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Abstract 
 

In this study, force and moment balance of a planar four-bar linkage is implemented using evolutionary algorithms . In the current 

problem, the concepts of inertia counterweights and physical pendulum are utilized to complete balance of all mass effects, independent 

of input angular velocity. A proposed multiobjective particle swarm optimization, and non-dominated sorting genetic algorithm II are 

applied to minimize two objective functions subject to some design constraints. The applied algorithms produced a set of feasible solu-

tions called pareto optimal solutions for the design problem. Finally, a fuzzy decision maker is utilized to select the best solution among 

the obtained pareto solutions. The results show that optimal solutions minimize the weights of applied counterweights and eliminate both 

shaking forces and moments transmitted to the ground, simultaneously.   
 

Keywords: Force and moment balance; Four-bar linkage; Multiobjective particle swarm optimization; Non-dominated sorting genetic algorithm; Fuzzy 
decision maker   
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1. Introduction 

Without considering the interface between a mechanism and 

its mounting frame, design of that mechanism cannot be com-

pleted. During the time that an unbalanced linkage moves, it 

transmits shaking forces and moments to its surroundings. 

These transmitted forces and moments may cause some serious 

and undesirable problems such as vibration, noise, wear, and 

fatigue. Therefore, several methods are developed to eliminate 

the shaking forces and shaking moments in planar mechanisms.  

Determining of counterweights to minimize frame vibration 

for a planar four-bar linkage is formulated as a convex optimi-

zation problem by Verschuure et al. [1]. The obtained results 

show a significant reduction of frame vibration during the 

counterweight design. Arakelian et al. [2] suggested a method 

based on displacements of the axes of rotation of counter-

weights connected to the crank and rocker to minimize shak-

ing force and moment of a planar four-bar linkage. Applying 

this method, they significantly reduce the shaking moments. 

Arakelian and Dahan [3] also considered the shaking force 

and moment balancing of planar and spatial linkages consider-

ing mechanisms with constant and variable angular velocity 

for input link. Chaudhary and Saha [4] presented the inertia 

properties of a planar mechanism by dynamically equivalent 

systems to identify design variables and constraints. Their 

formulation leads to an optimization scheme for the mass 

distribution and balancing of the mechanism. They also ap-

plied the same technique for complete balancing of spatial 

mechanisms in Ref. [5]. Yan and Soong [6] proposed a 

method for four-bar linkages that finds the optimal design 

parameters for reaching the trade-off of dynamic balance and 

satisfying kinematic design requirements.  

The problem of complete balance of a mechanism which is 

used in the present work has been addressed by Berkof [7-10] 

and Berkof and Lowen [11] in depth. In their approach, two 

methods, complementing each other, have been developed; 

permitting elimination of both shaking forces and shaking 

moments transmitted to the ground. This method redistributes 

link masses so that time dependent terms of equations of mo-

tion for the center of mass become zero [11]. The distribution 

of mass locations of the centers of mass is defined by deriving 

a set of linearly independent time dependent vectors, and force 

balance is achieved such that the center of mass for the entire 

system remains fixed. 

Moment-balance of a linkage is achieved by writing moent-

f-momentum equations for the system. The shaking moments 

for the entire system is vanished when the vector sum of the 

moments of momentum becomes zero. This task is accom-
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plished by adding the inertia counterweights and some con-

straints on the configuration of linkage. Complete force and 

moment balancing of an in-line four-bar linkage is accom-

plished utilizing the concepts of inertia counterweights and the 

physical pendulum which allow eliminating all mass effects 

(both linear and rotary, but excluding external loads), inde-

pendent of input angular velocity.  

In this work, two objective functions are considered to be 

minimized as the thickness of counterweights and the thick-

ness of disks for both input and output links of a planar four-

bar. Multiobjective Particle Swarm Optimization (MOPSO) 

[11, 12] and Non-Dominated Sorting Genetic Algorithm II 

(NSGA-II) [13, 14] generate a whole set of pareto optimal 

solutions, that provides a full picture of all possible compro-

mise solutions and thus makes the decision process easier. The 

theory of fuzzy sets [15, 16] is also applied for decision mak-

ing of balance problem. The proposed fuzzy decision maker 

selects the best compromises among the obtained solutions in 

order to satisfy design criteria.  

 

2. Force and moment balance 

Before considering the balance problem, it is needed to de-

fine the concepts of physical pendulum and inertia counter-

weights which are needed to maintain complete force and 

moment balance for the four-bar linkage. 

 

2.1 Physical pendulum 

The physical pendulum is defined as an in-line link with the 

radius of gyration k. As a physical pendulum has the same 

amount of radius of gyration when suspended by either end, it 

is symmetric about its center of mass which is in the midpoint 

of the line connecting two pivots of the link. 

There are different credible shapes satisfy the general re-

quirements of physical pendulum. In this paper, the configura-

tion of the augmented link is used to meet the physical pendu-

lum requirements. In Fig. 1, the configuration of a physical 

pendulum is illustrated. The physical pendulum contains 

added masses that weigh W
*
. This added masses changed the 

augmented link to a physical pendulum [9, 17]. 

 

2.2 Inertia counterweight 

When a linkage moves it causes unbalanced shaking mo-

ments which are proportional to angular acceleration. These 

unbalanced moments can be balanced using inertia counter-

weights. By adding the inertia counterweights, no net inertia 

forces are generated. Thus, the force balance of the mecha-

nism is not affected, and the four bar linkage is now com-

pletely force and moment balanced. However, the input torque 

must be increased to drive the linkage with added counter-

weights. If the linkage transmits an unbalanced shaking mo-

ment to its mounting frame, it is needed to have a pair of spur 

gear to eliminate and some additional mass which is statically 

balanced about its axis of rotation to eliminate those shaking 

moments [17, 18]. 

 

2.3 Force and moment balance 

Berkof and Lowen [11] proposed an approach called 

“method of linearly independent vectors” in which link 

masses are rearranged so that time dependent terms of motion 

equations for the center of mass become zero [17]. 

For a linkage, total moment acted on ground consists of the 

ground reaction due to the input torque as well as the moment 

resulting from the ground bearing forces. Provided that this shak-

ing moment can be reduced to zero, the mechanism can be com-

pletely balanced. It is necessary to consider the angular momen-

tum for a four-bar linkage in order to achieve moment balancing. 

When the angular momentum of a linkage is constant, the 

mechanism does not transmit a shaking moment to its frame. As 

discussed in the preceding sections, full shaking moment balance 

can also be achieved in a force balanced linkage through the use 

of counterweight inertias and physical pendulum. 

The parameters of the unbalanced linkage shown in Fig. 2 

are given in Table 1. The links are steel of density γ = 38311 

N/m
3
. As mentioned in Ref. [17], the following three steps 

must be passed to achieve complete balance. 

 

Step 1: Convert the coupler to a physical pendulum 

As the coupler is an augmented link, some weights must be 

added to it for meeting the requirements for a physical pendu-

lum. This amount of added weights is related to the amounts 

of a and d which are shown in Fig. 3. The value of e which is 

needed for converting the coupler to a physical pendulum is is 

given in Ref. [17]. 

According to Table 1, a3/d3 = 8 and e3/d3 = 1.887. Thus, e3 = 

9.435 cm, and the added weight is given by (Fig. 1): 
 

3 3 32 .W e d hγ∗ =  (1) 

 

Hence, the added weight is: 
 

3.6146 .W N∗ =   (2) 
 

The radius of gyration of the physical pendulum is: 

 
2

2 23
3 3 3 400

2

a
k r r cm

 ′= = = 
 

  (3) 

 
 

Fig. 1. An augmented link changed to a physical pendulum by addition 

the masses with the weight of W*. 
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so 

 

3 20 .k cm=   (4) 

 

To satisfy the conditions of physical pendulum, it is needed: 

 

3

3

0

.

ψ
ψ π

=
 ′ =

  (5) 

 

Thus, the coupler is converted to the physical pendulum with-

out contributing to the shaking moment. 

 

Step 2: Establish force moment 

It is needed to use counterweights for the input and output 

links alteration to achieve force balance as discussed before. It 

is also assumed the circular counterweights with radius ri
*
 are 

chosen to add to links 2 and 4. Then, 

 
* * *2 .i i iW h rγπ=   (6) 

 

The balance conditions in Ref. [17] and Eq. (6) yield: 

 

* 2 2

*3

1

2

1
[( ) ( )

2 cos( )] .
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i

i i i i i i

h W r W r
r
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  (7) 

The new position of the center of mass is determined by 

vector addition that can be shown in following form: 

 

*i i ii i ii i
i i i

i i

W W
re r e r e

W W

ψ ψ ψ ∗
∗

= +
�

�
�   (8) 

 

while Wi
*
 and Wi are the added and total weights of link i. 

 

Step 3: Add inertia counterweights to establish moment bal-

ance  

As the centers of mass of links 2 and 4 have been changed, 

it is needed to calculate the new radius of gyration for those 

links. Because the circular counterweights are used, the con-

tribution from the counterweight is given by: 

 
*

.
2

i
i

r
k ∗ =   (9) 

 

The following equation is derived to determine the radius of 

a gyration of a counter balanced link, and for an in-line link 

with counterweight, it is: 

 

2 2 2

*
*2 * 2
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i
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  (10) 

 

The weight moment of inertia of the inertia counterweight 

using 1:1 gearing: 

 

** 2 2( ).i
i i i i i

W
I k r a r

g
= + +   (11) 

 

And if the counterweight is a circular disk, 

 

** 4 **( )
2

i i iI h
π

γρ=   (12) 

 

or 

 
**

**

4

2
.i

i

i

I
h

πγρ
=   (13) 

 

In order to formulate the optimization problem mathemati-

cally, it is needed to introduce independent design variables 

and objective functions. In this work, ri
*
 and iρ  are consid-

ered as the design variables that are radius of the counter-

weight and disk for the input and output links. Objective func-

tions of the problem are the thickness of counterweights and 

disks to be minimized for link 2 and 4. In other words, the 

weights of counterweights and disks are to be minimized by 

minimizing those thicknesses. Therefore, the objective func-

tion of the problems can be defined as: 

Table 1. Parameters of unbalanced four bar linkage. 
 

Parameter Link 2 Link 3 Link 4 Link 1 

ai (cm) 10.0 40.0 30.0 30.0 

bi (cm) 5.0 5.0 5.0 ----- 

hi (cm) 1.0 1.0 1.0 ----- 

Wi
º
 (N) 3.85 15.40 11.55 ----- 

ri
º
 (cm) 5.0 20.0 15.0 ----- 

ψi
º
 (deg) 0.0 0.0 0.0 ----- 

ki
º
 (cm) 1.0305 3.715 2.803 ----- 

 

 

 
 

Fig. 2. Unbalanced four bar linkage. 
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subject to: 

 
*5 10

3 5

i

i

cm r cm

cm cmρ

 ≤ ≤


≤ ≤
  (16) 

 

where i is 2 or 4. 

Minimizing objective functions, fi1 and fi2, for the input and 

output links, the weight of counterweights and disks are mi-

nimized. When these functions are minimized for link 2 and 

link 4, simultaneously, both force and moment balanced con-

ditions are satisfied for the linkage. There are also some re-

strictions dictated by environment, design process and/or re-

sources, which are defined by Eq. (16). 

 

3. Multiobjectiove optimization 

Unlike single objective optimization methods that a single 

solution is provided with respect to a single objective function, 

multiobjective optimization methods result in a set of optimal 

solutions (pareto optimal solutions) which represent compro-

mises among conflicting objectives. Any one of the pareto 

solutions can be an acceptable solution and considered opti-

mum in some respect.  

The multiobjective design optimization problem can be de-

fined as the problem of finding a vector of n design variables 

X = [x1, x2, …, xn] which satisfies m equality hi(X) = 0, i = 1, 

…, m and p inequality gj(X) ≤ 0, j = 1, …, p constraints and 

optimize (minimize or maximize) a vector of k objective func-

tions F(X) = [f1(X), f2(X), …, fk(X)]
T
, simultaneously. For mul-

tiobjective problems, each objective function achieves its op-

timum at different points. Thus, a pareto optimality concept is 

used to consider this type of problems [18]. A point x X∗ ∈  

is called Pareto optimal (non-dominated) if and only if there 

exists no x X∈  such that fq(x) ≤ fq(x
*
), for q = 1, …, k and 

with fr(x) ≤ fr(x
*
) for at least one r. 

 

4. Fuzzy decision making 

The theory of fuzzy sets is proposed by Zadeh [15] with ex-

plicit reference to the vagueness of natural language, when 

describing quantitative or qualitative goals. Here it is assumed 

that local criteria, minimum thickness of the counterweight 

and minimum thickness of the disk can be presented by fuzzy 

sets. A final decision is defined by the Bellman and Zadeh 

model [16] as the intersection of all fuzzy criteria and is pre-

sented by its membership function ( )xµ  as follows: 

 

( ) ( ) ( )

1, , ; .

C counterweight disk

P

M X X X

i k X X

µ µ= ∩

= ∈…
  (17) 

 

The membership function of the objectives, linear or nonli-

near, can be chosen depending on concept of the problem. 

One of possible fuzzy convolution schemes is presented below: 

(1) Initial approximation X - vector is chosen. Minimum val-

ues for each objective function Kj are established via scalar 

minimization. Results are denoted as “ideal” points {Xj
0
, j = 1, 

…, m}. 

(2) The matrix table {T}, where the diagonal elements are 

“ideal” points, is defined as follows: 

 

0 0 0
1 1 2 1 1

0 0 0
1 2 2 2 2

0 0 0
1 2
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K X K X K X
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T
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 
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 
 
 

…

…
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⋯

  (18) 

 

(3) Maximum and minimum bounds for the objectives are 

defined: 
 

min 0

max 0

min ( )

max ( )

i j j
j

i j j
j

K K X
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 =



=
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  (19) 

 

for i = 1, …, n. 

(4) The membership functions are assumed for all fuzzy goals 

as follows: 
 

max

max
min max

max min

min

0, ( )

( ) ,

1, .

i
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i i
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i i
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K X K
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µ
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
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  (20) 

 

(5) A final decision is determined as the intersection of all 

fuzzy objectives represented by its membership functions. 

 

5. Results and discussion 

Figs. 3 and 4 present the flow diagram of MOPSO and 

NSGA-II. Indeed, these diagrams state the procedure of ob-

taining pareto optimal solutions shown in Figs. 5 and 6. 

Particle swarm optimization (PSO) is a stochastic and popu-

lation-based optimization algorithm first proposed by Ken-

nedy and Eberhart [11]. PSO is inspired by the social and 

cognitive behaviors of a flock of birds or school of fish seek-

ing for food. As shown in Fig. 3, Multiobjective particle 

swarm optimization (MOPSO) algorithm defines a population 
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of particles (swarm) as random guesses in the variables' search 

space (ri
*
 and ρi). Then, an iterative process is set by changing 

the position of particles within the search space to improve the 

objective functions quality. The movements through the 

search space are leaded by the social (personal bests) and cog-

nitive (the best particle) experiences of each particle to mini-

mize both objective functions (hi
*
 and hi

**
), simultaneously. 

Finally, a set of non-dominated (pareto) solutions are found in 

each iteration using the concept of pareto optimal. The optimi-

zation process stops when the termination criteria (here num-

ber of iterations) meets the requirement [12]. 

Genetic Algorithms (GAs) [13] are search methods which 

imitate the natural biological evolution. GA utilizes a popula-

tion of potential solutions and the principle of survival of the 

fittest to produce better approximations to a solution. Using 

the process of selecting individuals based on their level of 

fitness in the problem domain, a new set of solutions is created 

at each generation. This process guides the populations of 

solutions to the best values in the environment of the problem. 

In Non-dominated Sorting Genetic Algorithm-II (NSGA-II), 

shown in Fig. 4, the population of design variables is initial-

ized based on the problem range and constraints. The initial-

ized population is sorted based on non-domination and a fast 

sort algorithm is used to sort the non-dominated individuals. 

Once the non-dominated sort is completed, the crowding dis-

tance is assigned [14]. Since individuals are selected based on 

rank and crowding distance values. After sorting the individu-

als based on non-domination and assigning crowding distance 

to each of them, the selection is carried out using a crowded 

comparison operator. Two GA operators (crossover and muta-

tion) are applied and the offspring population is created. Fi-

nally, this new created population is combined with the cur-

rent population and selection is performed to set the individu-

als of next generation. Again, this process stops when the ter-

mination criteria (maximum number of iterations) is satisfied. 

In the present paper, MOPSO and NSGA-II are used with a 

population size of 50 and generation size of 100 for both the 

input and output links, respectively. As minimization of the 

counterweight thickness and the disk thickness are conflicting 

objectives, the obtained solutions show a compromise be-

tween those objectives subject to the design constraints. These 

solutions also satisfy the conditions of fully force and moment 

balance which is considered in the preceding sections. Be-

cause of the non-linear nature of the derived objective func-

 
 

Fig. 3. Flow diagram of MOPSO.  

 

 
 

Fig. 4. Flow diagram of NSGA-II.  

 

 
 

Fig. 5. Pareto fronts and selected solutions for link 2.  

 

 

 
 

Fig. 6. Pareto front and selected solution for link 4.  
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tions (Eqs. (14) and (15)), both algorithms are proper candi-

dates. Regarding Figs. 5 and 6, both methods produce well 

distributed solutions along pareto front which helps a decision 

maker to choose final solution without conflicting with other 

near solutions. However, as it can be seen in Fig. 5, MOPSO 

produces a better distribution of objective functions for link 2. 

Using fuzzy decision maker which regards the restraints of 

design and manufacturing processes, one can choose the best 

solutions along the pareto optimal fronts to minimize the 

weights of the counterweights and disks and also balance the 

linkage completely. The goals are defined as Kf1 = hi
*
 and Kf2 

= hi
**
. 

Fuzzification of the goals which leads to the membership 

functions is stated by Eqs. (18)-(20). Combination of the 

pareto optimality and fuzzy set concepts allows the decision 

maker to conduct a comprehensive study of obtained results, 

considering various combinations of two objective functions. 

The intersected points maintained by fuzzy decision maker 

are shown in Figs. 5 and 6 by star points. These points are the 

best trade-offs to minimize both thickness of the counter-

weight and disk for link 2 and link 4. In other words, the se-

lected counterweights and disks for link 2 and link 4 along the 

pareto optimal fronts by using a fuzzy decision maker show 

the best compromise among the solutions for minimizing 

weights of the counterweights and disks of the balanced link-

age, simultaneously. Fig. 7 depicts the schematic configura-

tion for the force and moment balanced linkage when shaded 

area is the added material to achieve (a) force and (b) moment 

balance using fuzzy decision maker. The results of multiobjec-

tive force and moment balance using NSGA-II and MOPSO 

are also presented in Tables 2 and 3. It is shown that both 

methods result in competitive values of objective functions 

while satisfying design constraints. It is worth to note that the 

bound constraints in this work are considered regarding the 

baseline design variables and could be changed by designers’ 

demands. Therefore, the obtained values of ρ2 and ρ4, which 

are placed on bounds in Tables 2 and 3, are not very critical. 

6. Conclusions 

Force and moment balance of a four-bar linkage is imple-

mented by utilizing two recent evolutionary algorithms named 

non-dominated sorting genetic algorithm and multiobjective 

particle swarm optimization. The objective functions are de-

rived from the concepts of inertia counterweights and physical 

pendulum that permit complete balance of all mass effects 

both linearly and rotary. In addition, a fuzzy decision maker is 

applied to select an ideal solution among the obtained optimal 

solutions considering design criteria. The optimal results show 

that selected solutions minimize two conflicting objective 

functions and eliminate both shaking forces and moments 

transmitted to the ground simultaneously. 

 

Nomenclature------------------------------------------------------------------------ 

ai : Length of link i  

d  : Width of link i 

F  : Vector of objective functions 

hi : Thickness of link i 

hi
*
  : Thickness of counterweight for link i 

hi
**
  : Thickness of disk for link i 

I  : Moment of inertia of unbalanced linkage 

Icwt  : Moment of inertia of counterweights 

ki  : Radius of gyration of link i 

K  : Objective function value 

MC  : Intersection value of membership functions 

µ  : Membership function value 

ri  : Center of mass position from one pin for link i 

ri
*
  : Circular counterweights for link i 

ρ i  : Radius of disk for link i 

γ : Steel density 

ψi : Angle between line from pin to pin and line from pin 

to center of mass for link i 

Wi
º
  : Weight of link i for the unbalanced linkage 

Wi
*
  : Weight of counterweight for link i 

Wi  : Weight link I after adding counterweights 

X : Vector of variables 

 

 
 

Fig. 7. Fully force and moment balanced in-line four bar linkage. 

Shaded area is material added to achieve: (a) force; (b) moment bal-

ance. 

 

Table 2. Multiobjective force and moment balance results selected by 

fuzzy decision maker for link 2. 
 

Parameters r2
*(cm) ρ2 (cm) h2

* (cm) h2
** (cm) 

MOPSO 6.64 5.00 1.03 0.85 

NSGA-II 7.43 5.00 0.732 0.89 

 

 

Table 3. Multiobjective force and moment balance results selected by 

fuzzy decision maker for link 4. 
 

Parameters r4
*(cm) ρ4 (cm) h4

* (cm) h4
** (cm) 

MOPSO 6.65 5.00 3.06 5.49 

NSGA-II 6.78 5.00 2.89 5.51 
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