
 
 

 

Journal of Mechanical Science and Technology 25 (10) (2011) 2573~2581 

www.springerlink.com/content/1738-494x 

DOI 10.1007/s12206-011-0728-x 

 

 

 

 

FDM analysis for MHD flow of a non-Newtonian fluid for blood flow in  

stenosed arteries† 

D. S. Sankar1 and Usik Lee2,* 
1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia 

2Department of Mechanical Engineering, Inha University, 253,Yonghyun-Dong, Nam-Gu, Incheon 402-751, Korea 

 

(Manuscript Received November 11, 2010; Revised April 22, 2011; Accepted July 6, 2011)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 

A computational model is developed to analyze the effects of magnetic field in a pulsatile flow of blood through narrow arteries with 

mild stenosis, treating blood as Casson fluid model. Finite difference method is employed to solve the simplified nonlinear partial differ-

ential equation and an explicit finite difference scheme is obtained for velocity and subsequently the finite difference formula for the flow 

rate, skin friction and longitudinal impedance are also derived. The effects of various parameters associated with this flow problem such 

as stenosis height, yield stress, magnetic field and amplitude of the pressure gradient on the physiologically important flow quantities 

namely velocity distribution, flow rate, skin friction and longitudinal impedance to flow are analyzed by plotting the graphs for the varia-

tion of these flow quantities for different values of the aforesaid parameters. It is found that the velocity and flow rate decrease with the 

increase of the Hartmann number and the reverse behavior is noticed for the wall shear stress and longitudinal impedance of the flow. It 

is noted that flow rate increases and skin friction decreases with the increase of the pressure gradient. It is also observed that the skin 

friction and longitudinal impedance increase with the increase of the amplitude parameter of the artery radius. It is also found that the 

skin friction and longitudinal impedance increases with the increase of the stenosis depth. It is recorded that the estimates of the increase 

in the skin friction and longitudinal impedance to flow increase considerably with the increase of the Hartmann number.    
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1. Introduction 

Among the various cardiovascular diseases, arteriosclero-

sis/stenosis is a major one which affects the flow of blood in 

the arteries (causes total blockage in the artery in severe cases) 

and leads to serious circulatory disorders [1]. Stenoses are 

formed by the accumulation of fats/ lipids on the inner wall of 

the arteries [2]. Stenoses developed in the arteries pertaining 

to brain can cause cerebral strokes and the one developed in 

the coronary arteries can cause myocardial infarction which 

leads to heart failure [3]. Several researchers pointed out that 

the fluid dynamical properties of blood flow through non-

uniform cross-section of the arteries plays vital role in the 

basic understanding and treatment of many cardiovascular 

diseases [4-6]. Thus, the study of blood flow through stenosed 

arteries is important. 

Extensive research on the dynamics of biological fluids in 

the presence of magnetic field with applications to the medical 

field was carried out by several researchers [7-10]. It is well 

accepted that the biological systems in general are greatly 

affected by the presence of external magnetic field [11]. Some 

applications of magnetic devices are cell separation, reduction 

of bleeding during surgeries and provocation of occlusion of 

the feeding vessels of cancer tumors [12, 13]. Vardayan [13] 

reported that a uniform transverse magnetic field alters the 

flow rate of blood when it flows through arteries of circular 

cross-section. Bhargava et al. [14] pronounced that magnetic 

field can be used as a flow control mechanism in medical 

applications. Hence, it is useful to study the blood flow in 

arteries in the presence of magnetic field.  

Several attempts were made to analyze the blood flow in 

stenosed arteries in the presence of magnetic field [15-19]. 

Blood behaves like a Newtonian fluid when it flows through 

larger arteries at high shear rates, whereas, it exhibits non-

Newtonian character when it flows through narrow arteries at 

low shear rates [20-22]. As blood flow through narrow arteries 

is highly pulsatile, several researchers analyzed the pulsatile 

flow of blood in the presence of magnetic field, treating it as a 

non-Newtonian fluid [10, 23-25]. The pulsatile flow of Casson 

fluid for blood in stenosed arteries in the presence of magnetic 

field was not investigated so far using computational methods.  

Casson fluid model is non-Newtonian fluid with yield stress 
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which has significant applications in biomechanics [26]. Also, 

it is a shear thinning fluid, which has an infinite viscosity at a 

zero rate of shear. Casson [27] investigated the validity of this 

fluid model in studies pertaining to the flow characteristics of 

blood and reported that at low shear rates, the yield stress for 

blood is nonzero. Scott Blair [28] and Copley [29] reported 

that the parameters of the Casson fluid (viscosity, yield stress 

and power law) are adequate for the representation of simple 

shear flow of blood. Merrill et al. [30] spelled out that Casson 

fluid model holds satisfactorily for blood flowing in tubes of 

diameter 130 – 1300 µm. Charm and Kurland [31] pointed out 

in their experimental findings that the Casson fluid model 

could be the best representative of blood and that it could be 

applied to human blood.  Further, Scott Blair and Spanner 

[32] mentioned that blood behaves like a Casson fluid at mod-

erate shear rate flows. Hence, it is appropriate to model blood 

as Casson fluid when it flows through narrow arteries at mod-

erate shear rates. Hence, in this study, the effect of magnetic 

field in the pulsatile flow of blood through narrow arteries 

with axisymmetric mild stenosis is investigated, treating blood 

as Casson fluid model.  

 

2. Mathematical formulation 

2.1 Flow field geometry and governing equations 

Since blood exhibits remarkable non-Newtonian character 

when it flow through narrow arteries at low shear rates, it is 

modeled as Casson fluid model (non-Newtonian fluid). Since 

Casson fluid is a non-Newtonian fluid with yield stress, the 

flow region is divided into two parts: (i) plug flow region and 

(ii) non-plug flow region. Cylindrical polar coordinate sys-

tem ( ), ,r zψ  has been used to analyze the flow situation, 

where r  and z  are the radial and axial directions respec-

tively and ψ  is the azimuthal angle. The geometry of the 

segment of the arterial with time dependent mild stenosis as 

shown in Fig. 1. [10, 21] is mathematically represented by 

 

( )
( )( ) ( )

( )

0 1 0 0

0

1 cos if 2
2,

in the non - stenotic region

R z z z a t d z d z
R z t

R a t

δ
π

 
− + − ≤ ≤ +   =  




 

 (1) 

 

where ( ),R z t  is the radius of the arterial segment in the 

constricted region, 0R is the radius of the artery in the normal 

region,δ is the maximum projection of the stenosis, 0z is the 

semi-length of the stenosis, 1z  is the centre of the stenosis.  
The time-dependent parameter ( )a t  is defined by 

 

( ) ( )1 cos= − −a t k tω φ  (2) 

 

where k is the amplitude parameter, φ  is the phase angle, 

2= fω π with f  being the heart pulse frequency. It is to be 

noted that Eq. (1) is formulated suitably in such a way that at 

the end points of the stenosis ( z 7=  and z 21= ), the radius 

of the artery is ( )0R a t  which is the radius of the normal 

artery and at the throat of the stenosis, the radius of the artery 

is minimum with the value of ( ) ( )0R a t− δ . Further, we 

have taken the length of the arterial segment as 14 units in the 

axial direction with 0z 7= (semi-length of the stenosis) 

1z 14= (centre position of the stenosis) and the arterial steno-

sis is assumed to be present between z 7= and z 21=  in 

the axial direction. We assumed that the stenosis depth is 

also dependent on time, we have taken the arterial radius 

( )R z, t  as the product of function of axial distance  

( ) ( )( )0 1 02 1 cos− + −  R z z zδ π and the time dependent  

function ( )a t . 

Consider an axially symmetric, laminar, unsteady (pulsatile) 

and fully developed flow of a non-Newtonian incompressible 

viscous electrically conducting fluid in the axial direction 

( )z through a circular artery with an axisymmetric mild ste-

nosis in the presence of uniform transverse magnetic 

field ( )0B . The non-Newtonian rheology of the flowing blood 

is characterized by the Casson fluid model. The wall of the 

artery is assumed to be rigid (because of the presence of the 

stenosis) and the artery is assumed to be too long so that the 

entrance and end effects can be neglected in the arterial seg-

ment under study. The equations of continuity and momentum 

governing the magnetohydrodynamic (MHD) flow are [10] 

 

0∇• =V  (3) 

J
V

+•∇+∇−= τ
1

p
Dt

D

ρ
 (4) 

 

where ρ  is the density of blood, V is the velocity vector, 

D DtV  is the material derivative, p  is the pressure, τ is 

the stress tensor, J is the current density, 0 1B=B +B  is the 

total magnetic field, 1B  is the induced magnetic field as-

sumed to be negligibly small in comparison with the external 

magnetic field 0B for MHD flow at small magnetic Reynolds 

number. We assume that the electric field due to the polariza-

tion of charge is also negligible. By Ohm’s law, we have [10] 

 

( )×σJ= E+V B  (5)  

 

where σ is the electrical conductivity and E is the electric field. 

The imposed and induced electrical fields are assumed to be 

negligible. Thus, the term ×J B  can be simplified as [19] 

 
 

Fig. 1. Geometry of segment of an artery with stenosis. 
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.σ× − 2
J B= B V  (6) 

 

It can be shown that the radial velocity is negligibly small 

and can be neglected for a low Reynolds number flow. Thus, 

the momentum equations in the r  and z directions in the 

presence of MHD interactions simplifies to 
 

0
∂

= −
∂
p

r
 (7) 

( ) 2

0

1∂ ∂ ∂
= − − −

∂ ∂ ∂
u p

r B u
t z r r

ρ τ σ  (8) 

 

where = rzτ τ  is the shear stress. The constitutive equation 

of the Casson fluid model which represents the blood is [27-

29]  
 

( )






≥−
=

∂
∂

−
otherwise0

if
1 2

CC

Cr

u ττττ
µ   (9) 

 

where Cµ  and Cτ  are the viscosity and yield stress of the 

Casson fluid respectively. Eq. (9) emphasizes that normal 

flow occurs whenever the shear stress is greater than the yield 

stress and plug flow occurs in the other case. Resolving Eq. 

(9) for the shear stress τ  and then substituting it in Eq. (8), 

one can get 

 

2

0

1

2 .C C C

C C

u p

t z

u u B u
r

r r r r

ρ

µ τ τ σ
ρ µ µ ρ

∂ ∂
= −

∂ ∂

  ∂ ∂ ∂    − − + + − −     ∂ ∂ ∂       

  

 (10) 

 

( )∂ ∂p z is the pressure gradient which is due to the pumping 

action of the heart and for pulsatile flow and is taken as  

 

0 1 cos
∂

− = +
∂
p

A A t
z

ω  (11) 

 

where 0A and 1A are the amplitude of the constant pressure 

gradient and pulsatile pressure gradient and 2 ,= f fω π  is 

the heart pulse rate. 

 

2.2 Non-dimensionalization 

Let us introduce the following non-dimensional variables.  
  

0

2

0 0 0

r z u t U p R
r , z , u , t , p , ,

R R U R U U
= = = = = =

ω
ω

ρ
 

( )
0 0 0 1 C

0 12 2

0 C 0

R A R A
A , A , , .

U U R U R

δ τ
δ θ

ρ ρ µ
= = = =  (12) 

 

Applying the non-dimensional variables (12) into Eqs. (1), 

(2), (10) and (11), one can obtain  

( )
( )( ) ( )

( )

1 0 01 1 cos if 2
2,

in the non - stenotic region

z z z a t d z d z
R z t

a t

δ
π

 − + − ≤ ≤ +    =  



 

 (13) 

( ) ( )1 cos= − −a t k tω φ                                                       (14) 

2u p 1 1 u u H u
r 2

t z Re r r r r Re
θ θ

 ∂ ∂ ∂ ∂ ∂   = − − − + + − −    ∂ ∂ ∂ ∂ ∂     
 (15) 

0 1 cos
∂

− = +
∂
p

A A t
z

ω  (16) 

 

where ( )0 CRe R U= ρ µ is the pulsatile Reynolds and  

( )0 0 CH B R = σ µ
 

 is the Hartmann number. The non- 

dimensional form of the appropriate boundary and initial con-

ditions are [8, 10] 

 

( )u
0,z, t 0

r

∂
=

∂
;  ( )u 0, z, t 0 at r R= =  (17, 18)  

( )

( )
( )

( )

00 1

2

0

20 1

in the presenceI HrA A
1-

of magnetic fieldH I H
u r,z,0

in the absence ofA A
1 r

magnetic field.4

  +   
   
    = 

+   −   

 (19) 

 

2.3 Radial coordinate transformation 

Applying the radial coordinate transformation ( )r R z, t=ξ  

into the momentum Eq. (15) and boundary and initial condi-

tions (17)-(19), one can obtain  
 

2 2 2 2 3

u p 1 1 u 2 u

t z Re R R R

    ∂ ∂ ∂ θ θ ∂
= − −  − + + −   ∂ ∂ ξ ∂ξ ξ ξ ∂ξ    

 

12 2
2

2 2 3 2

1 1
−     ∂ ∂ ∂ + − − − − +     ∂ ∂ ∂     

u u u
H u

R R

θ
ξ ξ ξ ξ ξ

. (20) 

 

The appropriate boundary and initial conditions are 
 

( )u
0,z, t 0

ξ
∂

=
∂

, ( )u 1,z, t 0=  (21, 22) 

( )

( )
( )

( )( )

00 1

2

0

20 1

in the presenceI H RA A
1

of magnetic fieldH I H
u ,z,0

in the presenceA A
1 R

of magnetic field.4

ξ

ξ

ξ

  +    −   
    = 

+  −  

  

 (23) 

 

3. Finite difference method of solution 

Though many computational methods are available to solve 

the nonlinear partial differential equation, Eq. (20), with the 

boundary and initial conditions (21)-(23), finite difference 

method is a more easy and efficient method for solving such 

nonlinear partial differential equations. Forward difference 

formula is used to express the time derivative and central dif-
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ference formula is applied to the spatial derivatives and is 

given below:  
 

( ) ( )1

, ,

k k

i j i j
u uu

t t

+
−∂

=
∂ ∆

  (24) 

( ) ( )
( ), 1 , 1

,2

+ −
−∂

= =
∂ ∆

k k

ki j i j

fx i j

u uu
u

ξ ξ
 (25) 

( ) ( ) ( )
( )

( )
2

, 1 , , 1

22 ,

2
+ −
− +∂

= =
∂ ∆

k k k

ki j i j i j

s x i j

u u uu
u

xξ
 (26) 

 

where ( )1 , 1,2,..... 1= − ∆ = +j j j Nξ ξ  such that ξN+1 = 1; zj 

= (i-1)∆z, 1,2,.... 1;= +i M ( )1 , 1,2,....= − ∆ =kt k t k  for the 

entire arterial segment under consideration with and∆ ∆zξ  

as the respective increments in the radial and axial directions 

and ∆t  is the time increment. On using Eqs. (24)-(26), the 

simplified momentum equation, Eq. (20) transformed into the 

following finite difference equation for the velocity field:  
 

( )
( ){ }

1

1

, . 2 ,

1 1

Re

+
+

 ∂  = + ∆ − − −  ∂  

k
k

k k

i j i j f i jk

i j

p
u u t u

z R
ξ

ξ
  

( )
( ){ } ( )

( ){ }2 32 2, ,

1 2 kk

s fki j i jk k
i j ji j i

u u
RR R

ξ ξ

θ θ
ξ ξξ

 
 + − + + −
 
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( )
( ){ } ( ){ }

1
2

,3 ,,

1
.

k k k

f s i ji ji jk
j i

u u H u
R

ξ ξ

θ
ξ

−
   − − − +     

 (27) 

 

Using Eqs. (24)-(26) in Eqs. (21)-(23), one can obtain the 

following difference equations as the boundary and initial   

conditions.  
 

,1 ,2

k k

i iu u= ;     , 1 0k

i Nu + =  (28, 29) 
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( )( )

1

00 1

2 2

1

,

2
10 1
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1

of magnetic field
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1

of magnetic field4

j i

i j

j i
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H H
u

A A
R

ξ

ξ

  +    −     = 
 +  −  
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 (30) 

 
After computing the velocity distribution in the flow domain, 

one can compute the flow rate, wall shear stress and longitudi-

nal impedance respectively using the following formulas. 
 

( )
1

2

, ,

0

2
 

= + 
  
∫ ∫k k k k

i i j i j j j i j jQ R u d u d

β

β

π ξ ξ ξ ξ   (31) 

( ) ( ){ } ( ){ }, ,

1
2= + − + −

k kk

w f fk ki i N i N
i i

u u
R R

ξ ξ

θ
τ θ  (32) 

∂ Λ = − ∂ 

k

k k

i i

p
Q

z
 (33) 

 
where β is the plug core radius. For a better understanding of 

the present study, all the important steps of this research prob-

lem are given below in the form of a flow chart. 

 

Is the finite 

difference scheme 

Start 

 

 
From the finite difference schemes obtained in the previous step, 

compute the data for velocity, flow rate, skin friction and impedance to 

flow and plot the graphs using these data. 

With the help of the plotted graphs, discuss the variations of these flow 

quantities for different values of the parameters 

Report all the significant findings of the research problem in the 

Stop 
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4. Numerical simulations of results and discussion  

The aim of this study is to understand and bring out the ef-

fects of the magnetic field, pressure gradient, phase angle, 

yield stress and stenosis height on the velocity, flow rate, wall 

shear stress and longitudinal impedance to flow in blood flow 

through a stenosed artery when the flowing blood is modeled 

as Casson fluid model. For the numerical simulation of the 

various flow quantities and to validate the present results with 

the existing results, we have used the following parameter 

values (range) [10]. 

 

0 1 0 1d z 7,z 14, Re 300, A 0.2A , 0.025= = = = = β =  

0A :0.2 0.8; k, :0.02 0.05; : 0.2 0.5, H :0 4; :− ω − φ − − θ  

0 0.15; :0 0.25, t :0 90− δ − −  

 

The explicit finite difference scheme is found to be effective 

in solving the partial differential equations numerically. We 

have chosen the time step as t 0.0001∆ =  for convergent of 

the solution to the fifth order. The flow region is discretized 

by taking the step size in the axial direction and radial direc-

tion respectively as z 0.05∆ =  and 0.025.∆ξ =  Program-

ming codes are developed to compute the data for the flow 

quantities velocity, flow rate, skin friction and longitudinal 

impedance to flow, using standard programming languages.  

 

4.1 Velocity distribution 

The velocity profiles are of particular interest, since, they 

provide a detailed description of the flow field. The velocity 

distribution for different values of the Hartmann number H  

(parameter of the magnetic field) with A0 = 0.2, ω = k = 0.02, 

φ = 0.2, θ = 0.1, δ = 0.276, z = 14 and t = 50 is depicted in Fig. 
2. It is observed that the velocity decreases significantly with 

the increase of the Hartmann number H. It means that the 

presence of the magnetic field influences the velocity field by 

decreasing its magnitude. Although the velocity distribution of 

the Newtonian fluid model in the present study shows a 

slightly lower magnitude than that of the Newtonian fluid 

model in Fig. 2 of Ikbal et al. [10], this difference is not very 

significant and so the results of the present study can be con-

sidered to be very closely in agreement with the established 

results of Ikbal et al. [10]. 

Fig. 3 shows the velocity distribution at discrete points in 

the axial direction (since, the stenosis is assumed to be sym-

metric, we have taken the discrete points in the first half of the 

stenosis) with A0  = 0.2, ω = k = 0.02, φ = 0.2, θ = 0.1, Η = 2, 
δ = 0.1 and t = 50. It is noted that the velocity increases mar-

ginally with the increase of the axial variable z in the first half 

of the stenosis and this behavior is reversed in the second half 

of the stenosis (not shown in the figure). Figs. 2 and 3 bring 

out the effects of magnetic filed and yield stress on the veloc-

ity distribution of the blood when it flows through stenosed 

arteries. 

4.2 Flow rate 

Fig. 4 illustrates the variation of flow rate with constant am-

plitude (A0) of the pressure gradient for different values of the 

Hartmann number H with ω = k = 0.02, φ = 0.2, θ = 0.1,        
δ = 0.1, z = 14 and t = 50. It is clear that the flow rate increases 

linearly with the increase of the pressure gradient of the blood 

flow. It is also noticed that the flow rate decreases signifi-

cantly with the increase of the Hartmann number H, i.e. the 

presence of the magnetic field also influences the flow rate by 

reducing its magnitude very significantly. The variation of 

flow rate with time for different values of the amplitude pa-

rameter k of the artery radius and phase angle φ with A0 = 0.5, 

ω = 0.02, θ = 0.1, δ = 0.1 and z = 14 is sketched in Fig. 5. It is 
noticed that the flow rate decreases gradually (linearly) with 

the increase of the time t from 0 to 80 and then it decreases 

considerably as t increases further from 80 to 90. For a given 

value of the phase angle φ, the flow rate increases marginally 

with the increase of the amplitude parameter k of the artery 

radius. It is further observed that the flow rate decreases 

slightly with the increase of the phase angle φ when the ampli-

tude parameter k is kept as constant. Figs. 4 and 5 show the 

effects of magnetic field, pressure gradient, phase angle and 

amplitude of the artery radius on the flow rate of blood in 

stenosed arteries. 

 

 
 

Fig. 2. Velocity distribution for different values of Hartmann number 

with A0 = φ = 0.2, ω = k = 0.02, θ = 0.1, δ = 0.276, z = 14 and t = 50. 

 

 

 
 

  
 

Fig. 3. Velocity distribution at discrete axial points with A0 = 0.2, 

ω = k = 0.02, φ = 0.2, θ = 0.1, H = 2, δ = 0.1 and t = 50. 
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4.3 Skin friction 

Skin friction is an important parameter in the studies of the 

blood flow through arterial stenosis. Accurate predictions of 

skin friction distributions are particularly useful in the under-

standing of the effects of blood flow on the endothelial cells 

[33-35]. Fig. 6 shows the variation of skin friction with axial 

distance for different values of the Hartmann number H with 

A0 = 0.5, ω = 0.02, θ = 0.1, δ = 0.1 and z = 14. One can note 

that the skin friction increases with the increase of the axial 

variable from 7 to 14 and then it decreases symmetrically as 

the axial variable z increases further from 14 to 21. It is seen 

that the skin friction increases significantly with the increase 

of the Hartmann number H which indicates that the presence 

of magnetic field also affects the blood flow by increasing the 

skin friction.  

The variation of skin friction with axial distance for differ-

ent values of A0 and k with δ = 0.1, ω = 0.02, φ = 0.2, H = 2, θ 
= 0.1, and t = 50 is depicted in Fig. 7. It is clear that for a 

given value of k, the skin friction decreases considerably with 

the increase of the pressure gradient parameter A0. This be-

havior is reversed when the amplitude parameter k of the ar-

tery radius increases while the pressure gradient parameter A0 

is fixed. Fig. 8 shows the variation of skin friction with steno-

sis depth for different values of yield stress θ with φ = 0.2, ω = 

0.02, H = 2, A0 = 0.5, k = 0.02, z = 14 and t = 50. It is noticed 

that the skin friction increases slightly nonlinearly with the 

increase of the stenosis depth δ. It is also found that the skin 
friction increases marginally with the increase of the yield 

stress θ. Figs. 6-8 spell out the effects of magnetic field, pres-

sure gradient, yield stress and stenosis depth on the skin fric-

tion of blood flow. 

 

 
 

Fig. 4. Variation of flow rate with constant amplitude of the pressure 

gradient for different values of the Hartmann number with ω = k = 

0.02, φ = 0.2, θ = 0.1, δ = 0.1, z = 14 and t = 50. 

 

 

 
 

Fig. 5. Variation of flow rate with time for different values of the 

Hartmann number with A0 = 0.5, ω = 0.02, θ = 0.1, δ = 0.1 and z = 14. 

 

 

 
 

Fig. 6. Variation of skin friction with axial distance for different values 

of the Hartmann number with A0 = 0.5, ω = 0.02, θ = δ = 0.1 and z = 
14. 

 

 

 

 
 

Fig. 7. Variation of skin friction with axial distance for different values 

of A and k with ω = 0.02, φ = 0.2, H = 2, θ = δ = 0.1 and t = 50. 

 

 
 

 
 

Fig. 8. Variation of skin friction with stenosis depth for different val-

ues of yield stress with ω = k = 0.02, φ = 0.2, H = 2, A0 = 0.5, z = 14 

and t = 50. 
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4.4 Longitudinal impedance 

The variation of the longitudinal impedance to blood flow 

with stenosis depth for different values of the Hartmann num-

ber H and the amplitude parameter k of the artery radius with 

ω = 0.02, φ = 0.2, A0 = 0.5, δ = 0.1, z = 14 and t = 50 is illus-
trated in Fig. 9. One can note that the longitudinal impedance 

to the flow increases almost linearly with the increase of the 

stenosis depth δ for lower values of the Hartmann number (H 

= 0, 2) and increases nonlinearly with the stenosis depth δ for 
higher value of the Hartmann number (H = 4). It is observed 

that for a given value of the amplitude parameter k of the ar-

tery radius, the longitudinal impedance increases significantly. 

It is also found that the longitudinal impedance increases mar-

ginally with the increase of the amplitude parameter k of the 

artery radius when the Hartmann number is held constant. Fig. 

9 brings out the effects of the magnetic field, stenosis depth 

and radius of the artery on the longitudinal impedance of the 

blood flow. 

 

4.5 Quantification of skin friction and longitudinal imped-

ance 

The increase in skin friction and longitudinal impedance to 

flow due to the presence of the magnetic field is treated as an 

important measure in Hemodynamics which is useful to un-

derstand the effect of the magnetic field. The increase in the 

skin friction/longitudinal impedance due to the presence of the 

magnetic field is defined as the ratio between the skin fric-

tion/longitudinal impedance of a fluid model in the presence 

of magnetic field for a given set of values of the parameters 

and the skin friction/longitudinal impedance of the same fluid 

in the absence of the magnetic field for the same set of values 

of the parameters. The estimates of the increase in the skin 

friction for different values of the magnetic field parameter H 

in the axial direction (upto the half of the stenosis length) with 

A0 = 0.7, Re = 300, k = ω = 0.02, t = 50, θ = δ = 0.1 and φ = 
0.2 are computed in Table 1. It is observed that estimates of 

the increase in the skin friction increases slightly with the 

increase of the axial variable ‘z’ and it increases considerably 

with the increase of the Hartmann number H. The estimates of 

the increase in longitudinal impedance for different values of 

the Hartmann number H in the axial direction with A0 = 0.7, 

Re = 300, k = ω = 0.02, t = 50, θ = δ = 0.1 and φ = 0.2 are 
given in Table 2. It is noticed that the estimates of the increase 

in the longitudinal impedance increases significantly with the 

increase of the Hartmann number H and it increases very 

slightly with the increase of the axial variable ‘z’. It is of inter-

est to note that the presence of magnetic field influences the 

magnitude of the skin friction and longitudinal impedance of 

the flow by increasing their magnitude considerably. 

 

5. Conclusion 

The present study analyzes the pulsatile flow of Casson flu-

id model for blood flow through stenosed arteries in the pres-

ence of the magnetic field and brings out some interesting 

results. The results point out the following features:  

(i) The velocity and flow rate decrease and the skin friction 

Table 1. Estimates of the increase in skin friction due to the presence of magnetic field at discrete points in the axial direction with A0 = 0.7, Re = 

300, k = ω = 0.02, t = 50, θ = δ = 0.1 and φ = 0.2. 
 

 Z 

H 
7 8 9 10 11 12 13 14 

1 1.5937 1.6020 1.6244 1.6548 1.6868 1.7143 1.7329 1.7395 

2 2.0202 2.0359 2.0748 2.1289 2.1860 2.2357 2.2693 2.2811 

4 2.2526 2.2709 2.3204 2.3879 2.4591 2.5211 2.5632 2.5780 

 
Table 2. Estimates of the increase in longitudinal impedance due to the presence of magnetic field at discrete points in the axial direction with A0 = 

0.7, Re = 300, k = ω = 0.02, θ = δ = 0.1 and φ = 0.2. 
 

Z 

H 

7 8 9 10 11 12 13 14 

1 1.1659 1.1660 1.1662 1.1666 1.1671 1.1675 1.1679 1.1681 

2 1.6554 1.6556 1.6566 1.6584 1.6609 1.6635 1.6654 1.6662 

4 3.5259 3.5278 3.5359 3.5476 3.5649 3.5828 3.5963 3.6021 

 

 

 
 

Fig. 9. Variation of longitudinal impedance with stenosis depth for 

different values of H and k with ω = 0.02, φ = 0.2, A0 = 0.5, θ = 0.1, z = 
14 and t = 50. 
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and longitudinal impedance to the flow increase considerably 

with the increase of the magnetic field parameter. On the other 

hand, the flow rate increases and skin friction decreases with 

the increase of the pressure gradient.   

(ii) The skin friction and longitudinal impedance to flow in-

creases with the increase of the stenosis depth, whereas the 

flow rate decreases and skin friction and longitudinal imped-

ance increase with the increase of the amplitude parameter of 

the artery radius.  

(iii) The estimates of the increase in the skin friction and lon-

gitudinal impedance to flow increase considerably with the 

increase of the intensity of the magnetic field.  

(iv) Thus the contribution in the present study is useful to pre-

dict the physiologically important flow quantities which may 

find applications in the clinical studies.  

 

Acknowledgement 

The present work was supported by the research university 

grant of Universiti Sains Malaysia, Malaysia (Grant Ref. No: 

1001/PMATHS/811177) and by the Inha University Research 

Grant. 

 

Nomenclature------------------------------------------------------------------------ 

r  : Radial coordinate 

z  : Axial coordinate 

0z  : Semi-length of the stenosis 

1z  : Centre of the stenosis 

0B  : Uniform transverse magnetic field parameter 

R  : Radius of the arterial segment 

0R  : Radius of the normal artery 

a  : Time dependent function of the stenosis depth 

k  : Amplitude parameter of the stenosis depth 

f  : Heart pulse frequency 

V  : Velocity vector 

p  : Pressure 

1B  : Induced magnetic field parameter 

J  : Current density 

0A  : Constant pressure gradient 

1A  : Pulsatile pressure gradient 

u  : Axial component of velocity 

Re  : Reynolds number 

H  : Hartmann number 

U  : Characteristic velocity 

d  : Starting point of the stenosis 

 

Greek symbols 

ψ  : Azimuthal angle 

ξ  : Radial coordinate transformation 

θ  : Yield stress in non-dimensional form 

β  : Plug core radius 

φ  : Phase angle 

ξ∆  : Increment in the radial direction 

cµ  : Viscosity of Casson fluid 

σ  : Electrical conductivity 

τ  : Stress tensor 

τ  : Shear stress 

cτ  : Yield stress 

δ  : Maximum projection of the stenosis 

ρ  : Density of blood 

ω  : Angular frequency 

z∆  : Increment in the axial direction 

t∆  : Increment in time scale 
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