 0.333 

1 0.074 0.189 0.261 0.339 0.340 0.2 

2 0.092 0.211 0.307 0.361 0.390 

0 0.084 0.226 0.267 0.323 0.410 

1 0.089 0.231 0.286 0.340 0.414 0.3 

2 0.104 0.246 0.329 0.392 0.428 

 
Table 9. The lowest five non-dimensional frequencies of the annular 

plate with simply supported inner and clamped outer edges via differ-

ent thickness-to-outer radius ratios (b/a = 0.1, λ1 = λ2 = 1 and N = 10). 
 

h/a m Ω2 Ω3 Ω4 Ω5 Ω1 

0 0.057 0.151 0.231 0.277 0.343 

1 0.064 0.161 0.241 0.289 0.330 0.1 

2 0.078 0.193 0.293 0.324 0.383 

0 0.196 0.462 0.463 0.687 0.785 

1 0.219 0.483 0.496 0.661 0.810 0.2 

2 0.294 0.585 0.587 0.765 0.906 

0 0.368 0.693 0.811 1.031 1.215 

1 0.415 0.725 0.870 0.991 1.376 0.3 

2 0.548 0.878 1.022 1.146 1.520 

0 0.552 0.924 1.162 1.373 1.620 

1 0.625 0.967 1.249 1.321 1.922 0.4 

2 0.817 1.170 1.464 1.527 2.057 

 

 
 

Fig. 12. Displacement mode shapes of the annular plate with simply 

supported inner and clamped outer edges corresponding to the first 

frequency of m = 0 (h/a = 0.1, b/a = 0.2 and λ1 = λ2 = 1). 

 

 
 

Fig. 13. Displacement mode shapes of the annular plate with simply 

supported inner and clamped outer edges corresponding to the first 

frequency of m = 1 (h/a = 0.1, b/a = 0.2 and λ1 = λ2 = 1). 

 

 
 

Fig. 14. Displacement mode shapes of the annular plate with simply 

supported inner and clamped outer edges corresponding to the first 

frequency of m = 2 (h/a = 0.1, b/a = 0.2 and λ1 = λ2 = 1). 

 

 
 

Fig. 15. Thickness displacement mode shapes of the annular plate with 

simply supported inner and clamped outer edges plate corresponding to 

the first three frequencies of m = 0 (h/a = 0.1, b/a = 0.2 and λ1 = λ2 = 1). 
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compared with simpler cases presented in literature and the 

agreement is clear. The natural frequencies for circular plates 

with two different boundary conditions are presented. Accord-

ing to the numerical results, the natural frequencies increase 

when the circular or annular plate becomes thicker. This is ob-

served by increasing thickness-to-outer radius ratios. Increasing 

the inner radius-to-outer radius ratio leads to an increase in the 

natural frequencies of annular plate. The influence of the graded 

indices on natural frequencies of the clamped circular plate is 

illustrated. It is shown that increasing the absolute value of 

along-radial graded index increases the natural frequencies but 

increasing through-thickness graded index decreases the natural 

frequencies. It is found that, plates having symmetric through-

thickness graded indices have the same natural frequencies, 

because these plates are physically the same. According to these 

analyzes and parametric studies, a plate with acceptable vari-

able material properties may be designed. 

 

Nomenclature------------------------------------------------------------------------ 

a  : Radius of circular plate  

B1, B2  : The coefficients of the state variable formulation, 

give in Appendix 

1 2
,B B  : 3 × 3 non-dimensional coefficients of the state 

space formulation. They are function of R, only 

( ) ( )
1 2
,

i i
B B  : 3N × 3N matrices obtained by applying the DQM 

on 
1

B  and 
2

B  

Bi : ( ) ( )
1 2

0

i i

I

B B

 
 
  

 

Cij  : Elastic stiffness components 
0

ij
C  : The reference elastic stiffness components at the 

center of bottom plane of the plate, z = 0 
0

ij
C  : Non-dimensional elastic stiffness components at 

the center of bottom plane, z = 0 

E  : Young’s modulus 

E
0
  : The reference Young’s modulus at the center of 

the bottom plane of the plate, z = 0 

f(R)  : A one-variable function whose derivative is de-

veloped based on its values in DQM 

f(Ri)  : f(R) computed at discrete point i 

h  : Thickness of circular plate 

I3×3  : Identity matrix of dimension 3 

i  : 1−  

M(Ri )  : ( )
1

N

i j

j
i j

R R
=
≠

−∏  

m  : The number of circumferential waves 

N  : The number of discrete points in DQM 

R, Z  : Non-dimensional radial and thickness variables 

r, θ, z  : Polar coordinates 

t  : Time variable 

ur , uθ  : In-plane displacements along the radial and 

circumferential directions of plate 

uz  : Out-of-plane displacement along the thickness 

direction of the plate 

UR , Uθ , UZ  : Non-dimensional displacements along the ra-

dial, circumferential, and thickness directions 
( )n
ij

W   : nth-order weighting coefficient components 
( )

[ ]
n

ij
W   : Weighting coefficient matrix in DQM 

γrθ  : In-plane shear strain 

γθz , γrz  : Out-of-plane shear strains 

εr , εθ  : In-plane normal strains along the radial and 

circumferential directions 

εz  : Out-of-plane normal strain along the thickness 

direction of the plate 

λ1  : Material property graded index along the thick-

ness direction 

λ2  : Material property graded index along the radial 

direction  

� : Poisson’s ratio 

Π , Γ  : State variables, ,
T

r z
u u uθΠ =     

 

T

r z
u u u

z z z

θ∂ ∂ ∂ 
Γ =  ∂ ∂ ∂ 

 

,Π Γ   : Non-dimensional state variables,  

,
T

R Z
U U UθΠ =     

T

R Z
U U U

Z Z Z

θ∂ ∂ ∂ 
Γ =  ∂ ∂ ∂ 

 

,
i i

Π Γ   : Discretized non-dimensional state variables,  

1 2

1 2

1 2

, ,...,

, ,..., ,

, ,...,

T

R R RN

T

i N

T

Z Z ZN

U U U

U U U

U U U

θ θ θ

    
 Π =    
    

 

1 2

1 2

1 2

, ,...,

, ,...,

, ,...,

T

R R R

N

T

i

N

T

Z Z Z

N

U U U

Z Z Z

U U U

Z Z Z

U U U

Z Z Z

θ θ θ

  ∂ ∂ ∂            ∂ ∂ ∂       
 
  ∂ ∂ ∂     

Γ =        ∂ ∂ ∂       
 
 ∂ ∂ ∂      
       ∂ ∂ ∂        

 

( )0i
′Π  : 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 1

2 1

2 1

0 ,..., 0

0 ,..., 0

0 ,..., 0

T

R R N

T

N

T

Z Z N

U U

U U

U U

θ θ

−

−

−

  
  
 
  
  
     

 

( )1i
′Π   : 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 1

2 1

2 1

1 ,..., 1

1 ,..., 1

1 ,..., 1

T

R R N

T

N

T

Z Z N

U U

U U

U U

θ θ

−

−

−

  
  
 
  
  
     

 

ρ  : Material density 

ρ
0
  : The reference material density at the center of 

bottom plane, z = 0 

σr ,σθ  : In-plane normal stresses along the radial and 

circumferential directions of the plate 
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σz  : Out-of-plane normal stress along the thickness 

direction of the plate 

τrθ  : In-plane shear stress 

τθz , τrz  : Out of-plane shear stresses 

Ω  : Non-dimensional natural frequency 

ω  : Natural frequency 
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Appendix  

The matrix B1 is as follows: 
1 1 1

11 12 13

1 1 1

1 21 22 23

1 1 1

31 32 33

b b b

B b b b

b b b

 
 

=  
 
 

 

 

where 
 

0 2 0 0

1 11 2 12 2 22

11 0 2 0 0 2

55 55 55

0 2 0 2

66

0 2 2 0 2

55 55

1 1 1

1
,

C C C
b

C r r r a r C a r C r

C

C r C t

λ λ

ρ
θ

 ∂ ∂ ∂
= − + + − + 

∂ ∂ ∂ 

∂ ∂
− +

∂ ∂

 

0 2 0

1 12 2 22

12 0 0 2

55 55

0 2

66

0 2

55

1 1 1

1 1
,

C C
b

C r r a r C r

C

C r r r

λ
θ θ θ

θ θ

 ∂ ∂ ∂
= − + + 

∂ ∂ ∂ ∂ 

 ∂ ∂
− − 

∂ ∂ ∂ 

 

1 1

13
,b

h r

λ ∂
= −

∂
 

0 2 0

1 12 22

21 0 0 2

44 44

0 2

66 2

0 2

44

1 1

1 1 1
,

C C
b

C r r C r

C

C r r r a r

θ θ

λ
θ θ θ

∂ ∂
= − −

∂ ∂ ∂

 ∂ ∂ ∂
− + + 

∂ ∂ ∂ ∂ 

 

0 2 0 2

1 22

22 0 2 2 0 2

44 44

0 2

66 2 2

0 2 2

44

1

1 1 1
,

C
b

C r C t

C

C r r r a r a r r

ρ
θ

λ λ

∂ ∂
= − +

∂ ∂

 ∂ ∂ ∂
− + − + − 

∂ ∂ ∂ 

 

1 1

23

1
,b

h r

λ
θ
∂

= −
∂

 

0 0

1 13 1 23 1

31 0 0

33 33

1
,

C C
b

C h r C h r

λ λ∂
= − −

∂
 

0

1 23 1

32 0

33

1
,

C
b

C h r

λ
θ
∂

= −
∂

 

0 2 0 2 0 2

1 44 55 2

33 0 2 2 0 2 0 2

33 33 33

1 1
.

C C
b

C r C r r r a r C t

λ ρ
θ

 ∂ ∂ ∂ ∂ ∂
= − − + + + 

∂ ∂ ∂ ∂ ∂ 
 

 
The matrix B2 is as follows: 
 

2 2 2

11 12 13

2 2 2

2 21 22 23

2 2 2

31 32 33

b b b

B b b b

b b b

 
 

=  
 
 

 

 

where 
 

2 1

11
,b

h

λ
= −  

2

12
0,b =  

0 0

2 13 2 23

13 0 0

55 55

1 1
,

C C
b

C r r a C r r

λ∂ ∂ 
= − + + + − ∂ ∂ 

 

2

21
0,b =  

2 1

22
,b

h

λ
= −  

0

2 23

23 0

44

1 1
,

C
b

C r rθ θ
∂ ∂

= − −
∂ ∂

 

0 0 0

2 13 23 55 2

31 0 0 0

33 33 33

1 1
,

C C C
b

C r c r C r r a

λ∂ ∂ 
= − − − + + ∂ ∂ 

 

0 0

2 23 44

32 0 0

33 33

1 1
,

C C
b

C r C rθ θ
∂ ∂

= − −
∂ ∂

 

2 1

33
.b

h

λ
= −  
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