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Abstract 
 
This paper presents the accurate prediction of static behavior of composite beams with arbitrary cross-sections. The asymptotic recur-

sive formulation is reviewed first, where the initial three-dimensional problems are split into the macroscopic 1D problems and the mi-
croscopic 2D problems. The finite element formulation for the microscopic 2D problems is then presented in order to find the cross-
sectional warping solutions. The warping solutions obtained contribute the cross-sectional properties to the macroscopic 1D problems. 
The end effect of the 1D beam problem is also considered via the kinematic correction for a displacement prescribed boundary. The ap-
proach presented is applied to the beams with relatively complicated material distributions and cross-sectional geometry. As numerical 
test-beds, a three-layered sandwich beam and a composite beam with the multi-cell cross-section are taken to analyze the local deforma-
tion. A parametric study is also carried out to investigate the significance of shear deformation due to the cross-sectional orthotropic cha-
racteristics. The cross-sectional deformation is predicted based on the asymptotic framework. The accuracy of the present approach is 
assessed by comparing the results obtained with the 3D FEM solutions obtained by ANSYS.   
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1. Introduction 

The composite beam structures have been broadly used in 
many engineering fields due to their high strength-to-weight 
properties. The well-developed classical beam theory is appli-
cable to most engineering problems. The classical beam the-
ory is however not valid for the accurate prediction of the 
mechanical behavior if the sufficient slenderness of beams is 
not assured. Especially for anisotropic composite beams, it is 
required to consider the transverse shear deformation effect 
because the beams are relatively weak in shear. For this reason, 
many high-order beam theories have been developed. Never-
theless, they still have the limitations in describing the cross-
sectional deformation that is important in thin-walled beams 
and composite sandwich beams. The deformations include 
non-classical effects such as in-plane warping, out-of-plane 
warping, and distortion. Such non-classical deformations are 
of great importance in vibration problems, because the spe-
cific modes might be missed [1]. Therefore, it is necessary to 
carry out the cross-sectional analysis in order to contribute the 

accurate cross-sectional properties to the macroscopic beam 
model. For such a purpose, the asymptotic expansion method 
can serve as the framework of the cross-sectional analysis. 

The variational asymptotic method (VAM) was developed 
by Berdichevsky [2], which applies the asymptotic expansion 
to the energy functional having one or more small parameters. 
One of common difficulties in asymptotic expansion methods 
is boundary conditions especially for displacement prescribed 
boundaries. To circumvent this, the efforts have been made to 
derive the Timoshenko-like beam theory based on the VAM 
[3-5]. The most recent version has been developed by Yu et al. 
[6], which is built upon the finite element-based cross-
sectional analysis. The model based on the VAM and the fi-
nite element-based cross-sectional analysis is referred to as 
VABS (Variational Asymptotic Beam Sectional analysis) 
since the work of Cesnik and Hodges [4].  

In contrast to the VAM, the interior solutions for the formal 
asymptotic expansion method (FAM) are obtained from the 
differential equations systematically [7]. However the higher-
order effects (e.g. shear deformation) have not been reflected 
on the beam interior solution. In order to obtain the exact inte-
rior solutions, the asymptotically correct boundary conditions 
should be considered [8]. Buannic and Cartraud [9, 10] pro-
posed the asymptotic model to predict the static behavior of 
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periodic heterogeneous beams, where the boundary conditions 
were obtained by employing the decay analysis method [8]. 
However, it is difficult to obtain these boundary conditions for 
general engineering applications because of the prior need for 
the boundary layer state [11, 12]. On the other hands, the sim-
plified boundary conditions were obtained by Horgan and 
Simmonds [13], and these boundary conditions were applied 
successfully to the layered orthotropic beams [14]. Recently, a 
formal asymptotic method-based beam analysis (FAMBA) 
[15], which is equipped with generalized average boundary 
conditions for the displacement prescribed boundary, was 
applied to anisotropic beams with arbitrary cross-sectional 
geometry, and the results obtained were well correlated to the 
examples considered therein.  

In this paper, the FAMBA is applied to the anisotropic 
beams with complicated cross-sectional geometry and mate-
rial distributions. First, we review the asymptotic recursive 
formulation for slender anisotropic beam structures, in which 
governing equations and boundary conditions are derived by 
applying the asymptotic expansion method and employing the 
virtual work concept at each asymptotic level [15]. A beauty 
of the asymptotic expansion method is that the method is ma-
thematically rigorous because the primary variables take the 
forms of power series in terms of the small parameter (i.e. the 
slenderness of the beam). Although it is verified that the 
FAMBA is very useful to predict the macroscopic behavior of 
the beam with the consideration of the suitable boundary con-
ditions at the clamped end, it is needed to investigate if the 
FAMBA is able to capture the cross-sectional deformation 
well. In order to assess the capability of the FAMBA further, 
the cross-sectional analysis is carried out for the cantilever 
beams with challengeable material distributions and cross-
sectional geometry. Under such circumstances, the importance 
of the edge effect at the clamped end of the beam is examined. 
To this end, the layered sandwich and the composite beam 
with the multi-cell cross-section are taken as test-bed exam-
ples. The edge effect caused by the clamped boundary is con-
sidered and discussed, and the cross-sectional deformation of 
a composite beam is predicted, which has never been exam-
ined before. The accuracy of the presented approach is as-
sessed by comparing the results obtained with the 3D FEM 
solutions. 

 
2. Recursive asymptotic formulation 

A three-dimensional slender beam structure is considered as 
shown in Fig. 1. For a linear elastic body, the equilibrium 
equation, the constitutive equation and the strain-displacement 
relationship are given as follows: 
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where Sn  and n  denote the normal unit vectors to the lat-
eral surface of the beam and to the surface of the beam ends, 
respectively. 

If the small parameter ε , which is the ratio of the maxi-
mum cross-sectional dimension h  and the characteristic 
length cl  of the beam, is introduced, it is possible to scale the 
coordinates ( )1 2 3, ,x x x  as follows: 
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Subsequently, plugging Eq. (3) into Eq. (1) yields  
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where the superscript T  denotes the transpose of matrices 
and/or vectors. The displacement, strain, and stress vectors are 
defined by 
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and the body force vector is { }1 2 3b b b= Tb , and two lin-
ear operators 23D  and 1D  are given as follows: 

 
Fig. 1. A three dimensional slender beam. 
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The displacement can be expanded in terms of the small pa-

rameter ε , and subsequently the strain and stress are asymp-
totically expanded by substituting the expanded displacement 
into Eq. (4). These are summarized as follows:  
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The recursive formulation is finally derived by substituting 

Eq. (7) into Eq. (4), collecting the same order of the small 
parameter, and scaling the applied tractions and the prescribed 
displacements [13]. A set of the recursive equations are then 
given as follows: 
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and the associated boundary conditions are 
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In general the analytical solution of Eq. (8) cannot be found, 

and therefore, a standard finite element discretization is em-
ployed to find the warping solutions. Eq. (8) can be split into 
the two problems; microscopic 2D problems (warping solu-
tions) and macroscopic 1D problems (beam solutions).  

 
3. Microscopic 2D problems 

The complete solution at each order k  consists of the fun-
damental solution ( )k

fu  and the warping solution ( )k
wu . 
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The fundamental solutions represent the rigid-body motions 

of the cross-section, whereas the warping solutions include the 
cross-sectional deformation. The warping solutions at each 
order represent a variety of warping deformations due to the 
Poisson effect, torsional shear deformation, or transverse shear 
deformation on the cross-section. The fundamental solution 

( )k
fu  can be obtained in the mathematical framework, 

whereas the numerical methods should be employed in order 
to obtain the warping solution ( )k

wu  in general. For the warp-
ing solutions, the virtual work concept is introduced to apply a 
finite element discretization. The variational form of the equi-
librium equation in Eq. (8) can be expressed by 
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where the terms associated with ( )k
wδu  form the microscopic 

2D problems for the warping solutions to be found. 
The first microscopic problem starts from 1k = − . The 

complete solution (1)u  is composed of the homogeneous 
solution hu  and the particular solution pu . The homogene-
ous solution hu  represents the rigid body motions, which 
include three translations and a rotation with respect to the 
reference line. The particular solution corresponds to the solu-
tion of the Euler-Bernoulli beam theory such that 
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which makes the zeroth-order strain vanish. 

Consequently the fundamental solutions at each order take 
the same form of the first-order displacement [9, 15], which 
are expressed as follows: 
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Henceforth the variables with a hat (^) in Eq. (14) indicate 

functions of 1y  only. 
The warping solution turns up from the second microscopic 

problem ( 0)k = . After applying the integration by parts and 
the divergence theorem to the equilibrium equations for the 
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microscopic 2D problems, the finite element formulation can 
be derived by discretizing the warping displacement. For the 
second microscopic problem, the finite element formulation 
[15] is given by 
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in which wu  is the nodal vector, and  
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The strain-displacement matrix is defined by 
 

23 23 23B N=D
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where 23N  denotes the shape function. 
The stiffness matrix in Eq. (15) includes four zero-

eigenvalues which correspond to the rigid body modes. At this 
point, the constraints should be enforced to remove those 
modes by employing the penalty functions [16]. The penalty 
number is chosen to be the largest eigenvalue of the stiffness 
matrix. As a result, the warping solution is represented by 
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where (1)Ψ  is the discretized cross-sectional deformation 
matrix, which accounts for the three-dimensional Poisson 
effect on the cross-section.  

By following the same procedure described in the above, the 
third microscopic problem can be formulated. Unlike the second 
microscopic problem, the body force and lateral surface tractions 
appear at the problem. The body force ( )kb  and lateral surface 
traction vector ( 1)k+St  are assumed to take the form of  
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Thus they can be smeared into the microscopic problems. 

The finite element formulation is then given by 
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and 

 
1 1 23.B N=D

 
 (23) 

 
The third order warping solution is obtained by solving Eq. 

(21) as follows: 
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where (3)

Sbt
u  is the displacement caused by the body force and 

the lateral surface traction (i.e. 4th and 5th terms in Eq. (22)), 
and (2)Ψ includes cross-sectional deformation modes (mainly 
shear deformation).  

For the higher order microscopic 2D problems, the warping 
solutions are finally generalized as follows [15]: 
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4. Macroscopic 1D problems 

The equilibrium equations of macroscopic 1D problems can 
be derived from the terms associated with the variation of the 
fundamental solution ( )k

fu in Eq. (11). The first equilibrium 
equation appears at 0k = , and the set of equilibrium equa-
tions at each order can be obtained subsequently. The warping 
solutions obtained from the microscopic 2D problems are 
systematically smeared into the macroscopic 1D problems. 
The 1D constitutive equations at each order are constructed 
from the relationship between the stress resultants and the 
macroscopic strains.  

Finally, the finite element 1D beam formulation can be de-
rived via the weak forms of the macroscopic 1D problems 
given in Eq. (11). The first order beam equations are then 
obtained by    
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in which the strain-displacement matrix is defined as follows: 
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In Eq. (29), the shape function iN  is the one-dimensional 

Lagrange polynomial, and the shape functions iM  and iH  
are the one-dimensional Hermite polynomial. In Eq. (27), the 
matrix (1)E and the force vector are calculated as follows: 
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By following the procedure described in the above, the sec-

ond order macroscopic 1D problem is summarized by  
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The third order macroscopic 1D problem is given by 
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Finally, the higher-order macroscopic 1D beam equations 

can be now generalized as follows: 
 

( ) ( )
1 1 ,k k

f=K V F
 

 (41) 
 

where { }( ) ( ) ( 1) ( 1) ( ) ( 1) ( 1)
1 2 3 2,1 3,1

ˆˆ ˆ ˆ ˆ ˆk k k k k k ku u u u uφ− − − −=V , and 
 

( )

( ) (1)T ( ) ( ) ( 1)
1 1

02

T ( )
1 2 23 1

0
, 4.

c

c

s

k l
k m m k m
f

m
l

k
bt

dy

dy k

− +

=

=

+ ≥

∑∫

∫

F B E B v

T CB uD  
 (42) 

 
5. Results and discussion 

In this section, the cross-sectional deformations are exam-
ined by substituting the solutions of the macroscopic 1D prob-
lems ( )kV  into the microscopic 2D problems. The solutions 
of the macroscopic 1D problems are expanded up to the third-
order because the higher order solutions are relatively negligi-
ble. In order to calculate the third order solutions, one needs to 
calculate the higher order derivatives with respect to the refer-
ence coordinate. To this end, the quadratic interpolation func-
tions and the fifth-order Hermite interpolation functions are 
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employed for C0 variables and C1 variables, respectively. For the 
finite element discretization of the microscopic 2D problems, the 
four-noded quadrilateral QM6 element [17] is employed, in 
which the incompatible modes are added to remedy the mem-
brane-locking defect caused by Q4 element. As illustrative ex-
amples, a three-layered sandwich beam with rectangular cross-
sectional geometry and a composite beam with the multi-cell 
cross-section where the beam boundary conditions are fixed and 
free (i.e. a cantilever). In the asymptotic approaches, the dis-
placement prescribed boundary is generally problematic [10]. In 
this study, the averaged boundary conditions for the clamped 
boundary are used to provide the appropriate boundary condi-
tions for the proposed asymptotic model, which can be found in 
the Ref. [15]. In all reported figures, the three-dimensional FEM 
solutions, where the 8 noded-hexahedral element is used, are 
taken as the reference solutions, which are calculated by using 
the commercial software ANSYS [18]. 

 
5.1 A layered sandwich beam with rectangular cross–

sectional geometry 

A configuration of the layered sandwich beam is shown in 
Fig. 2, and the mechanical properties of each layer are 

1 80E = GPa, 2 0.8E = GPa, 1 0.33v =  and 2 0.4v = , respec-
tively. As shown in Fig. 3, cantilevered layered sandwich 
beams under the vertical tip loading and the distributed load-
ing are analyzed, where the length of the beam is 0.5 m. The 
first order solution (1)V  of the macroscopic 1D problem 
corresponds to the classical Euler-Bernoulli beam theory, and 
the second order solution (2)V  vanishes for these loading 
conditions because there is no shear-torsion coupling. The 
third order solution (3)V  includes the shear deformation ef-
fect via the non-zero slope boundary condition at the clamped 
end, which incorporates the edge effect into the solution [15].  

For the two loading cases, the deflection along the axial co-
ordinate is plotted in Figs. 4(a) and (b), where the first and 
third order solutions are compared to the 3D FEM results. For 
the 3D FEM analysis, 32000 solid elements are used, and the 

displacements at the centroid of the cross-section of the beam 
are extracted along the axial coordinate. As shown in Figs. 
4(a) and (b), the classical beam theory (i.e. the first order solu-
tion) shows a large deviation from the 3D FEM, whereas the 
third order solution, which considers the kinematically cor-
rected boundary condition at the clamped end, provides the 
reliable result. The edge effects caused by the clamped end 
have significant influence on the deflection of a composite 
beam. Thus, the appropriate boundary conditions at the 

 
 
Fig. 2. The configuration of the cross-section of a layered beam. 

 

 
(a) Vertical tip loading 

 

 
(b) Distributed loading 

 
Fig. 3. Loading conditions. 
 

 
(a) Vertical tip loading 

 

 
(b) Distributed loading 

 
Fig. 4. Deflection curves of a layered beam. 
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clamped end should be taken into consideration as mentioned 
previously. It is revalidated that the simplified asymptotically 
correct boundary conditions at a clamped end [15] are avail-
able to the general cantilever composite beams. 

The first order and second order deformation modes are il-
lustrated in Figs. 5 and 6, where one can see that deformed 
shapes of the cross-section of the beams are easily visible 
and/or predictable via the matrix Ψ . In Fig. 5, the deforma-
tion mode (1)Ψ , which comes from the second microscopic 
2D problem, includes the cross-sectional deformations due to 
the Poisson effects and the Saint-Venant torsion. One can 

clearly see that the torsional warping is quite complicate for 
this example, unlike simple rectangular cross-section case. 
This kind of warping is almost impossible to presuppose, 
which justifies why one has to consider the asymptotic ap-
proach proposed. In Fig. 6, the deformation mode (2)Ψ  from 
the third microscopic 2D problem accounts for the out-of-
plane warping due to tension and shear deformations and the 
in-plane distortion due to torsion. The well-known zigzag 
warping for the bending of layered composite beams is cap-
tured very well, which is induced by the shear deformation. 

In order to demonstrate the capability of predicting the 
three-dimensional displacements by the approach proposed, 
the displacements at the left corner on the bottom of the cross-
section (see Fig. 2) along the axial coordinate are examined. In 
Figs. 7(a) and (b), the in-plane and out-of-plane displacements 
of the beam under the vertical tip loading are plotted and 
compared to the 3D FEM. In Figs. 8(a) and (b), the displace-
ments for the beam under the distributed loading are also plot-
ted. Figs. 7(b) and 8(b) show the three-dimensional Poisson 
effects due to the beam bending, where it can be clearly seen 
that the second order solution (2)u  recovers the in-plane 
warping deformation. The solution is comparable to the 3D 
FEM prediction. On the other hand, the third order solution 

(3)u  reflects the out-of-plane warping due to the shear defor-

 
Fig. 5. The first-order cross-sectional deformation mode (1)Ψ of a 
layered beam. 
 

 
 
Fig. 6. The second-order cross-sectional deformation mode (2)Ψ of a 
layered beam. 

 

 
(a) 1x  direction 

 

 
(b) 2x  direction 

 
Fig. 7. Displacement solutions for a vertical tip loading along the axial 
coordinate. 
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mation of the beam cross-section, as shown in Figs. 7(a) and 
8(a). The results obtained by the present approach are corre-
lated very well with the 3D FEM in the interior zone, whereas 
they deviate from the 3D FEM in the edge zones. The aver-
aged boundary conditions employed in this study do not cor-
rect the edge zone solutions (or the boundary layer solutions) 
but the interior solutions. This clearly demonstrates that the 
asymptotically correct boundary conditions may differ from 
the physical boundary conditions for the displacement pre-
scribed boundaries to accurately predict the exact interior state.  

In general, the classical beam theory is valid only if the 
cross-sectional dimension is small enough as compared to the 
beam axial dimension (i.e. the slenderness of the beam should 
be assured). Otherwise, the deflections obtained by the classi-
cal beam theory will significantly deviate from the 3D FEM 
results. In other words, the edge effect does not decay even far 
from the edge of the beam weak in shear (i.e. when the beam 
is not slender in terms of the geometric dimension or the wave 
length). To investigate the convergence of the present ap-
proach, the third order tip deflections of the beam with vary-
ing the thickness ratio under the two loading conditions are 

plotted in Fig. 9, where they are normalized by the first order 
solution. It is again seen that the third order solutions show an 
excellent agreement with the 3D FEM results irrespective of 
the slenderness of the beams.  

To demonstrate further the usefulness of the present ap-
proach, the orthotropic significance is also investigated. The 
beam cross-sectional geometry is the same as the previous 
example, while the material properties are varied. The 
Young’s modulus of 2E  varies whereas 1E  is fixed as 200 
GPa and 1 2 0.3ν ν= = . For the beam subjected to the vertical 
tip loading, the interior solutions at the middle of a beam with 
varying the ratio ( 1 2/E E ) are illustrated in Fig. 10 in which 
displacements are obtained at the left corner on the bottom of 
the cross-section. When 1 2/E E  is 1, it indicates the isotropy 
of the cross-section, and an increase of the ratio of 1 2/E E  
can be appreciated as the stronger orthotropy of the cross-
section. For the isotropy case of the cross-section, the third 
order solution does not display a remarkable deviation as 
compared to the first order solution (i.e. classical beam theory). 
However, the classical beam theory shows a significant devia-
tion from the 3D FEM, as the orthotropy of the cross-section 

 
(a) 1x  direction 

 

 
(b) 2x  direction 

 
Fig. 8. Displacement solutions on the cross-section for a distributed
loading along the axial coordinate. 

 

 
(a) Under the vertical tip loading 

 

 
(b) Under the distributed loading 

 
Fig. 9. Normalized tip deflection of a layered beam vs. the length-to-
thickness ratio. 
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(i.e., the ratio of 1 2/E E ) increases. As shown in Fig. 10(a), 
the warping displacement due to the Poisson effect increases 
sharply and is converged soon as the orthotropy of the cross-
section become stronger. While the present approach de-
scribes this warping displacement very well, for the displace-
ment in the 3x  direction, the deviation from 3D FEM grows 
as the ratio of 1 2/E E  increases. It can be understood that the 
significance of the edge effect is strongly affected by the 
cross-section material distributions. Except the case of drastic 
orthotropy of the cross-section, the third order solution ob-
tained by applying the generalized average boundary condi-
tions agrees well with the 3D FEM. From this investigation, it 
is confirmed that the significance of the edge effect is strongly 
affected by the cross-section material distributions as well as 
the geometric slenderness of the beam. 

 
5.2 A Composite beam with the multi-cell cross-section 

In order to demonstrate the capability of the present asymp-
totic beam analysis, the composite beam with a multi-cell cross-
section is considered as a representative numerical example. 

The configuration of the multi-cell cross-section is shown in Fig. 
11. The material properties in layups and a D shape are 

 
- layups part 

11 172.4 GPa ,E = 22 33 6.9 GPa ,E E= =  
12 13 3.45 GPa ,G G= =  23 1.38 GPa ,G =   

12 23 13 0.25v v v= = = . 
- D shape part 

11 177 GPa ,E = 22 33 10.8 GPa ,E E= =  
12 13 7.6 GPa ,G G= =  23 8.5 GPa ,G =   

12 23 13 0.27v v v= = =  
 

and upper and lower walls have an angle ply [ ] 215/ 15− , and 
the layups for vertical walls is a cross ply [ ] 20 / 90 . The 
equivalent loadings correspond to 3 1r =  and τ =   

32.6385 10−− ×  in Eqs. (32) and (36). 
The cross sectional deformed shape in a complicated com-

posite beam are observable very easily via the microscopic 2D 
analysis, the first order deformation modes (1)Ψ  are repre-
sented in Fig. 12, where 736 QM6 elements [17] are used for 

 
 
Fig. 11. Geometry of the composite beam with the multi-cell cross-
section and loading conditions. 
 

 
Fig. 12. The first-order cross-sectional deformation mode (1)Ψ of a 
composite beam with the multi-cell cross section. 

 

 
(a) 2x  direction 

 

 
(b) 3x  direction 

 
Fig. 10. The displacement solutions at the left-bottom corner on the cross-
section and the beam mid-span with varying the ratio of 1 2/E E . 
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the two dimensional cross- sectional analysis. To compare the 
beam solution based on asymptotical framework with the 3D 
FEM solution, 96960 solid elements are used in the 3D FE 
analysis. The tip deflection for a unit vertical tip loading with 

varying the length of a composite beam is examined. The tip 
deflection is also normalized by the first order beam solution 

(1)V , and the third order beam solution (3)V  matches the 3D 
FEM solutions very well as shown in Fig. 13.  

The asymmetric configuration due to the cross-sectional 
geometry and layups induce extension-bending and shear-
torsion couplings. Substituting the beam solution ( )kV  into 
Eqs. (12) and (13) makes it possible to capture the compli-
cated cross-sectional deformation with the coupling effect. 
The displacements are examined at two positions as shown in 
Fig. 13. Figs. 14 and 15 show the displacement 1u  and 3u , 
respectively, along the axial coordinate. Because the local 
deformation caused by the localized point loadings remains, 
the displacement 1u  on the cross section deviates from the 
3D FEM but is still comparable. The displacements solution 

3u  based on the asymptotic framework provides very accu-
rate solutions. Especially, the displacement 3u  at position 2 
agrees very well with the 3D FEM solutions as shown in Fig. 
15(b), since the non-classical deformations on the cross-
section are incorporated. In this case, the displacement 2u  is 

 
 
Fig. 13. Normalized tip deflection of a composite beam with the multi-
cell cross-section vs. the length-to-thickness ratio. 

 

 
(a) At ① position 

 

 
(b) At ② position 

 
Fig. 14. Displacement solutions 1u  on the cross-section for vertical
tip loading and torque. 

 

  
(a) At ① position    

 

 
(b) At ② position 

 
Fig. 15. Displacement solutions 3u  on the cross-section for vertical 
tip loading and torque. 
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dominant due to the torsion and distortion. It is very difficult 
to capture the local distorted deformation at the free end of a 
beam due to the highly localized point loadings (i.e., three-
dimensional in nature). The displacement 2u  along the axial 
coordinate is plotted in Fig. 16 when the length of the beam is 
0.6 m. The third order solution includes the bending-torsion 
coupling effect. For a shorter beam (0.2 m-long beam), the 
cross-sectional deformed shape at the middle of the beam is 
illustrated in Fig. 17. It can be seen that the third order solu-
tion captures well the three-dimensional cross-sectional de-
formation.  

 
6. Conclusions 

The cross-sectional analysis of the beams using an asymp-
totic expansion method is applied to the layered sandwich 
beams and the composite beam with the multi-cell cross- sec-

tion. The asymptotic method with the average boundary con-
ditions for the displacement prescribed boundary is systemati-
cally presented to derive the macroscopic 1D and microscopic 
2D problems. The warping solutions are obtained by numeri-
cally solving the microscopic problems, and then the beam 
analysis is carried out for the cantilever beams under the verti-
cal tip loading and distributed loading conditions. The deflec-
tion obtained by applying the average boundary conditions for 
the displacement prescribed boundary yields the accurate re-
sults as compared to the reference solution (i.e. 3D FEM). The 
most significant improvement is made by the non-zero slope 
boundary condition at the clamped end in the third order solu-
tion.  

The first test-bed example shows that the edge effect is of 
great importance when the orthotropy of the cross-section is 
strong. Therefore, the second example, in which the anisot-
ropy is much stronger than the first example because of the 
complicated material distribution, is presented in order to em-
phasize the edge effect. The interior solutions obtained are still 
comparable to the 3D FEM in spite of highly localized point 
loadings, strong material anisotropy, and complicate geometry.  

The main advantage of the beam analysis based on the as-
ymptotic finite element framework is that it can be applied to 
the beams with complex cross-sectional geometry or material 
distributions. In addition, the method proposed does not need 
to calculate the shear correction factors unlike the traditional 
Rankine-Timoshenko beam theory. Without knowing such the 
factors, the present approach is able to predict accurately the 
three-dimensional interior behavior of the beams with chal-
lengeable cross-sectional material distribution and geometry. 
In the computational point of views, it is very efficient as 
compared to the 3D FEM since it just requires the two-
dimensional (cross-sectional) and one-dimensional (beam) 
discretizations.  
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