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Abstract 
 

Buckling analysis of nanobeams is investigated using nonlocal continuum beam models of the different classical beam theories namely 

as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), and Levinson beam theory (LBT). To this end, Eringen’s equa-

tions of nonlocal elasticity are incorporated into the classical beam theories for buckling of nanobeams with rectangular cross-section. In 

contrast to the classical theories, the nonlocal elastic beam models developed here have the capability to predict critical buckling loads 

that allowing for the inclusion of size effects. The values of critical buckling loads corresponding to four commonly used boundary con-

ditions are obtained using state-space method. The results are presented for different geometric parameters, boundary conditions, and 

values of nonlocal parameter to show the effects of each of them in detail. Then the results are fitted with those of molecular dynamics 

simulations through a nonlinear least square fitting procedure to find the appropriate values of nonlocal parameter for the buckling analy-

sis of nanobeams relevant to each type of nonlocal beam model and boundary conditions.analysis.   
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1. Introduction 

Due to exceptionally good physical, mechanical, and elec-

trical properties [1-6], nano-sized structures have attracted 

much investment to develop innovatory applications in a wide 

range of disciplines. To accomplish the design of nanostruc-

tures and systems, an essential study of their mechanical be-

havior seems necessary. Nanomechanics is a branch of me-

chanics in which the mechanical properties and behavior of 

structures at nanoscale are investigated. 

Modified continuum models have been the subject of much 

attention in nanomechanics due to their computational effi-

ciency and the capability to produce accurate results which are 

comparable to those of atomistic models [7-11]. One approach 

for including nanoscale size-effects into the classical contin-

uum mechanics is the use of modified continuum models 

based on the concept of nonlocal elasticity. Nonlocal contin-

uum model has gained much popularity among the researchers 

because of its efficiency as well as simplicity to analyze the 

behavior of various nanostructures [11-21]. It has been ob-

served that the mechanical properties of nanostrustures pre-

dicted by nonlocal continuum models are different from those 

previously obtained by the classical continuum mechanics 

which shows the size-effects on the behavior of structures at 

nanoscale. 

Based on the above introduction, it seems that size-effects 

consideration in the analysis of nanobeams is necessary. In 

this work, different nonlocal beam models corresponding to 

the different classical beam theories [22-24] are presented on 

the basis of Eringen’s equations of nonlocal elasticity [25] to 

predict the buckling behavior of nanobeams with four com-

monly used boundary conditions. State-space method is used 

to solve the governing differential equations for each type of 

nonlocal beam model with different boundary conditions. 

Various numerical results are given to show the influences of 

boundary conditions, aspect ratio, and values of nonlocal con-

stant, separately. Then the results are matched with those of 

molecular dynamics simulations which are available in the 

literature to extract the correct values of nonlocal parameter 

corresponding to each type of nonlocal beam model and 

boundary conditions.  

 

2. Overview of different beam theories  

2.1 Introduction 

There are various types of beam theory to describe the be-

havior of beams. Consider a straight uniform beam with the 

length L and rectangular cross-section of thickness h which is 
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shown in Fig. 1. A coordinate system ( , , )x y z  is introduced 

on the central axis of the beam, whereas the x axis is taken 

along the length of the beam, the y axis in the width direction 

and the z axis is taken along the depth (height) direction. Also, 

the origin of the coordinate system is selected at the left end of 

the beam. It is assumed that the deformations of the beam take 

place in the x-z plane, so the displacement components 

1 2 3
( , , )u u u  along the axis ( , , )x y z  are only dependent on 

the x and z coordinates and time t. In a general form, the fol-

lowing displacement field can be written: 

 

1

2

3

( , ) ( , )
( , , ) ( ) ( , )

( , , ) 0

( , , ) ( , )

w x t w x t
u x z t z z x t

x x

u x z t

u x z t w x t

ψ ϕ
∂ ∂ 

= − + + ∂ ∂ 
=

=

 (1) 

 

where w  and ϕ  are the transverse displacement and angu-

lar displacement of the beam, respectively, and ( )zψ  is the 

shape function as follows: 

For Euler-Bernoulli beam theory (EBT): ( ) 0zψ =  

For Timoshenko beam theory (TBT): ( )z zψ =  

For Levinson beam theory (LBT): 3 2( ) 4 /3z z z hψ = −  

 

2.2 Euler-Bernoulli beam theory (EBT) 

The simplest and the most well-known beam theory is the 

Euler-Bernoulli beam theory (the classical beam theory) in 

which it is assumed that the straight lines which are vertical to 

the mid-plane will remain straight and vertical to the mid-

plane after deformation So, the effects of shear deformation 

and rotational inertia are not considered in this theory. On the 

basis of Eq. (2), the strain-displacement relations appropriate 

to EBT can be obtained as 

2

1

2xx

u w
Z

x x
ε

∂ ∂
= = −
∂ ∂

  (2a) 

1 3 0
xz

u u

z x
γ

∂ ∂
= + =
∂ ∂

.  (2b) 

 

Also, the following Euler-Lagrange equation can be expressed 

for EBT 

 
2 2

2 2
0

M w
P

x x

∂ ∂
− =

∂ ∂
  (3) 

 

where P is the critical buckling load and 
xx

M z dAσ= ∫ . 

 

2.3 Timoshenko beam theory (TBT) 

The next type of beam theory is the Timoshenko beam the-

ory in which the effects of shear deformation and rotational 

inertia are taken into account, so the straight lines will no 

longer remain vertical to the mid-plane of the beam after de-

formation. However, it is assumed that the transverse shear 

stress has a linear distribution along the thickness of the beam. 

Using Eq. (1), the following strain-displacement relations can 

be obtained as 
 

1

xx

u
Z

x x

ϕ
ε

∂ ∂
= =
∂ ∂

 (4a) 

1 3

xz

u u w

z x x
γ ϕ

∂ ∂ ∂
= + = +
∂ ∂ ∂

. (4b) 

 

Also, the following Euler-Lagrange equations can be ex-

pressed for TBT 

 
2

2
0

Q w
P

x x

∂ ∂
− =

∂ ∂
  (5a) 

0
M

Q
x

∂
− =

∂
  (5b) 

 

where 
xz

Q dAσ= ∫ . 

 

2.4 Levinson beam theory (LBT) 

The distribution of transverse shear stress in the Levinson 

beam theory [24] has a parabolic distribution with respect to 

the thickness of the beam. Also, there is not any shear correc-

tion factor to satisfy the transverse shear stress conditions on 

the upper and lower layers of the cross-section of the beam. 

The strain-displacement relations for LBT can be expressed as 

 
3 2

1

2 2

4

3
xx

u z w
Z

x x h x x

ϕ ϕ
ε

 ∂ ∂ ∂ ∂
= = − + 
∂ ∂ ∂ ∂ 

  (6a) 

2

1 3

2

4
1 .

xz

u u z w

z x h x
γ ϕ

 ∂ ∂ ∂ 
= + = − +  ∂ ∂ ∂  

 (6b) 

 

(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 
 

Fig. 1. (a) clamped-clamped; (b) clamped-free; (c) simply supported-

simply supported; (d) simply supported-clamped straight uniform 

nanobeams with rectangular cross-section. 
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A vector approach is used to derive the equilibrium equations; 

therefore, they are the same as those of the TBT. So, the Eu-

ler-Lagrange equations of Eq. (5) are the same and can be 

used for LBT too. 

 

3. Nonlocal beam theories for buckling of nanobeam  

3.1 Review of Eringen’s nonlocal elasticity 

The theory of nonlocal elasticity was first considered by Er-

ingen in the 1970s [25]. In contrast to the classical elasticity, 

in the nonlocal model the stress at a reference point x in an 

elastic body depends not only on the strains at x, but also on 

the strains at all other points of the body [25]. According to 

the nonlocal elasticity theory, this fact was attributed to the 

atomic theory of lattice dynamics and experimental measure-

ments of phonon dispersion [26]. 

For homogenous and isotropic elastic continuum, the linear 

nonlocal elasticity theory can be expressed as the following 

set of equations [26]: 

 

,
( ) 0

k l k l l
f uσ ρ+ − =ɺɺ   (7a) 

( ) ( , ) ( )c

k l k l
V

x x x x dVσ α τ σ′ ′= −∫   (7b) 

1 2
( ) ( ) 2 ( )c

k l rr k l k l
x L e x L e xσ δ′ ′ ′= +   (7c) 

1 ( ) ( )
( )

2

k l

k l

l k

du x du x
e x

dx dx

 ′ ′
′ = +  ′ ′ 

  (7d) 

 

where Eq. (7a) is the equilibrium relation in which 
,
,

k l l
σ  ,ρ  

l
f  and 

l
u  are the nonlocal stress tensor, mass density, body 

force density and displacement vector at a reference point x in 

the body, respectively. Eq. (7b) is the relation between local 

( )c

k l
σ  and nonlocal 

,
( )

k l l
σ  stress tensors using the nonlocal 

modulus ( ( , )x xα τ′− . Finally, Eqs. (7c) and (7d) are the 

classical constitutive stress-strain and strain-displacement 

relationships, respectively. 
1
L  and 

2
L  are the Lame con-

stants. 

Eringen [26] assumed that α  can be Green’s function of a 

linear differential operator as 

 

( , ) ( )L x x x xα τ δ′ ′− = − .  (8) 

 

By applying L to the Eq. (7b), he could simplify it to a par-

tial differential equation form as 

 

2 2 2

0
(1 ) ( ) ( ),

k l k l

a
t x x eτ σ τ− ∇ = =ℓ

ℓ
  (9) 

 

where 
,
,

k l k l l
t σ=  /a ℓ  is the characteristic length ratio and 

0
e  is the nonlocal constant which are appropriate for the ma-

terial. Eringen [26] found that the above assumption gives a 

perfect match of the description curve of one-dimensional 

plane waves based on the nonlocal elasticity and the Born-

Karman model of the atomic lattice dynamics.  

It is worth mentioning that the above differential equation 

reduces to the classical elasticity one by setting the nonlocal 

constant 
0
e  to zero. 

 

3.2 Application of nonlocal elasticity on beam theories 

3.2.1 Euler Bernoulli beam theory 

By using Eq. (9), the only stress resultant for this beam the-

ory ( )M  can be expressed in terms of components of dis-

placement as follows: 

 
2 2

2 2

M w
M EI

x x
µ
∂ ∂

− = −
∂ ∂

.  (10) 

 

By substituting Eq. (10) into Eq. (3), the constitutive rela-

tion for nonlocal model of EBT is obtained as 

 
4 2

4 2
( ) 0

w w
P EI P

x x
µ

∂ ∂
− − =

∂ ∂
. (11) 

 

3.2.2 Timoshenko Bernoulli beam theory 

The stress resultants for this beam theory (M and Q) can be 

obtained in terms of displacements using Eq. (9) as 

 
2

2

Q w
Q GA

x x
µ κ ϕ
∂ ∂ 

− = + ∂ ∂ 
 (12a) 

2

2

M
M EI

x x

ϕ
µ
∂ ∂

− =
∂ ∂

. (12b) 

 

By substituting Eq. (12) into Eq. (5), the constitutive rela-

tions for nonlocal model of TBT can be expressed as 

 
4 2

4 2
( ) 0

w w
P GA P GA

x x x

ϕ
µ κ κ

∂ ∂ ∂
+ − + =

∂ ∂ ∂
  (13a) 

2

2
0

w
GA EI GA

x x

ϕ
κ κ ϕ

∂ ∂
− + − =

∂ ∂
.  (13b) 

 

3.2.3 Levinson Bernoulli beam theory 

By using Eq. (9), the stress resultants for this beam theory 

(M and Q) can be expressed in terms of displacements as fol-

lows: 
 

2

2

2

3

Q GA w
Q

x x
µ ϕ
∂ ∂ 

− = + ∂ ∂ 
  (14a) 

2 2

2 2
4

5

M EI w
M

x x x

ϕ
µ

 ∂ ∂ ∂
− = − 

∂ ∂ ∂ 
.  (14b) 

 

By substituting Eq. (15) into Eq. (5), the constitutive rela-

tions for nonlocal model of LBT are obtained as 

 
4 2

4 2

2 2
0

3 3

w GA w GA
P P

x x x

ϕ
µ

∂ ∂ ∂ 
+ − + = ∂ ∂ ∂ 

  (15a) 

3 2

3 2

2 4 2
0

5 3 5 3

EI w GA w EI GA

x x x

ϕ
ϕ

∂ ∂ ∂
− − + − =

∂ ∂ ∂
. (15b) 
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4. State-space method  

4.1 Introduction 

A very general approach that appears to be applicable for a 

large area of scientific research is the state-space method 

which was first presented by Kalman [27]. Although this me-

thod was originally developed as a model principally used in 

aerospace-related research, it has been applied to model in 

various fields of knowledge [28-33]. 

In the current study, state variables and matrix algebra are 

used to solve the coupled constitutive differential equations of 

equilibrium for different nonlocal elastic beam models and 

then four commonly used boundary conditions namely as 

simply supported-simply supported, clamped-clamped, clamped-

simply supported and clamped-free are applied to obtain criti-

cal buckling loads of nanobeams corresponding to each one. 

 

4.2 Application of state-space method on monlocal beam 

models 

4.2.1 Euler-Bernoulli beam theory 

In order to solve the constitutive differential equation of this 

type of beam theory, we introduce the state variables as below 

 

1 2

2 3

3 42 3

,

, .

w
w Z Z

x

w w
Z Z

x x

∂
= =

∂
∂ ∂

= =
∂ ∂

 (16) 

 

It is worth mentioning that the order of the equilibrium 

equation of EBT is four, so we have used four state variables 

in the corresponding state-space model. 

By considering the governing equation of equilibrium 

closely, it can be observed that it could be integrated with 

respect to x once, therefore from linear algebra it is known that 

in such conditions, the characteristic equation will result in 

repeated roots which makes the answer more complicated. We 

can use a method to avoid repeated eigenvalues. In this me-

thod, a term is added to the governing equation of equilibrium, 

so the equation cannot be integrated directly. In this case, a 

term wε  is added to the equation to avoid direct integration. 

It should be notified that  must be small enough com-

pared to the other coefficients in the governing equation so 

that it would not affect the final result. 

Substituting the state variables into governing equilibrium 

Eq. (11), one can obtain 

 

4

3
( ) 0

dZ
P EI PZ

dx
µ − − = .  (17) 

 

Also, we have three other equations as below: 

 

1

2

dZ
Z

dx
=   (18a) 

2

3

dZ
Z

dx
=   (18b) 

3

4

dZ
Z

dx
=   (18c) 

 

which leads to a set of four coupled differential equations. 

In order to solve this set of equations, matrix algebra is used. 

Eqs. (17) and (18) can be rearranged and rewritten in matrix 

form as follows: 
 

4 4 4 1 4 4 4 1 4 1
[ ] { } [ ] { } {0}A Z B Z× × × × ×

′ + =   (19) 

 

where 

 

 

(20a)

 

. 

(20b)

 
 

Now we perform some matrix algebra on Eq. (19) in order 

to make it diagonal, so the four differential equations become 

uncoupled. 

By multiplying Eq. (19) by 1[ ]A −  one can obtain 

  
1{ } [ ] [ ]{ } {0}Z A B Z−′ + = . (21) 

 

By now, our problem is reduced to 
 

{ } [ ]{ } {0}Z D Z′ + =   (22) 

 

where 1[ ] [ ] [ ]D A B−= . 

Now we define u  and λ  as eigenvector and eigenvalue 

matrices of [ ]D . Therefore, we have 

 

[ ][ ] [ ][ ]D u u λ= .  (23) 

 

With the application of ε  to Eq. (20b), it is evident that all 

eigenvalues are non-identical. So, we can multiply Eq. (23)  

by 1[ ]u −  to obtain 

 
1[ ] [ ][ ] [ ]u D u λ− = .  (24) 

 

Therefore, one will have 

 
1 1[ ] [ ] [ ][ ]u D uλ− −= . (25) 

 

Now with multiplying Eq. (21) by 1[ ]u − , one can get 

 
1 1[ ] { } [ ] [ ]{ } {0}u Z u D Z− −′ + = . (26) 
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According to Eq. (25), we can rewrite Eq. (26) as follows: 

 
1 1[ ] { } [ ][ ] { } {0}u Z u Zλ− −′ + = . (27) 

 

By defining { }F  as 1{ } [ ] [ ]F u Z−= , the above equation 

can be rewritten as 

 

{ } [ ]{ } 0F' Fλ+ = . (28) 

 

Thereupon, since [ ]λ  is a diagonal matrix, we have four 

uncoupled differential equations which can be solved easily. 

Each equation is in the form of the first-order differential equ-

ation, so we have 

 

( ) 1, 2, 3, 4i x

i i
F x c e i

λ−= = . (29) 

 

Therefore, each state variable can be obtained as 

 

 
  (30)  

 

4.2.2 Timoshenko beam theory 

The state variables corresponding to this type of beam the-

ory are considered as 
 

1 2

2 3

3 42 3

5 6

,

,

, .

w
w Z Z

x

w w
Z Z

x x

Z Z
x

ϕ
ϕ

∂
= =

∂
∂ ∂

= =
∂ ∂

∂
= =

∂

 (31) 

 

It is worth mentioning that the total order of the equilibrium 

equations of TBT is six, so we have used six state variables in 

the corresponding state-space model.  

Substituting the state variables into governing equilibrium 

Eq. (13), one can obtain 
 

4 3 6
( ) 0PZ GA P Z GAZµ κ κ′ + − + =  (32a) 

2 6 5
0GAZ EIZ GAZκ κ′− + − = . (32b) 

 

Also, we have four other equations as below: 

 

1

2

dZ
Z

dx
=   (33a) 

2

3

dZ
Z

dx
=   (33b) 

3

4

dZ
Z

dx
=   (33c) 

5

6

dZ
Z

dx
=   (33d) 

 

which leads to a set of six coupled differential equations. 

In order to solve this set of equations, matrix algebra is used. 

Eqs. (32) and (32) can be rearranged and rewritten in the ma-

trix form as follows: 

 

6 6 6 1 6 6 6 1 6 1
[ ] { } [ ] { } {0}A Z B Z× × × × ×

′ + =  (34) 

 

where  

 

   

(35a)

 

 

(35b)

 
 

The same matrix algebra is performed on Eq. (34), like in 

EBT, to make it diagonal which finally leads to the following 

equation for state variables 

 

  

(36)

 

 

4.2.3 Levinson beam theory 

Because the total order of equilibrium differential equations 

of LBT and TBT are the same, aforesaid state variables in 

TBT are used in LBT too. So, by substituting the state vari-

ables into governing equilibrium Eq. (15), we will have a set 

of six coupled differential equations as 

 

4 3 6

2 2
0

3 3

GA GA
PZ P Z Zµ  ′ + − + = 

 
 (37a) 

4 2 6 5

2 4 2
0

5 3 5 3

EI GA EI GA
Z Z Z Z′− − + − =  (37b) 

1

2

dZ
Z

dx
=  (37c) 

2

3

dZ
Z

dx
=  (37d) 

3

4

dZ
Z

dx
=  (37e) 

5

6

dZ
Z

dx
= . (37f) 

 

In order to solve this set of equations, matrix algebra is used. 

Eq. (37) can be rearranged and rewritten in the matrix form as 

follows: 

 

6 6 6 1 6 6 6 1 6 1
[ ] { } [ ] { } {0}A Z B Z× × × × ×

′ + =   (38) 
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where 

 

  

(39a)

 

 

 (39b)

 
 

The same matrix algebra is performed on Eq. (38), like in 

TBT, to make it diagonal which finally leads to the following 

equation for state variables 

 

 

(40)

 

4.3 Boundary conditions 

In order to find the unknown constants 
j

c , we impose 

boundary conditions, but at first the boundary conditions 

should be expressed in the form of state variables as follows: 

For simply supported-simply supported boundary conditions: 
 

1 1

3 3

(0) ( ) 0

(0) ( ) 0

(0) ( ) 0

Z Z L

M M L

Z Z L

= =

= =

= =

 (41) 

 

For clamped-clamped boundary conditions: 
 

1 1

2 2

5 5

(0) ( ) 0

(0) ( ) 0

(0) ( ) 0

Z Z L

Z Z L

Z Z L

= =

= =

= =

 (42) 

 

For clamped-simply supported boundary conditions: 
 

1 1

3

2 5

(0) ( ) 0

( ) ( ) 0

(0) (0) 0

Z Z L

Z L M L

Z Z

= =

= =

= =

 (43) 

Table 1. Non-dimensional critical buckling load 2( / )P L EI×  for 

simply supported-simply supported nanobeams. 
 

L / h µ  EBT TBT LBT 

0 9.8696 9.6357 9.6739 

0.5 9.4055 9.1825 9.2189 

1 8.9830 8.7701 8.8049 

1.5 8.5969 8.3931 8.4264 

2 8.2426 8.0472 8.0791 

2.5 7.9163 7.7287 7.7593 

3 7.6149 7.4344 7.4639 

3.5 7.3356 7.1617 7.1901 

10 

4 7.0761 6.9084 6.9358 

0 9.8696 9.8101 9.8199 

0.5 9.7493 9.6905 9.7003 

1 9.6319 9.5738 9.5835 

1.5 9.5174 9.4599 9.4695 

2 9.4055 9.3487 9.3581 

2.5 9.2962 9.2401 9.2494 

3 9.1894 9.1339 9.1431 

3.5 9.0850 9.0302 9.0393 

20 

4 8.9830 8.9288 8.9378 

0 9.8696 9.8600 9.8616 

0.5 9.8502 9.8406 9.8422 

1 9.8308 9.8213 9.8228 

1.5 9.8115 9.8020 9.8036 

2 9.7923 9.7828 9.7844 

2.5 9.7731 9.7637 9.7652 

3 9.7541 9.7446 9.7462 

3.5 9.7351 9.7256 9.7272 

50 

4 9.7162 9.7067 9.7083 

 

Table 2. Non-dimensional critical buckling load 2( / )P L EI×  for 

clamped-clamped nanobeams. 
 

L / h µ  EBT TBT LBT 

0 39.4784 37.7718 37.9215 

0.5 37.6219 35.9952 36.1379 

1 35.9318 34.3786 34.5151 

1.5 34.3754 32.9009 33.0314 

2 32.9703 31.5450 31.6700 

2.5 31.6651 30.2963 30.4162 

3 30.4595 29.1426 29.2582 

3.5 29.3422 28.0740 28.1851 

10 

4 28.3043 27.0808 27.1882 

0 39.4784 39.1815 39.2206 

0.5 39.0176 38.7242 38.7634 

1 38.5478 38.2579 38.2967 

1.5 38.1824 37.8953 37.9338 

2 37.6417 37.3586 37.3962 

2.5 37.4033 37.1220 37.1594 

3 36.7769 36.5003 35.5371 

3.5 36.3590 36.0856 36.1220 

20 

4 35.9508 35.6804 35.7163 

0 39.4784 39.4393 39.4457 

0.5 39.4225 39.3835 39.3899 

1 39.3448 39.3058 39.3118 

1.5 39.2676 39.2287 39.2351 

2 39.1907 39.1519 39.1583 

2.5 39.1138 39.0751 39.0811 

3 39.0378 38.9992 39.0056 

3.5 38.9618 38.9232 38.9296 

50 

4 38.8886 38.8501 38.8565 
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For clamped-free boundary conditions: 

 

1 2

4 5

(0) (0) 0

( ) ( ) 0

(0) (0) 0.

Z Z

M L Q L

Z Z

= =

= =

= =

 (44) 

 

The above conditions result in six equations in terms of 

j
c s. So all 

j
c s could be found using matrix algebra. It should 

be noted that in the case of Euler-Bernoulli beam theory, we 

need just four equations corresponding to each boundary con-

dition. One can write these equations in the form of 

 

[ ]{ } {0}
j

K c =   (45) 

1 4j to=  (for EBT), 1 6j to=  (for TBT and LBT). 

 

In order the Eq. (45) to have the non-obvious solution, the 

determinant of coefficient matrix K must vanish. As the com-

ponents of K are in terms of critical buckling load (P), so the 

value of P can be found for each boundary conditions. 

 

5. Numerical results and discussion  

5.1 Selected numerical results 

In this section, the numerical results for different boundary 

conditions using the analytical solution developed in the pre-

vious section are presented. The following parameters are 

used to derive the critical buckling loads: 

 

70 ,E GPa=  0.23,v =  32700 / ,Kg mρ =  1h b nm= = . 

 

The non-dimensional buckling loads for simply supported-

simply supported, clamped-clamped, simply supported-

clamped, and clamped-free boundary conditions are given in 

Tables 1-4, respectively.  

On the basis of these results, it can be observed that the 

critical buckling loads corresponding to all boundary condi-

tions decrease with increasing the value of nonlocal parameter 

which shows this fact that with incorporating the nanoscale 

size-effects, the stiffness of nanobeam decreases. Moreover, 

the results show that by incorporating the effect of transverse 

shear strains, the values of critical buckling load will be re-

duced relevant to all types of boundary conditions. 

Also, it can be found from the results that the effect of 

nonlocality is more significant for lower values of aspect ratio 

(length of the nanobeam), and this effect is very negligible for 

long nanobeams. 

The effect of nonlocal parameter on the mode-shapes for the 

transverse displacement 
1

Z  and angular displacement 
5

Z  of  

Table 4. Non-dimensional critical buckling load 2( / )P L EI×  for 

clamped-free nanobeams. 
 

L / h µ  EBT TBT LBT 

0 2.4749 2.3679 2.3773 

0.5 2.3585 2.2565 2.2655 

1 2.2526 2.1552 2.1637 

1.5 2.1557 2.0626 2.0707 

2 2.0669 1.9775 1.9854 

2.5 1.9851 1.8993 1.9068 

3 1.9095 1.8270 1.8342 

3.5 1.8395 1.7599 1.7669 

10 

4 1.7744 1.6977 1.7043 

0 2.4749 2.4598 2.4622 

0.5 2.4459 2.4310 2.4334 

1 2.4164 2.4017 2.4041 

1.5 2.3877 2.3731 2.3755 

2 2.3596 2.3452 2.3456 

2.5 2.3322 2.3180 2.3203 

3 2.3054 2.2913 2.2936 

3.5 2.2792 2.2653 2.2675 

20 

4 2.2536 2.2399 2.2422 

0 2.4749 2.4724 2.4728 

0.5 2.4712 2.4688 2.4692 

1 2.4665 2.4641 2.4645 

1.5 2.4617 2.4593 2.4597 

2 2.4568 2.4544 2.4548 

2.5 2.4520 2.4496 2.4499 

3 2.4473 2.4449 2.4453 

3.5 2.4424 2.4400 2.4403 

50 

4 2.4377 2.4353 2.4357 

 

 

Table 3. Non-dimensional critical buckling load 2( / )P L EI×  for 

clamped-simply supported nanobeams. 
 

L / h µ  EBT TBT LBT 

0 20.1907 19.3179 19.3945 

0.5 19.2412 18.4093 18.4822 

1 18.3769 17.5825 17.6523 

1.5 17.5870 16.8267 16.8934 

2 16.8622 16.1333 16.1972 

2.5 16.1948 15.4946 15.5560 

3 15.5781 14.9047 14.9638 

3.5 15.0068 14.3580 14.4149 

10 

4 14.4759 13.8501 13.9050 

0 20.1907 20.0595 20.0796 

0.5 19.9545 19.8248 19.8449 

1 19.7142 19.5861 19.6059 

1.5 19.4798 19.3532 19.3728 

2 19.2508 19.1257 19.1449 

2.5 19.0271 18.9034 18.9225 

3 18.8085 18.6862 18.7050 

3.5 18.5948 18.4739 18.4924 

20 

4 18.3860 18.2665 18.2848 

0 20.1907 20.1707 20.1740 

0.5 20.1620 20.1420 20.1453 

1 20.1223 20.1024 20.1055 

1.5 20.0828 20.0629 20.0662 

2 20.0435 20.0237 20.0269 

2.5 20.0033 19.9835 19.9866 

3 19.9652 19.9454 19.9487 

3.5 19.9265 19.9068 19.9101 

50 

4 19.8878 19.8681 19.8714 
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Timoshenko nanobeam with / 10L h =  are depicted in Figs. 

2-9 for all sets of boundary conditions with the assumption 

that they are normalized such as 
1

1
max max

Z W= = .  

It can be seen that the nonlocal parameter has a very negli-

gible influence on the mode-shapes of the simply supported-

simply supported and clamped-simply supported nanobeams, 

but it has relatively more considerable effect in the cases of 

clamped-clamped and clamped-free boundary conditions. 

 
 

Fig. 2. The effect of nonlocal parameter on the mode-shape of trans-

verse displacement for simply supported-simply supported nanobeam. 

 

 

 
 

Fig. 3. The effect of nonlocal parameter on the mode-shape of trans-

verse displacement for clamped-clamped nanobeam. 

 

 

 
 

Fig. 4. The effect of nonlocal parameter on the mode-shape of trans-

verse displacement for clamped-simply supported nanobeam. 

 
 

Fig. 5. The effect of nonlocal parameter on the mode-shape of trans-

verse displacement for clamped-free nanobeam. 

 

 

 
 

Fig. 6. The effect of nonlocal parameter on the mode-shape of angular 

displacement for simply supported-simply supported nanobeam. 

 

 

 
 

Fig. 7. The effect of nonlocal parameter on the mode-shape of angular 

displacement for clamped-clamped nanobeam. 
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5.2 Appropriate values of nonlocal parameter 

An important issue in the application of the nonlocal elasticity 

models is the determination of the appropriate value of  

nonlocal elasticity parameter. Use of the nonlocal models is 

only beneficial if the correct value of nonlocal parameter is 

available. 

In this work, the results of present nonlocal elastic beam 

models are matched with those of molecular dynamics simula-

tions conducted by Ansari et al. [34] for a series of single-

walled carbon nanotubes with different boundary conditions. 

Through using a nonlinear least square fitting procedure, the 

Euclidean norm of the difference between the two series of 

results is minimized in which the value of nonlocal parameter 

is set as the optimization variable to obtain the consistent val-

ues of it corresponding to each type of nonlocal beam model 

and boundary conditions. It is assumed that the nanobeams 

have circular cross-section of diameter D and effective tube 

thickness h. 

The values of µ  obtained from the matching procedure 

for both armchair and zigzag nanotubes modeled as nano-

beams are given in Table 8 relevant to various nonlocal beam 

models and boundary conditions. It can be found that chirality 

does not have a considerable influence on the appropriate 

value of nonlocal parameter. However, boundary conditions 

and the type of nonlocal elastic beam model play important 

roles in the correct value of nonlocal parameter. Fig. 10 shows 

that there is a very good agreement between the critical buck-

ling loads predicted by the nonlocal elastic beam models with 

their recommended values of nonlocal parameter and those of 

molecular dynamics simulation. 

 

6. Conclusions 

State-space method was used to study the buckling behavior 

of nanobeams with four commonly used boundary conditions 

namely as simply supported-simply supported, clamped-

clamped, clamped-simply supported, and clamped-free.  

Eringen’s nonlocal constitutive equations were incorporated 

into the different classical beam theories to develop nonlocal 

elastic beam models. The governing differential equations 

were then solved using state variables and matrix algebra to 

bring out the effects of boundary conditions, aspect ratio and 

value of nonlocal parameter on buckling response of nano-

beams, separately. The present method appears to be attractive 

due to its accuracy as well as its extreme simplicity form. 

Then the results obtained by the nonlocal elastic beam 

 
 

Fig. 8. The effect of nonlocal parameter on the mode-shape of angular 

displacement for clamped-simply supported nanobeam. 

 

 

 
 

Fig. 9. The effect of nonlocal parameter on the mode-shape of angular 

displacement for clamped-free nanobeam. 

 

Table 5. Appropriate values of nonlocal parameter corresponding to 

different nonlocal beam theories and boundary conditions. 
 

Boundary conditions EBT TBT LBT 

S-S 1.87 0.72 1.06 

C-C 2.03 0.88 1.22 

C-S 1.96 0.81 1.15 

C-F 2.05 0.89 1.24 

 

 

 
 

Fig. 10. Comparison of critical axial buckling loads of nanotubes pre-

dicted by nonlocal elastic beam models and molecular dynamics simu-

lation corresponding to different boundary conditions. 
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models were matched with those of molecular dynamics simu-

lation presented by Ansari et al. [34] to find the appropriate 

values of nonlocal parameter for predicting the critical buck-

ling loads of nanotubes modeled as nanobeams corresponding 

to each type of nonlocal elastic beam model and boundary 

conditions. It was observed that in contrast to the chirality, the 

types of nonlocal elastic beam model and boundary conditions 

make significant difference between the appropriate values of 

nonlocal parameter extracted for each one. 
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