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Abstract 
 

This study intends to investigate the vibration behavior of a thin square orthotropic plate resting on non-uniform elastic foundation and 

its thickness varying in one or two directions. By using the classical plate theory and employing element free Galerkin method, it is 

shown that the fundamental frequency coefficients obtained are in good agreement with available results in the literature. The effects of 

thickness variation, foundation parameter and boundary conditions on frequency are investigated. The results show that the method con-

verges very fast regardless of parameters involved.   
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1. Introduction 

Plates of non-uniform thickness are commonly used in ship 

and offshore structures. The variable thickness is used to 

change resonant frequency and to reduce the weight and size 

of the structures. Therefore, the vibration analysis of the plates 

with variable thickness is of great importance for researches. 

Analytical solutions for static analysis of plates with varying 

thickness have been obtained by various authors. In particular, 

Xu and Zhou [1, 2] studied three-dimensional elasticity solu-

tion for simply supported rectangular plates with variable 

thickness. Three-dimensional thermoelastic analysis of iso-

tropic rectangular plates with variable thickness subjected to 

thermo-mechanical loads was investigated by Xu et al. [3]. 

Cheung and Zhou [4] used the Rayleigh-Ritz method for vi-

bration analysis of a wide range of isotropic non-uniform rec-

tangular plates in one or two directions. Using a new set of 

admissible functions in the Rayleigh-Ritz method, Cheung 

and Zhou [5] analyzed the free vibrations of isotropic tapered 

rectangular plates with an arbitrary number of intermediate 

line supports. The free vibration of isotropic point-supported 

rectangular plates with variable thickness using the Rayleigh-

Ritz method was investigated by Cheung and Zhou [6]. 

Cheung and Zhou [7] studied vibrations of isotropic tapered 

Mindlin plates in terms of static Timoshenko beam functions. 

Orthotropic rectangular plates with non-uniform thickness 

have been found to have great advantages, such as high 

strength to weight ratio, corrosion resistance and low cost. 

Comprehensive understanding of vibration behavior of 

orthotropic plates is important in many engineering fields. 

Malhotra et al. [8] employed the Rayleigh-Ritz method to 

study vibration of orthotropic square thin plates with parabolic 

variation thickness along one direction. They presented results 

for four types of boundary condition. Bert and Malik [9] stud-

ied the free vibration of isotropic and orthotropic rectangular 

thin plates of linearly varying thickness in one direction by the 

differential quadrature method. 

Bambil et al. [10] used the Rayleigh-Ritz method and finite 

element method to study transverse vibration of orthotropic 

rectangular plate of linearly varying thickness in one direction. 

They presented the results of fundamental frequency for plates 

with a free edge. Ashur [11] investigated the flexural vibration 

of orthotropic plates of linearly varying thickness in one direc-

tion using the finite strip transition matrix technique. The re-

sults were obtained for plates with two opposite edges having 

the same boundary conditions and the same thickness. Huang 

et al. [12] applied a discrete method for analyzing the free 

vibration problem of orthotropic rectangular plates with vari-

able thickness in one and two directions. They considered the 

effect of aspect ratio and different boundary condition on fre-

quencies. 

In vibration analysis of plates, the effect of elastic founda-

tion must considered when plates are mounted on elastic 

springs such as pavement of roads, footing of buildings and 

bases of machines. The vibration analysis of plates resting on 

elastic foundation has been the subject of many researches. 

Gajendra [13] and Datta [14] used the one-term Galerkin 

*Corresponding author. Tel.: +98 2164543114, Fax.: +98 2166412495 

E-mail address: Ehsan_Bahmyari@aut.ac.ir  
† Recommended by Editor Yeon June Kang 

© KSME & Springer 2012 



2686 E. Bahmyari and A. Rahbar-Ranji / Journal of Mechanical Science and Technology 26 (9) (2012) 2685~2694 

 

 

method for solution of Berger's equations to analyze non-

linear free vibration of simply and clamped supported thin 

isotropic circular plates resting on elastic foundation. Zhou et 

al. [15] studied three-dimensional free vibration of isotropic 

thick circular plates on Pasternak foundation. Bhaskar and 

Dumir [16] employed Von-Karman dynamic equation and 

orthogonal point collocation method to analyze non-linear 

vibration of two edges simply supported or clamped 

orthotropic thin plate resting on elastic foundation. Omurtag 

and Kadioglu [17] used mixed finite element formulation to 

study free vibration analysis of orthotropic Kirchhoff plate 

resting on elastic foundation. They presented the results of 

fundamental frequency for fully simply supported and 

clamped plates. Gupta and Bhardwaj [18] used the Rayleigh-

Ritz method for vibration analysis of rectangular orthotropic 

elliptic plates with varying thickness resting on elastic founda-

tion. Hsu [19] used differential quadrature method for vibra-

tion analysis of rectangular plate on elastic foundation. Liu et 

al. [20] used Galerkin’s method to analyze the free vibration 

of orthotropic rectangular plates with tapered varying thick-

ness in one or two directions and resting on Winkler type elas-

tic foundation. 

Element free Galerkin (EFG) method is considered as one 

of the meshless methods and is used for solution of many 

engineering problems. Yan et al. [21] used this method for 

vibration analysis of isotropic rectangular plate with interior 

elastic point support and elastically restrained edges. Chen et 

al. [22] and Dai et al. [23] used EFG method for vibration 

analysis of laminated composite plates.  

The previous publications have concentrated on vibration of 

orthotropic plates resting on uniform elastic foundation. It is 

the main aim of present work to apply EFG method to study 

free vibration of orthotropic plates of variable thickness rest-

ing on non-uniform one-parameter elastic foundation with 

general boundary conditions. The plate is discretized by a set 

of regular nodes. On the basis of classical plate theory (CTP) a 

basic equation of vibration is derived. Moving least square 

(MLS) approximation is employed to produce displacement 

shape functions. Penalty method is used for imposing essential 

boundary condition. Different examples are solved to show 

accuracy, convergence and applicability of the EFG method. 

 

2. Moving least square approximation (MLS) 

Moving least square approximation is widely used for gen-

eration of shape function in mesh free methods. In this method, 

function u(x) is approximated by (x)hu , as follows: 

 

T

1

(x)= (x) (x) p (x)a(x)

m
h

j j

j

u p a

=

=∑  (1) 

 

where m is the number of terms in the basis, pj(x) are the mo-

nomial basis functions, and aj(x) are unknown coefficients 

which depend on location x. Quadratic basis in two-

dimensional domain has following form:  
 

T 2 2P [1, , , , , ]x y x xy y= . (2) 

 

The unknown coefficients aj(x) in Eq. (1) can be determined 

by minimizing a functional of weighted residual 

 

T 2

1

( )[ ( ) ( ) ]

n

I I I

I

J w u

=

= − −∑ x x p x a x
 

(3) 

 

where Iu  are nodal parameters of field variable at node I 

and n is the number of nodes in the neighborhood of x which 

called domain of influence. The unknown coefficient a(x) can 

be obtained by minimizing the functional of the weighted 

residual as follows: 
 

0
J∂
=

∂a
 (4) 

 

which yields following system of linear equations: 

 

sA(x)a(x)=B(x)U  (5) 

 

where 
 

T

1

( ) ( ) ( ) ( )

n

I I I

I

w

=

= −∑A x x x p x p x , (6) 

( ) [ ( ) ( ) ,. . . , ( ) ( ) ]I I n nw w= − −B x x x p x x x p x , (7) 

T
1 2{ . . . }s nu u u=U . (8) 

 

By substituting Eq. (5) into Eq. (1), MLS approximant can 

be written as follows: 
 

1

( ) ( ) ( )

n

h
I I

I

u uφ
=

=∑ sx x =Φ x U  (9) 

 

where Φ(x) is matrix of shape functions and defined as fol-

lows: 
 

T 1
1 2( ) [ ( ) ( ) . . . ( ) ] ( ) ( ) ( ) .nφ φ φ −= =Φ x x  x x p x A x B x   

 (10) 

 

To calculate partial derivatives of Φ(x), Eq. (10) is rewritten 

as follows [24]:  

 

( ) ( ) ( )= TΦ x x B xγ  (11) 

 

where  

 
1( ) ( ) (−=x A x p x)γ  (12) 

 

or 
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( ) ( ) (=A x x p x)γ . (13) 

 

The partial derivatives of ( )xγ  can be expressed as fol-

lows: 

 

, , ,x x x= −A p Aγ γ , (14) 

, , ,y y y= −A p Aγ γ , (15) 

, , , ,( 2 )xx xx xx x x= − +A p A Aγ γ γ , (16) 

, , , , , , ,( )xy xy xy x y y x= − + +A p A A Aγ γ γ γ , (17) 

, , , , ,( 2 )yy yy yy y y= − +A p A Aγ γ γ . (18) 

 

The partial derivatives of Φ(x) would be as follows: 

 
T T

, , ,I x x I I x= +Φ B Bγ γ , (19) 

T T
, , ,I y y I I y= +Φ B Bγ γ , (20) 

T T T
, , , , ,2I xx xx I x I x I xx= + +Φ B B Bγ γ γ , (21) 

T T T T
, , , , , , ,I xy xy I x I y y I x I xy= + + +Φ B B B Bγ γ γ γ , (22) 

T T T
, , , , ,2I yy yy I y I y I yy= + +Φ B B Bγ γ γ . (23) 

 

Weight function plays an important role in the formulation 

of the MLS method. This function should be non-zero in do-

main of influence and zero outside of the domain. The precise 

character of this function seems to be unimportant although it 

is almost mandatory that it be positive and increase monotoni-

cally as ׀׀x-xT׀׀ decreases. Furthermore, it is desirable that 

weight function be smooth [25]. Several weight functions 

have been used in the EFG method. In this work quartic spline 

weight function is chosen which satisfies above mentioned 

conditions 
 

2 3 41 6 8 3 , 1
( ) ( )

0, 1
I

r r r r
w w r

r

 − + − ≤
− ≡ = 

>
x x  (24) 

 

where 
 

I

I

r
d

−
=
x x

 (25) 

 

where dI determines the size of support domain at node I. The 

most commonly used supports are circles and rectangles (Fig. 1).  

For circular domain, dI is the radius of circle; for rectangular 

domain, dI is equal to length of rectangle in x, and y direction. 

For the latter case, weight function can be written as follows: 

 

( ) ( ). ( )I x yw w r w r− =x x  (26) 

 

where ry and rx are given by  

 

I

x

Ix

x x
r

d

−
=  (27) 

I

y

Iy

y y
r

d

−
=  (28) 

 

where 

 

max .Ix Ixd d c= , (29) 

max .Iy Iyd d c=  (30) 

 

where dmax is scaling parameter, cIx and cIy are determined by 

searching for enough nodes at the neighborhood for A in Eq. 

(13) to be invertible at every point in the domain [25].  

 

3. Basic equations  

3.1 Strain and kinetic energies of thin plate resting on elastic 

foundation 

A thin square plate with thickness h(x,y), density ρ and rest-

ing on non-uniform Winkler-type elastic foundation is consid-

ered (Fig. 2).  

Displacements in x, y and z directions are denoted by u, v 

and w, respectively. Based on CPT displacement field can be 

expressed as follows [26]: 

 

T

1 .u

u

v z z w w
x y

w

 
 ∂ ∂ = = − − =   

∂ ∂  
 

u L  (31) 

 
 

Fig. 1. Domain of influences. 

 

 

Fig. 2. A thin plate with variable thickness resting on non-uniform 

elastic foundation. 
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The pseudo-strains of the plate are denoted as 

 
T

2 2 2

2 2
2 .p w w

x yx y

 ∂ ∂ ∂ 
= − − − = 

∂ ∂∂ ∂  
ε L  (32) 

 

The pseudo-stresses of the plate are given by 
 

.

x

p y

xy

M

M

M

 
 
=  
 
 

σ  (33) 

 

The relationship between the pseudo-strains and pseudo-

stress is expressed as  

 

p p=σ Dε  (34) 

 

where D is the stiffness matrix and defined as: 

 

11 12 16

12 22 26

16 26 66

D D D

D D D

D D D

 
 =  
  

D . (35) 

 

For an orthotropic plate, with the reference coordinate axes 

coinciding with the principal material directions, D would be 

as follows: 

 

11 123

12 22

66

0

0
12

0 0

Q Q
h

Q Q

Q

 
 =  
  

D  (36) 

 

where 
 

1
11

12 21

,
(1 )

E
Q

v v
=

−
 (37) 

2
22

12 21

,
(1 )

E
Q

v v
=

−
 (38) 

12 2
12

12 21

,
(1 )

v E
Q

v v
=

−
 (39) 

66 12Q G=  (40) 

 

where E1 and E2 are the Young moduli parallel to and perpen-

dicular to the fibers, while v12 and v21 are the corresponding 

Poisson ratios.  

The strain and kinetic energies of the plate resting on 

Winkler's type elastic foundation can be written as 

 

T T1 1
d  d ,

2 2
p P P

S S

U S S= +∫ ∫ε σ u q  (41) 

T1
d

2
p

V

T Vρ= ∫ u u& &  (42) 

where q is the non-uniform surface pressure vector induce by 

foundation and is defined as follows: 

 

{ }T

0 0 ( )fk x w=q  (43) 

 

where kf (x) is the non-uniform Winkler foundation stiffness 

which linearly varying along x-direction.  

 

3.2 Approximation of field variables 

Based on the CPT only the deflection w is independent and 

is approximated as follows: 

 

1

( ) ( ) .

n

h
I I

I

w wφ
=

=∑x x  (44) 

 

3.3 Imposing essential boundary conditions 

As standard FEM, the EFG method uses the weak form of 

the problem to describe the equations of motion. Different 

variational principles can be used, depending upon the meth-

ods of enforcing the essential boundary conditions in the EFG 

formulation [27]. In this paper, a penalty method is applied to 

enforced essential boundary conditions. By assuming no body 

forces and prescribed tractions, Lagrangian of free vibration of 

a thin plate resting on elastic foundation can be written as 

follows: 
 

T1
( ) ( )d

2u

P pL T U
Γ

= − + − − Γ∫ u u u u% %α  (45) 

 

where α is a diagonal matrix of penalty coefficients, ū is pre-

scribed displacement and ũ is defined as [26] 

 

bw=u L%  (46) 

 

where Lb is a vector of differential operators. Proper choice of 

penalty coefficients is very important on accuracy of solution. 

Usually large numbers of order 1 × 10
4-13

 × max (diagonals in 

stiffness matrix) can be chosen [26]. A plate with general 

boundary condition is considered (Fig. 3). For clamped 

boundary condition Lb is defined as, 

 
 

Fig. 3. Prescribed boundary conditions of the plate. 
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T

1b
n

∂ 
= 

∂ 
L  (47) 

 

where n denotes the outward normal direction on boundary of 

the plate. For simply supported boundary condition Lb is de-

fined as 

 

{ }T
1 0 .b =L  (48) 

 

3.4 Derivation of stiffness and mass matrices for free vibra-

tion analysis 

The dynamical equation of plate resting on elastic founda-

tion can be derived according to Hamilton's variational princi-

ple 

 

2

1

d 0
t

t

L tδ =∫  (49) 

 

where L is the Lagrangian function of system and t is time. By 

substituting Eqs. (41) and (42) into (45) and replacing in Eq. 

(49), following variational form is found: 

 

T T T

T

d d d

1
( ) ( ) 0 .

2u

P P
S S V

S S V

d

δ δ ρδ

δ
Γ

+ +

− − − Γ =

∫ ∫ ∫
∫

ε σ u q u u

u u u u

&&

% %α
 (50) 

 

Substituting Eqs. (31), (32) and (46) into Eq. (50), it can be 

rewritten as: 

 

T

T T

T

( ) ( )d

( ) d ( ) d

1
( ) ( )d 0 .

2 u

S

u u u
S V

b b

w w S

w S w w V

w w

δ

δ ρδ

δ
Γ

+ +

− − − Γ =

∫
∫ ∫
∫

L D L

L q L L

L u α L u

&&  (51) 

 

By substituting the approximated deflection function 

( )hw x  (Eq. (44)) into Eq. (51), the discrete dynamical equa-

tions for free vibration analysis of plates resting on elastic 

foundation are deduced as:  

 

+( + ) =0MU K K U&& %  (52) 

 

where U is the vector of deflection of all nodes, and is defined by 

 
T

1 2={ , ,..., }
tn

w w wU  (53) 

 

where nt is the total number of nodes in the entire domain of 

the plate. The notations of K , K%  and M denote the global 

stiffness matrix, the global penalty matrix, and global mass 

matrix which are given by: 

T
T= d ( ) d ,f

S S

S k x S+∫ ∫K B DB Φ Φ  (54) 

= d ,T

V

Vρ∫M N N  (55) 

= d
u

T

Γ
Γ∫K α% Ψ Ψ  (56) 

 

where 

 

,

,

,

,

2

xx

yy

xy

 −
  

= = − 
 −  

B L

Φ

Φ Φ

Φ

 (57) 

,

,= .

x

u y

z

z

 −
 

= − 
 
 

N L

Φ

Φ Φ

Φ

 (58) 

 

Ψ depends on boundary condition. For clamped boundary 

condition, Ψ is defined as follows: 

 

,n

  
=  
  

Φ
Ψ

Φ
 (59) 

 

and for simply support boundary condition is defined as fol-

lows: 

 

.
0

 
=  
 

Φ
Ψ  (60) 

 

Assuming a harmonic vibration form for plate, the deflec-

tion vector U can be expressed as: 
 

t= ie ωU U  (61) 

 

where U  is the amplitude of the vibration and ω is the circu-

lar frequency. 

Substituting Eq. (61) into (52), the following eigenvalue 

equation would be obtained: 

 
2

( ) =0ω−K M U  (62) 

 

where ω
2
 is the eigenvalue and represent the square of circular 

frequency of transverse vibration and U  is the eigenvector 

that represent the vector of amplitude of transverse vibration . 

 

4. Worked-out examples and discussion 

In this paper, scaling parameter dmax is chosen as 3.9 [28]. 

To show the accuracy and convergence of the present method, 

a computer code in Matlab was developed and some examples 

have been solved.  

The thickness variation function of plate is chosen as fol-

lows: 
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0( , ) (1 / )(1 / )h x y h x a y aα β= + + .  

 

The linear variation function of stiffness of foundation is 

given as follows: 

 

0
( ) (1 / )f fk x k x aγ= + .  

 

E-glass/ epoxy material with the following properties is 

considered: 

 

E1 = 60.7 GPa, E2 = 24.8 GPa, G12 = 12.0 GPa, v12 = 0.23. 

 

To facilitate comparison of results, following dimensionless 

parameters are defined. 

1-Natural frequency of isotropic is defined by 

 
2

2

a h

D

ω ρ
ω

π
=  (63) 

 

where D is the bending stiffness of plate and defined as follows: 

 
3

2

Eh
.

12(1 )
D

v
=

−
  

 

2-Foundation parameter for isotropic plate 

 
4

.
f

iso

k a
K

D
=  (64) 

 

3- Natural frequency of orthotropic plate  

 

2
04

0 12 21(1 )

h
a

D

ω ρ
ω

ν ν
=

−
 (65) 

 

where D0 is defined as follows: 

 
3

2 0
0

12 21

.
12(1 )

E h
D

v v
=

−
 (66) 

 

4-Foundation parameter for orthotropic plate, 

 

0

4
12 21

3
1

12 (1 )
.

f

orth

k a
K

E h

ν ν−
=  (67) 

 

4.1 Free vibration of an isotropic square plate resting on 

elastic foundation 

Vibration of an isotropic square plate resting on elastic 

foundation is analyzed. Different foundation parameters and 

thickness ratios are considered for two cases of boundary con-

ditions: all edges simply supported (SSSS) and all edges 

clamped (CCCC). Dimensionless natural frequencies for the 

first 4th modes are calculated and compared with available 

results (Tables 1-2). The results are compared with those of 

Zhou et al. [29] (Ritz method), Ferreira et al. [30] (radial basis 

function method), Omurtag et al. [31] (mixed finite element 

formulation) and Xiang et al. [32] (Mindlin approach).  

As can be seen from Table 1, for lower modes of vibration 

very good agreements are achieved for different thickness and 

foundation parameters even with very small number of nodes 

as 5 × 5. For higher modes, the present method yields good 

results with larger number of nodes as 9 × 9. When plate 

thickness increases, there is less agreement between present 

method and others for higher modes. This could be due to 

shear effect which is apparent in thicker plate. For orthotropic 

plate with CCCC boundary conditions, when the number of 

nodes is very small (5 × 5) the results are inaccurate (Table 2).  

 

4.2 Free vibration of an orthotropic plate with varying thick-

ness without elastic foundation 

In the next step, vibration of an orthotropic plate with vary-

ing thickness is investigated. Tables 3 and 4 give the first 6th  

Table 1. Dimensionless parameter of natural frequency, ω  of an 

isotropic square plate with SSSS boundary conditions resting on 

Winkler's type elastic foundation (ν = 0.3). 
 

Mode number 
h/a K1 Method 

1st 2nd 3rd 4th 

Pres. (5×5) 2.2514 6.9628 7.3435 15.701 

Pres. (9×9) 2.2431 5.1232 5.1286 8.1092 

Pres. (15×15) 2.2427 5.1107 5.1109 8.0735 

Ref. [29] 2.2413 5.0973 5.0973 8.0527 

Ref. [32] 2.2413 5.0971 5.0971 8.0523 

100 

Ref. [30] 2.2414 5.0967 5.0967 8.0542 

Pres. (5×5) 3.0296 7.3458 7.7542 15.831 

Pres. (9×9) 3.0228 5.5093 5.5144 8.3587 

Pres. (15×15) 3.0225 5.4976 5.4978 8.3238 

Ref. [29] 3.0214 5.4850 5.4850 8.3035 

Ref. [32] 3.0215 5.4850 5.4850 8.3032 

0.01 

500 

Ref. [30] 3.0216 5.4846 5.4846 8.3051 

Pres. (5×5) 2.4492 6.9107 7.2902 15.032 

Pres. (9×9) 2.4415 5.1192 5.1245 7.9186 

Pres. (15×15) 2.4411 5.1072 5.1074 7.8842 

Ref. [29] 2.3951 4.8262 4.8262 7.2338 

Ref. [32] 2.3989 4.8194 4.8194 7.2093 

200 

Ref. [30] 2.3989 4.8194 4.8194 7.2093 

Pres. (5×5) 3.7531 7.6327 8.0640 15.280 

Pres. (9×9) 3.7471 5.8392 5.8438 8.3916 

Pres. (15×15) 3.7468 5.8286 5.8287 8.3586 

Ref. [29] 3.7008 5.5661 5.5661 7.7335 

Ref. [32] 3.7212 5.5844 5.5844 7.7353 

0.1 

1000 

Ref. [30] 3.7213 5.5844 5.5844 7.7353 

* Numbers in parentheses refer to number of nodes in present method. 
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modes of natural frequencies for several boundary condition 

and thickness variation parameters. In all cases the ratio of 

thickness to length of plate is considered as 0.01. Examination 

of Tables 3 and 4 reveals that present method yields good re-

sults for vibration analysis of orthotropic plate with varying 

thickness. 

 

4.3 Free vibration of an orthotropic plate with varying 

thickness resting on non-uniform elastic foundation 

In the end, free vibration of an orthotropic plate with vary-

ing thickness resting on non-uniform elastic foundation has 

been studied. The effects of foundation parameter Korth, varia-

tion parameter of stiffness of foundation γ, thickness variation 

parameters α and β, and boundary conditions have been inves-

tigated (Figs. 4 to 7). 

Figs. 4 and 5 show the behavior of fundamental frequency 

parameter of an SSSS plate versus the variation parameter of 

stiffness of foundation γ for four different combinations of 

Table 2. Dimensionless parameter of natural frequency ω  of an 

isotropic square plate with CCCC boundary conditions resting on 

Winkler's type elastic foundation (ν = 0.15). 
 

Mode number 
h/a K1 Method 

1st 2nd 3rd 4th 

Pres. (5×5) 8.0625 313.859 443.564 490.411 

Pres. (9×9) 5.2841 8.5491 8.5824 12.193 

Pres. (15×15) 5.2616 8.3914 8.3924 11.672 

Ref. [31] 5.2446 8.3156 8.3156 11.541 

Ref. [29] 5.2588 8.4322 8.4322 11.674 

1390.2 

Ref. [30] 5.2438 8.3129 8.3129 11.546 

Pres. (5×5) 9.5780 362.739 512.641 566.773 

Pres. (9×9) 6.4953 9.3479 9.3789 12.771 

Pres. (15×15) 6.4769 9.2017 9.2027 12.268 

Ref. [31] 6.4629 9.1324 9.1324 12.142 

Ref. [29] 6.4601 9.2482 9.2482 12.263 

0.015 

2780.4 

Ref. [30] 6.4625 9.1302 9.1302 12.147 

* Numbers in parentheses refer to number of nodes in present method. 

 

 

 

Table 3. Dimensionless parameter of natural frequency ω  of an orthotropic square plate with variable thickness in one direction. 
 

Mode number 
B.C α Method 

1st 2nd 3rd 4th 5th 6th 

Pres.(15×15) 4.9002 7.2562 8.3823 9.7997 10.1161 11.9501 
0.0 

Ref. [12] 4.902 7.253 8.374 9.795 10.079 11.924 

Pres.(15×15) 5.3599 7.9314 9.1597 10.7146 11.0255 13.0771 
0.4 

Ref. [12] 5.360 7.928 9.150 10.703 10.982 13.043 

Pres.(15×15) 5.7721 8.5298 9.8453 11.5289 11.7924 14.0924 

SSSS 

0.8 
Ref. [12] 5.770 8.525 9.831 11.510 11.740 14.048 

Pres.(15×15) 6.7484 8.9048 10.2376 11.5664 11.6555 13.6193 
0.0 

Ref. [12] 6.780 8.953 10.293 11.615 11.686 13.636 

Pres. (15×15) 7.3707 9.7225 11.1823 12.6420 12.7042 14.8974 
0.4 

Ref. [12] 7.402 9.770 11.232 12.679 12.730 14.896 

Pres. (15×15) 7.9150 10.4322 12.0088 13.5895 13.5916 16.0405 

CCCC 

0.8 
Ref. [12] 7.945 10.475 12.046 13.610 13.602 16.008 

Pres. (15×15) 5.2349 7.8344 8.4850 10.1042 10.7647 12.2377 
0.0 

Ref. [12] 5.238 7.855 8.483 10.100 10.756 12.178 

Pres. (15×15) 5.7270 8.5589 9.2729 11.0507 11.7223 13.3650 
0.4 

Ref. [12] 5.824 8.463 9.195 11.214 11.801 13.360 

Pres. (15×15) 6.1693 9.1948 9.9686 11.8965 12.5183 14.3490 

SSSC 

0.8 
Ref. [12] 6.164 9.219 9.966 11.865 12.488 14.264 

Pres. (15×15) 4.8828 6.4843 7.9550 9.0959 9.6177 11.0582 
0.0 

Ref. [12] 4.901 6.486 8.030 9.183 9.615 11.287 

Pres. (15×15) 5.5030 7.1047 8.9302 10.0324 10.4893 12.3231 
0.4 

Ref. [12] 5.529 7.128 8.976 9.999 10.470 12.480 

Pres. (15×15) 6.0506 7.6760 9.7135 10.9257 11.2639 13.2116 

SCFC 

0.8 
Ref. [12] 6.065 7.676 9.772 10.971 11.225 13.498 

Pres. (15×15) 6.3370 7.9288 10.0948 10.4357 11.0852 12.8111 
0.0 

Ref. [12] 6.361 7.941 10.149 10.408 11.125 12.814 

Pres. (15×15) 6.9212 8.6599 11.0251 11.3855 12.1103 14.0039 
0.4 

Ref. [12] 6.945 8.670 11.074 11.350 12.141 13.993 

Pres. (15×15) 7.4317 9.2989 11.8371 12.1999 13.0093 15.0597 

CSCS 

0.8 
Ref. [12] 7.454 9.305 11.874 12.155 13.026 15.026 

Pres. (15×15) 3.5268 5.9534 6.5210 8.1283 9.4256 9.6292 
0.0 

Ref. [12] 3.533 5.945 6.509 8.129 9.410 9.571 

Pres. (15×15) 3.9192 6.4899 7.3183 8.9307 10.2703 10.7809 
0.4 

Ref. [12] 3.916 6.485 7.310 8.917 10.243 10.712 

Pres. (15×15) 4.2823 6.9783 8.0051 9.6649 11.0191 11.6635 

SSFS 

0.8 
Ref. [12] 4.280 6.967 7.994 9.647 9.647 11.590 
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thickness variation parameters α and β and two values of 

foundation parameter Korth. It is observed that the fundamental 

frequency parameter increases with the increasing values of 

variation parameter of stiffness of foundation γ and foundation 

parameter Korth  regardless of the value of thickness variation 

parameters. Fig. 6 shows the graph of fundamental frequency 

parameter of a CCCC plate versus the variation parameter of 

foundation stiffness γ for four different combinations of thick-

ness variation parameters α and β when foundation parameter 

Korth is 10. It can be seen that the fundamental frequency pa-

rameter has been increased as compared to SSSS. Fig. 7 

shows the variation of fundamental frequency parameter 

against thickness variation parameter α in x direction, when 

thickness variation parameter β in y direction is equal to 0 and 

foundation parameter Korth = 1000. As can be seen, the fun-

damental frequency parameter has been decreased very 

Table 4. Dimensionless parameter of natural frequency ω  of an orthotropic square plate with variable thickness in two directions. 
 

Mode number 
B.C α β Method 

1st 2nd 3rd 4th 5th 6th 

Pres. (15×15) 3.633 5.3460 6.0957 7.2323 7.3945 8.6625 
-0.5 -0.5 

Ref. [12] 3.635 5.335 6.086 7.221 7.358 8.616 

Pres. (15×15) 4.707 6.9422 7.9751 9.3885 9.5829 11.4636 
-0.5 0.5 

Ref. [12] 4.704 6.937 7.966 9.372 9.536 11.425 

Pres. (15×15) 4.708 6.9420 7.9146 9.4104 9.6304 11.2629 
0.5 -0.5 

Ref. [12] 4.708 6.933 7.904 9.397 9.590 11.207 

Pres. (15×15) 6.0997 9.0128 10.359 12.1923 12.5082 14.8640 

SSSS 

0.5 0.5 
Ref. [12] 6.086 9.022 10.350 12.136 12.439 14.858 

Pres. (15×15) 4.9361 6.5319 7.4167 8.4838 8.5834 10.0083 
-0.5 -0.5 

Ref. [12] 4.955 6.548 7.440 8.502 8.533 9.989 

Pres. (15×15) 6.4265 8.4814 9.7152 11.0179 11.1029 13.0914 
-0.5 0.5 

Ref. [12] 6.453 8.510 9.748 11.070 11.056 13.031 

Pres. (15×15) 6.4203 8.5006 9.6385 11.0721 11.1413 12.9973 
0.5 -0.5 

Ref. [12] 6.447 8.525 9.671 11.103 11.108 12.993 

Pres. (15×15) 8.3598 11.0404 12.632 14.3719 14.4321 16.9525 

CCCC 

0.5 0.5 
Ref. [12] 8.390 11.076 12.666 14.389 14.418 16.887 

Pres. (15×15) 3.8678 5.7167 6.2601 7.4914 7.7991 8.8361 
-0.5 -0.5 

Ref. [12] 3.872 5.716 6.252 7.483 7.778 8.786 

Pres. (15×15) 5.0309 7.5004 8.0312 9.6768 10.1684 11.4820 
-0.5 0.5 

Ref. [12] 5.038 7.499 8.015 9.678 10.148 11.433 

Pres. (15×15) 5.0101 7.4316 8.1239 9.7270 10.1904 11.4859 
0.5 -0.5 

Ref. [12] 5.016 7.442 8.115 9.717 10.169 11.423 

Pres. (15×15) 6.5174 9.7528 10.4296 12.5434 13.3135 14.9329 

SSSC 

0.5 0.5 
Ref. [12] 6.536 9.729 10.398 12.580 13.311 14.855 

Pres. (15×15) 3.4105 4.8053 5.4065 6.6735 7.0561 7.3755 
-0.5 -0.5 

Ref. [12] 3.431 4.815 5.475 6.730 7.064 7.410 

Pres. (15×15) 4.4339 6.2513 7.0334 8.6835 9.2230 9.5974 
-0.5 0.5 

Ref. [12] 4.467 6.303 6.989 8.628 9.206 9.717 

Pres. (15×15) 4.8281 6.2126 7.8221 8.7692 9.1089 10.7546 
0.5 -0.5 

Ref. [12] 4.831 6.231 7.879 8.771 9.060 10.936 

Pres. (15×15) 6.2841 8.0762 10.1762 11.4172 11.8812 13.9901 

SCFC 

0.5 0.5 
Ref. [12] 6.301 8.084 10.235 11.429 11.849 14.200 

Pres. (15×15) 4.7201 6.1800 7.2384 8.0610 8.3354 9.7410 
-0.5 -0.5 

Ref. [12] 4.734 6.184 7.258 8.047 8.336 9.706 

Pres. (15×15) 6.259 8.009 9.720 10.421 10.891 12.629 
-0.5 0.5 

Ref. [12] 6.2347 7.9912 9.6852 10.4441 10.8784 12.6795 

Pres. (15×15) 6.158 8.052 9.444 10.522 10.832 12.613 
0.5 -0.5 

Ref. [12] 6.1398 8.0422 9.4116 10.5236 10.8227 12.6342 

Pres. (15×15) 8.137 10.417 12.630 13.605 14.132 16.382 

CCCS 

0.5 0.5 
Ref. [12] 8.1110 10.3970 12.5950 13.6315 14.1263 16.4413 

Pres. (15×15) 4.2330 5.9495 6.7686 7.8845 8.0345 9.3860 
-0.5 -0.5 

Ref. [12] 4.248 5.959 6.779 7.875 8.015 9.329 

Pres. (15×15) 5.4687 7.7854 8.6994 10.1831 10.4270 12.2118 
-0.5 0.5 

Ref. [12] 5.481 7.795 8.715 10.187 10.412 12.198 

Pres. (15×15) 5.6281 7.6423 8.9166 10.2252 10.3462 12.2241 
0.5 -0.5 

Ref. [12] 5.637 7.653 8.922 10.270 10.274 12.191 

Pres. (15×15) 7.2421 9.9894 11.4799 13.2585 13.3844 15.8434 

SSCC 

0.5 0.5 
Ref. [12] 7.248 9.991 11.475 13.252 13.359 15.785 
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slightly by increasing in the thickness variation parameter α. 

Also, the frequency parameter increases with increasing val-

ues of variation parameter of foundation stiffness γ.  

 

5. Conclusions 

Element free Galerkin method has been used for free vibra-

tion analysis of thin orthotropic plates with variable thickness 

and resting on non-uniform elastic foundation. Accuracy and 

convergence of solution was examined by comparing the nu-

merical results obtained by the present method with those 

previously published. It is observed that the fundamental fre-

quency increases with increasing values of foundation pa-

rameter and variation parameter of foundation stiffness. It was 

found that by increasing values of thickness variation parame-

ters, the fundamental frequency is decreased and the rate of 

decreasing is different. 
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