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Abstract 
 

Large deflection of a cantilever beam subjected to a tip-concentrated load is governed by a non-linear differential equation. Since it is 

hard to find exact or closed-form solutions for this non-linear problem, this paper investigates the aforementioned problem via the differ-

ential transformation method (DTM) and the variational iteration method (VIM), which are well-known approximate analytical solutions. 

The mathematical formulation is yielded to a non-linear two-point boundary value problem. In this study, we compare the DTM and 

VIM results, with those of Adomian decomposition method (ADM) and the established numerical solution obtained by the Richardson 

extrapolation in order to verify the accuracy of the proposed methods. As an important result, it is depicted from tabulated data that the 

DTM results are more accurate in comparison with those obtained by the VIM and ADM, which is one of the objectives of this article. 

Moreover, the effects of dimensionless end point load, α , on the slope of any point along the arc length and the dimensionless vertical 

and horizontal displacements are illustrated and explained. The results reveal that these methods are very effective and convenient in 

predicting the solution of such problems, and it is predicted that the DTM and VIM can find a wide application in new engineering prob-

lems.    
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1. Introduction 

The deflection of compliant mechanism which involves 

geometrical non-linearity in the wake of large deflection of 

members continues to be an interesting problem in mechanical 

systems. Therefore, many researches have been reported on 

the subject of the non-linear deformation of beams. Schmidt 

and Dadeppo [1] applied a modified Chebyshev’s polynomial 

approximation method to analysis large deflections of cantile-

vered beams. Nageswara Rao and Venkateswara Rao studied 

the large deflection behavior of a cantilever beam subjected to 

a tip rotational concentrated load [2] and rotational distributed 

load [3]. Nageswara Rao et al. [4] analyzed the large deflec-

tion of a spring hinged cantilever beam subjected to a tip con-

centrated rational load. Nageswara Rao and Venkateswara 

Rao [5] investigated the large deflections of a nonuniform 

cantilever beam with end rotational load. Wang et al. [6] stud-

ied a class of large deflection beam problems where one end 

of the beam was being held while the other end portion was 

allowed to slide freely over a frictionless support fixed at a 

distance from that end. The elastic beam was subjected to a 

point load. This highly non-linear problem was solved using 

both the elliptic integral method and the shooting-optimization 

technique. 

More recently, Lee [7] investigated large deflection of can-

tilever beams made of Ludwick type material subjected to a 

combined loading consisting of a uniformly distributed load 

and one vertical concentrated load at the free end. Chucheep-

sakul and Phungpaigram [8] investigated the exact closed-

formed solutions using elliptic integrals for large deflection 

analysis of an elastic beam with variable arc-length subjected 

to an inclined follower force. The beam was hinged at end but 

slid freely over the support at the other end. Dado and Al-

Sadder [9] studied the very large deflection behavior of pris-

matic and non-prismatic cantilever beams subjected to various 

types of loadings. The formulation was based on representing 

the angle of rotation of the beam by a polynomial on the posi-

tion variable along the deflected beam axis. The coefficients 

of the polynomial were obtained by minimizing the integral of 

the residual error of the governing differential equation and by 

applying the beam’s boundary conditions. Wang et al. [10] 

analyzed the large deformation of a cantilever beam under 

point load at the free tip by an analytical method, namely the 

homotopy analysis method (HAM). Tolou and Herder [11] 
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investigated the feasibility of the Adomian decomposition 

method (ADM) in analyzing compliant mechanical systems. 

Mutyalarao et al. [12] examined large deflections of a uniform 

cantilever beam subjected to a tip-concentrated load whose 

inclination was normal to the deformed axis of the beam. 

An analytical expression is more convenient for engineering 

calculations compare with experimental or numerical studies, 

and is also the obvious starting point for a better understand-

ing of the relationship between the physical properties of the 

cantilever beam and the slope of any point along the arc length. 

Moreover, the pursuit of analytical solutions for the non-linear 

equation of large deformation in compliant beams under point 

load is of intrinsic scientific interest. To the best of the au-

thors’ knowledge, there is no paper that has solved this prob-

lem by the DTM and VIM. The primary purpose of present 

paper is to demonstrate the usefulness of the DTM and VIM 

to solve the aforementioned problem. Then, the ADM [11] 

and the numerical solution have been used for validity of these 

methods. Large deformation analysis of beams is a new appli-

cation for the DTM and VIM which were used for other engi-

neering applications [13-29]. 

 

2. Problem statement 

Using the Bernoulli-Euler equation [30], the curvature of a 

prismatic beam, κ , can be written as 

 

d M

ds EI

θ
κ = =  (1) 

 

where M  is the bending moment, E  is Young’s modulus, 

I  is the area moment of inertia of the beam, while EI  is 

called the bending stiffness of the beam. Furthermore, ( )sθ  

is the slope of any point along the arc length with respect to 

the x-axis, and s  is the arc-coordinate on the neutral axis of 

the beam from the fixed end to the base. 

The moment at any point in the beam shown in Fig. 1 is 

given by 

 

( )hM F L xδ= − −  (2) 

 

where F  is the point load at the free end. Thus, the bending 

equation of a uniform cross-section beam with large deflection 

is 

 

( ) , (0) 0, ( ) 0h

d F
L x L

ds EI

θ
δ θ θ ′= − − = =  (3) 

 

where the prime denotes the differential with respect to s , 

and where 
hδ  is the horizontal deflection of beam. The axial 

elongation of the beam is neglected, because it is much 

smaller than the lateral deflection at the free end point. 

By differentiating Eq. (1) once with respect to s  and rear-

ranging it, we obtain 

2

2
.

d dM ds

ds EI

θ
=  (4) 

 

By introducing the dimensionless parameter s Lζ = , and 

differentiating Eq. (2) once with respect to s , taking into 

account the relation cos dx dsθ =  and substituting in Eq. (4), 

we obtain the governing equation for large deformation of a 

cantilever beam under free end point vertical load shown in 

Fig. 1 in the following form: 
 

2

2
cos 0

d

d

θ
α θ

ζ
+ =  (5a) 

(0) 0θ =  (5b) 

(1) 0θ ′ =  (5c) 

 

where 2FL EIα =  is the dimensionless end point load. The 

rotation angle of the beam at free end point is denoted by 

(1)Bθ θ= . The dimensionless exact vertical and horizontal 

displacements of the free end point are given by [10, 30, 31] 

 

2 ( ) ( , )
v

EI
L E E

F
δ µ ϕ µ= − −    (6) 

 

where ( )E µ  is the complete elliptic integral of the second 

kind, ( , )E ϕ µ  is the elliptic integral of the second kind, and 
 

1 sin 1
, arcsin .

2 2

Bθµ ϕ
µ

 +
= =   

 
 (7) 

 

Consequently, the dimensionless vertical displacement at 

free tip is given by 

 

2
1 ( ) ( , ) .v E E

L

δ
µ ϕ µ

α
= − −    (8) 

 

Besides, we have 

 

2

2 2sin
sin .h B

B

L EI

L FL

δ θ
θ

α
−  

= = 
 

 (9) 

 
 

Fig. 1. Cantilever beam subjected to a free end point loading. 
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Thus, the dimensionless horizontal displacement of the free 

tip is given by 

 

1
1 2sin .h

B
L

δ
θ

α
= −  (10) 

 

Clearly, the vertical and horizontal displacements 
vδ  and 

hδ  can be easily calculated as long as 
Bθ  is known. 

For infinitesimal deformation, it is enough to use the linear 

equation 

 
2

2
0, (0) 0, (1) 0 .

d

d

θ
α θ θ

ζ
′+ = = =  (11) 

 

The corresponding solution is 

 

( ) (2 )
2

α
θ ζ ζ ζ= −  (12) 

 

which gives the linear result 

 

.
2

B

α
θ =  (13) 

 

If the large deformation is considered, one has to solve a 

non-linear algebraic equation [10] 

 

( ) ( , )K Fα µ ϕ µ= −  (14) 

 

where µ  and ϕ  are defined by Eq. (7), and ( )K µ  is the 

complete elliptic integral of the first kind, and ( , )F ϕ µ  is the 

elliptic integral of the first kind, respectively. 

 

3. Fundamental of differential transformation method 

[32] 

Let ( )x t  be analytic in a domain D  and let 
it t=  repre-

sent any point in D . The function ( )x t  is then represented 

by a power series whose center is located at 
it . A Taylor 

series expansion function of ( )x t  about 
it  takes the form: 

 

( )
0

( )
( ) .

!
i

k
k

i

k
k t t

t t d x t
x t t D

k dt

∞

= =

−  
= ∀ ∈ 

 
∑  (15) 

 

The particular case of Eq. (15) when 0it =  is the Maclau-

rin series of ( )x t  and is expressed as: 

 

0 0

( ) ( )
( ) .

!

k k

k
k t

t d x t
x t

k dt

∞

= =

 
=  

 
∑  (16) 

 

As explained in Ref. [33] the differential transformation of 

the function ( )x t  is defined as follows: 

( ) ( )
0

( )

!

k
k

k

t

H d x t
X k

k dt
=

 
=  

 
 (17) 

 

where ( )x t  is the original function and ( )X k  is the trans-

formed function. The differential spectrum of ( )X k  is con-

fined within the interval 0,t H∈   , where H  is a constant. 

The differential inverse transform of ( )X k  is defined as 

follows: 

 

( )
0

( ) .

k

k

t
x t X k

H

∞

=

 
=  

 
∑  (18) 

 

It is clear that the concept of differential transformation is 

based upon Taylor series expansion. Values of the function 

( )X k  are referred to as discretes, i.e. (0)X  is known as the 

zero discrete, (1)X  is the first discrete, and ( )X k  is the 

kth  discrete. The more discretes are available, the more pre-

cise it is possible to restore the unknown function. The func-

tion ( )x t  consists of T-function ( )X k , and its value is given 

by the sum of the T-function with ( )kt H  as its coefficient. 

In real applications, with the right choice of the constant H , 

the larger values of argument k , the discrete of spectrum 

reduce rapidly. The function ( )x t  is expressed by a finite 

series and Eq. (18) can be written as: 

 

( )
0

( ) .

k
N

k

t
x t X k

H=

 
=  

 
∑  (19) 

 

Mathematical operations performed by the differential 

transform method are listed in Table 1. 

 

3.1 Solution with DTM 

Now we apply the differential transformation method to Eq. 

(5a). Taking the differential transform of Eq. (5a) with respect 

to ζ , and considering 1H =  according to Table 1, gives: 

Table 1. The fundamental operations of differential transform method. 
 

Original function Transformed function 

( ) ( ) ( )x t f t g tα β= ±  ( ) ( ) ( )X k F k G kα β= ±  

( )
( )

df t
x t

dt
=  ( ) ( ) ( )1 1X k k F k= + +  

2

2

( )
( )

d f t
x t

dt
=  ( ) ( )( ) ( )1 2 2X k k k F k= + + +  

( ) mx t t=  ( ) ( )
1

0
X k k mδ


= − = 


  
k m

k m

=

≠
 

( ) exp( )x t tλ=  ( )
!

k

X k
k

λ
=  

( ) ( ) ( )x t f t g t=  ( ) ( ) ( )
0

k

l

X k F l G k l
=

= −∑  
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( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0 0 0

1
2 1 2

2

1

24

( ) 0 .

k

l

k m v

m v w

k k k l k l

k m m v v w w

k

α

α

α δ

=

= = =

 
+ + Θ + − Θ Θ − 

 

   
+ Θ − Θ − Θ − Θ        
+ × =

∑

∑ ∑ ∑   

 (20) 

 

From boundary condition in Eq. (5b), that we have it at 

point 0ζ = , and exerting transformation 

 

(0) 0 .Θ =  (21) 

 

The other boundary conditions are considered as follows: 

 

(1) CΘ =  (22) 

 

where C  is constant, and we will calculate it with consider-

ing another boundary condition in Eq. (5c) in point 1ζ = . 

Accordingly, from a process of inverse differential trans-

formation, in this problem we calculated ( )2kΘ +  from Eq. 

(20) as follows: 

 

1
(2)

2
αΘ = −  (23a) 

(3) 0Θ =  (23b) 

21
(4)

24
CαΘ =  (23c) 

21
(5)

40
CαΘ = −  (23d) 

3 41 1
(6)

240 720
Cα αΘ = −  (23e) 

2 31
(7)

336
CαΘ =  (23f) 

3 213
(8)

6720
CαΘ = −  (23g) 

4 2 51 1
(9) .

1920 8640
C Cα αΘ = −  (23h) 

⋮  

 

The above process may be continued further. Substituting 

Eq. (23) into the main equation based on the DTM, the closed 

form of the solutions is obtained as: 

 

( ) 2 2 4 2 5 3 4 6 2 3 7 3 2 8

4 2 5 9 3 4 5 10 4 3 2 7 11

1 1 1 1 1 1 13

2 24 40 240 720 336 6720

1 1 257 1 67 1

1920 8640 1209600 19200 443520 475200

C C C C C C

C C C C C

θ ζ α ζ α ζ α ζ α α ζ α ζ α ζ

α α ζ α α ζ α α ζ

           
= − + − + − + −           

           

     
+ − + − + − +     
     

5 2 3 6 12 4 5 6 13 5 4 3 8

7 14 6 3 4 7 15 5 6

157 13 529 7 120383 1

2956800 1182720 31449600 748800 9686476800 3548160

1 547 391 25469 15107

1497600 106444800 399168000 18598035456 1

C C C C C C

C C C

α α ζ α α ζ α α

α ζ α α ζ α

−    
+ − + − + +    
    

  
+ + − + −  

  
7 2

3 10 16 6 5 4 9 8 17

2300288000

19 13752547 4337 163
.

5474304000 13173608448000 130288435200 1018368000

C

C C C C

α

α ζ α α α ζ





−  
− + + + +  

  
⋯

 

 (24) 

 

To obtain the value of C , we substitute the boundary con-

dition from Eq. (5c) into Eq. (24) giving 

( ) 2 2 3 4 2 3 3 2

4 2 5 3 4 5 4 3 2 7

1 1 1 1 1 1 13
1 2 4 5 6 7 8

2 24 40 240 720 336 6720

1 1 257 1 67 1
9 10 11

1920 8640 1209600 19200 443520 475200

157
12

295

C C C C C

C C C C C

θ α α α α α α α

α α α α α α

           ′ = − + − + − + −           
           

     
+ − + − + − +     

     

+ 5 2 3 6 4 5 6 5 4 3 8

7 6 3 4 7 5 6

13 529 7 120383 1
13 14

6800 1182720 31449600 748800 9686476800 3548160

1 547 391 25469 15107
15 16

1497600 106444800 399168000 18598035456 12300288000

C C C C C C

C C C

α α α α α α

α α α α α

−    
− + − + +    

    

  
+ + − + −  

  
7 2

3 10 6 5 4 9 819 13752547 4337 163
17 0 .

5474304000 13173608448000 130288435200 1018368000

C

C C C Cα α α α





  
− + − + + + =  

  
⋯

 

 (25) 

 

The constant can be evaluated using numerical methods 

such as Newton-Raphson method. Substituting for C  into Eq. 

(24), we determine ( )θ ζ . 

The calculations reported in this paper use 24,N =  which 

was found to be sufficient to give an accurate solution. An 

implication of this is that Eq. (5) only requires the summation 

of a limited number of terms, and therefore the solution can be 

computed without excessive computational effort. 

 

4. Fundamental of variational iteration method [34, 35] 

To illustrate the basic concept of the technique, we consider 

the following general differential equation: 

 

( )Lu Nu g x+ =  (26) 

 

where L  is a linear operator, N  a non-linear operator, and 

( )g x  is the forcing term. According to the variational itera-

tion method, we can construct a correct functional as follows: 
 

1
0

( ) ( ) ( ( ) ( ) ( ))
x

n n n nu x u x Lu t Nu t g t dtλ+ = + + −∫ ɶ  (27) 

 

where λ  is a Lagrange multiplier [13-16], which can be 

identified optimally via the variational iteration method. The 

subscripts n  denote the nth  approximation, 
nuɶ  is consid-

ered as a restricted variation, that is, 0nuδ =ɶ ; and Eq. (16) is 

called a correct functional. The solution of the linear problems 

can be solved in a single iteration step due to the exact identi-

fication of the Lagrange multiplier. The principles of the 

variational iteration method and its applicability to various 

kinds of differential equations are given in Refs. [13-16]. In 

this method, it is required first to optimally determine the La-

grange multiplier λ . The successive approximation 
1nu + , 

0n ≥  of the solution u  will be readily obtained upon using 

the determined Lagrange multiplier and any selective function 

0u , consequently, the solution is given by 

 

lim .n
n

u u
→∞

=  (28) 

 

The convergence and error of the VIM were estimated by 

Ramos [36]. 

 

4.1 Implementation of VIM 

In order to solve Eq. (5a) using the VIM, we construct a 

correction functional as follows: 
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( ) ( ) ( )
2

1 20

( )
cos ( ) .n

n n n

d t
t dt

dt

ζ θ
θ ζ θ ζ λ α θ+

  
= + + 

  
∫ ɶ  (29) 

 

Its stationary conditions can be obtained as follows: 

 

( ) 0
t

t
ζ

λ
=

′′ =  (30a) 

1 ( ) 0
t

t
ζ

λ
=

′− =  (30b) 

( ) 0 .
t

t
ζ

λ
=

=  (30c) 

 

Thus the Lagrangian multiplier can therefore be identified 

as 

 

.tλ ζ= −  (31) 

 

As a result, we obtain the following iteration formula: 

 

( ) ( )

( )

1

2

20

( )
( ) cos ( ) .

n n

n
n

d t
t t dt

dt

ζ

θ ζ θ ζ

θ
ζ α θ

+ =

  
+ − + 

  
∫

 (32) 

 

From the boundary condition in Eq. (5b), that we have it in 

point 0ζ =  an arbitrary initial approximation can be ob-

tained 

 

( )0 bθ ζ ζ=  (33) 

 

where b  is constant, and we will calculate it with consider-

ing another boundary condition in Eq. (5c) in point 1ζ = . 

Using the variational formula Eq. (32), we have 

 

( ) ( )

( )

1 0

2

0
020

( )
( ) cos ( ) .

d t
t t dt

dt

ζ

θ ζ θ ζ

θ
ζ α θ

=

  
+ − + 

  
∫

 (34) 

 

Substituting Eq. (33) into Eq. (34) we have 

 

( )
( )( )

1 2

1 cos
.

b
b

b

α ζ
θ ζ ζ

− +
= +  (35) 

 

Accordingly, in the same manner the rest of the components 

of the iteration formula can be obtained. Here, in the wake of 

the large length of second and third iteration for the solution, 

the result of the first iteration is written; however the obtained 

results are calculated using three iterations. The variational 

iteration algorithm used in this paper is the variational itera-

tion algorithm-I; there are also the variational iteration algo-

rithm-II and variational iteration algorithm-III [37], which can 

also be used for such problems. 

5. Numerical method 

Eq. (5a) along with the boundary conditions (5b, c) were 

solved numerically using Maple 14.0. The software automati-

cally detects the type of problem (boundary value problem or 

initial value) when the dsolve command is invoked and uses 

the appropriate algorithm accordingly. For the boundary value 

problems, the software uses a finite difference technique with 

Richardson extrapolation, whereas for the initial value prob-

lems, it uses a fourth-fifth order Runge-Kutta-Fehlberg 

method. The accuracy and robustness of Maple’s algorithm 

for solving the boundary value problems has been repeatedly 

confirmed in various problems [38-40]. 

 

6. Results and discussion 

Two analytical solutions named as differential transforma-

tion and variational iteration methods were applied to Eq. (5). 

To calculate a sufficient number of terms ( N  for the DTM 

and n  for the VIM), four special cases for the rotation angle 

at the free end were studied. 

Tables 2 and 3 show the convergence of the 
Bθ  for differ-

ent values of dimensionless end point loads. From Table 2 it is 

clearly visible that for the DTM more than 24 terms are 

needed to obtain the value of the 
Bθ , accurately to fourth 

significant digits. Also, it is seen from Table 3 that more than 

3 iterations, i.e. 3n = , are needed to obtain an accurate value 

of the 
Bθ  by the VIM. The bold numbers in these tables are 

those beyond which the fourth digit does not change as N  or 

n  increases. Therefore, the numerical results from the DTM 

and VIM which are presented in this paper were obtained by 

taking sufficient terms 24N =  and 3n = , respectively. 

The fact that the DTM and the VIM fall on the numerical 

solution (NS) confirms the validity and accuracy of analytical 

solutions, which is shown in Fig. 2. In this figure, we pre-

sented slope of any point of the beam versus the dimen- 

 
 

Fig. 2. The rotation of cross-section of the beam, θ , versus ζ  ob-

tained by DTM (circle), VIM (cross) and NS (solid line). 
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sionless parameter ζ , for various dimensionless end point 

loads i.e. 0.5 ,1 ,1.5α = . As can be seen clearly in this figure, 

the value of the rotation angle of the beam is increased as the 

dimensionless displacement ζ  and dimensionless applied 

force α  increase. Also, both increasing ζ  and α  give 

rise to a more significant increase of rotating angle. 

Accordingly, in order to investigate the effectiveness of the 

DTM and VIM solutions with a finite number of terms, the 

corresponding results are compared with the Adomian de-

composition method (ADM) [11] and numerical solution us-

ing Maple which uses a finite difference method with 

Richardson extrapolation, which are tabulated in Table 4. This 

table represents the rotation angle at the free end, 
Bθ . The 

results of the comparison clearly show that the maximum 

difference between the ADM and numerical results for 
Bθ  

for the strongest non-linearity condition, i.e. 1.5α = , is 

0.78%. However, this value for the VIM and DTM solutions 

is 0.0138% and 0.0044%, respectively. It is apparent from 

these to sample calculations that these two methods are more 

accurate than the ADM. Although the VIM results are accept-

able, but it is shown that with the DTM, a highly accurate 

analytical solution of the problem is achievable. 

Additionally, Fig. 3 demonstrates the rotation angle of 

cross-section plane at tip versus α . This figure clearly illus-

trates that increasing in the values of α  produce increase in 

values of 
Bθ . 

Now, since analytical expressions by two methods for the 

rotation angle of any cross-section of the beam were obtained, 

the vertical and horizontal displacements can readily be calcu-

lated from Eqs. (8) and (10). Accordingly, the trends of verti-

cal and horizontal displacements of the beam at the free end 

point versus α  are shown in Figs. 4 and 5, respectively. As 

expected, an increase in the value of α  causes an increase in 

the value of the vertical and horizontal displacements. Also, 

from Fig. 4, 2α =  corresponds to the vertical displacement 

at the free end almost as half of the original length of the beam. 

In addition, from Fig. 5, 1.5α =  corresponds to the horizon-

tal displacement at the free end almost as one-tenth of the 

original length of the beam. 

 

Table 2. Convergence test of the DTM results for 
Bθ . 

 

α  
N  

0.5 1 1.5 2 

4 0.2470591834 0.4800471884 0.6967061088 0.9040967099 

6 0.2442493956 0.4540331169 0.5989222138 0.6632405766 

8 0.2445257363 0.4615279094 0.6436114887 0.8069077667 

10 0.2445371302 0.4617104206 0.6442188633 0.8087292779 

12 0.2445335658 0.4612911521 0.6377879226 0.7660452317 

14 0.2445336605 0.4613486440 0.6395081776 0.7823797966 

16 0.2445336876 0.4613588944 0.6397917906 0.7853664547 

18 0.2445336854 0.4613548057 0.6395172023 0.7804035620 

20 0.2445336853 0.4613549776 0.6395588028 0.7816919102 

22 0.2445336857 0.4613551255 0.6395779582 0.7822444716 

24 0.2445336857 0.4613550965 0.6395684280 0.7817589123 

26 0.2445336855 0.4613550948 0.6395688638 0.7818299637 

28 0.2445336855 0.4613550961 0.6395697594 0.7819026271 

30 0.2445336855 0.4613550960 0.6395694829 0.7818605881 

NS 0.2445337143 0.4613522662 0.6395398261 0.7817498319 

 

Table 3. Convergence test of the VIM results for 
Bθ .  

 

α  
n  

0.5 1 1.5 2 

1 0.2357278931 0.4079438338 0.5095927414 0.5583459484 

2 0.2444918905 0.4603303323 0.6340981838 0.7660791021 

3 0.2445335606 0.4613439981 0.6394513742 0.7812978835 

4 0.2445336472 0.4613519147 0.6395386164 0.7816435338 

5 0.2445336474 0.4613519497 0.6395393686 0.7816374050 

6 0.2445336475 0.4613519499 0.6395393707 0.7816367582 

NS 0.2445337143 0.4613522662 0.6395398261 0.7817498319 
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Fig. 3. The rotation angle at the free end,
Bθ , versus α  obtained by 

DTM (solid line), VIM (cross). 

 

 
 

Fig. 4. The dimensionless vertical displacement, 
v Lδ , versus α  at 

the tip obtained by DTM (solid line), VIM (cross). 

 
 

Fig. 5. The dimensionless horizontal displacement, 
h Lδ , versus α  

at the tip obtained by DTM (solid line), VIM (cross). 

 

Furthermore, for 1α >  it can be concluded that the hori-

zontal displacement varies linearly with α . As can be seen 

clearly in these figures the DTM and VIM results are in good 

agreement with each other. Needless to say that, since the 

DTM results are more accurate compare with the VIM, as 

cited in Table 2, the displacements which are achieved by the 

DTM are more reliable than the VIM. 

It is worth mentioning that for infinitesimal deformation i.e. 

Eq. (11), these two analytical solutions lead into Eq. (12) 

which gives the exact solution. 

 

7. Conclusions 

Two extremely simple and elementary but rigorous the 

DTM and VIM have been utilized to derive approximate ex-

plicit analytical solutions for non-linear equation of large de-

Table 4. The error of DTM, VIM and ADM [11]. 
 

α  ( )B DTMθ  ( )B VIMθ  ( )B NSθ  
DTMError  

VIMError  [11]ADMError  

0.1 0.0499542557 0.0499542558 0.0499546770 4.2E-07 4.2E-07 4E-10 

0.2 0.0996361632 0.0996361627 0.0996361680 4.8E-09 5.3E-09 5E-9 

0.3 0.1487837281 0.1487837240 0.1487837430 1.5E-08 1.9E-08 2E-8 

0.4 0.1971546322 0.1971546048 0.1971546604 2.8E-08 5.6E-08 3E-8 

0.5 0.2445336856 0.2445335607 0.2445337142 2.9E-08 1.5E-07 3E-8 

0.6 0.2907378954 0.2907374735 0.2907378738 2.2E-08 4.0E-07 2E-8 

0.7 0.3356190220 0.3356178611 0.3356188285 1.9E-07 9.7E-07 2E-7 

0.8 0.3790638165 0.3790610713 0.3790632154 6.0E-07 2.1E-06 6E-7 

0.9 0.4209923703 0.4209865896 0.4209909600 1.4E-06 4.4E-06 2E-6 

1 0.4613550965 0.4613439980 0.4613522661 2.8E-06 8.3E-06 1E-5 

1.1 0.5001289124 0.5001091382 0.5001235667 5.3E-06 1.4E-05 5E-5 

1.2 0.5373130531 0.5372799303 0.5373040831 9.0E-06 2.4E-05 2E-4 

1.3 0.5729248872 0.5728722173 0.5729110066 1.4E-05 3.9E-05 7E-4 

1.4 0.6069959702 0.6069158871 0.6069755444 2.0E-05 6.0E-05 2E-3 

1.5 0.6395684291 0.6394513739 0.6395398260 2.9E-05 8.8E-05 5E-3 
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formation in cantilever beams under point load. The results 

show that these schemes provide excellent approximations to 

the solution of this non-linear equation with high accuracy. 

However, the DTM solution is more accurate compare with 

the VIM. These methods accelerated the convergence to the 

solutions. Finally, it has been attempted to show the capabili-

ties and wide-range applications of the mentioned methods in 

comparison with the numerical solution in solving deflection 

of beams problems. 
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