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Abstract

Vibrations are usually undesired phenomena as they may cause damage or destruction of the system. However,
sometimes they are desirable, as in ultrasonic machining (USM). In such case, the problem is a complicated one, as it is
required to reduce the vibration of the machine head and have reasonable amplitude for the tool. In the present work,
the coupling of two non-linear oscillators of the tool holder and tool representing ultrasonic cutting process is investi-
gated. This leads to a two-degree-of-freedom system subjected to multi-external excitation force. The aim of this work
is to control the tool holder behavior at simultaneous primary and internal resonance condition and have high amplitude
for the tool. Multiple scale perturbation method is applied to obtain a solution up to the second order approximations.
Other different resonance cases are reported and studied numerically. The stability of the system is investigated apply-
ing both phase-plane and frequency response techniques. The effects of the different parameters of the tool on the sys-
tem behavior are studied numerically. Comparison with the available published work is reported.
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1. Introduction

Mechanical and structural systems are inherently
non-linear due to many sources. Non-linearities nec-
essarily introduce a whole range of phenomena that
are not found in linear systems [1], including jump
phenomena, occurrence of multiple solutions, modu-
lations, shift in natural frequencies, the generation of
combination resonances and chaotic motions [2-4]. In
such systems, vibrations are needed to be controlled
to minimize or eliminate the hazard of damage or
destruction. There are two main regimes for vibration
control: passive and active control. One of the most
effective tools of passive vibration control is the dy-
namic absorber or the damper or the neutralizer [5].
Asfar, Eissa and El-Bassiouny [6-8] investigated the
effects of a non-linear elastomeric torsional absorber
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to control the vibrations of the crankshaft in internal
combustion engines, when subject to external excita-
tion torque. They reported that absorbers are very
effective in reducing the vibrations of mechanical
systems or structures. Lee et al. [9] demonstrated a
dynamic vibration absorber system, which can be
used to reduce speed fluctuations in a rotating ma-
chinery. Eissa [10] has shown that to control the vi-
bration of a system subjected to harmonic excitations,
the fundamental or the first harmonic absorber is the
most effective one. Fissa and El-Ganaini [11, 12]
studied the control of both vibration and dynamic
chaos of a mechanical system having quadratic and
cubic non-linearities, subjected to harmonic excitation
using multi-absorbers. Eissa et al. [13-15] investi-
gated saturation phenomena in non-linear oscillating
systems subject to multi-parametric and/or external
excitations. The system represents the vibration of a
single-degree-of-freedom cantilever or the wing of an
aircraft. They reported the occurrence of saturation
phenomena at different parameter values. They ap-
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plied saturation values of different parameters as op-
timum working conditions for vibration suppression
of the cantilever. Eissa et al. [16, 17] presented tuned
absorbers in both transverse and longitudinal direc-
tions of a simple pendulum which was designed to
control one frequency at primary resonance. They
demonstrated the effectiveness of the absorber for
passive control. They reported that the vibration of
the system can be controlled actively via negative
velocity feedback. Eissa et al. [18-20] studied both
passive and active vibration control in some non-
linear differential equations describing the vibration
of an aircraft wing subject to multi-excitation forces,
multi-parametric excitations with 1:2, 1:4 and 1:2:4
internal resonance active controllers, and demon-
strated the effectiveness of such controllers. Lim et al.
[21] studied the behavior of the (USM) hypothesized
theoretical model. The theoretical results showed that
controlled variations in the softening stiffness can
have a significant effect on the overall non-linear
response of the system, by making the overall effect
hardening, softening, or approximately linear. Ex-
perimentally, it has also been demonstrated that cou-
pling of ultrasonic components with different non-
linear characteristics can strongly influence the per-
formance of the system. Amer [22] investigated the
coupling of two non-linear oscillators of the main
system and absorber representing ultrasonic cutting
process subjected to parametric excitation forces. A
threshold value of main system linear damping has
been obtained, where vibration can be reduced dra-
matically. This threshold value can be used effec-
tively for passive vibration control, if it is economical.
This will be more useful than usual passive control. It
is simple and can be applicable for all excitation fre-
quencies.

The objective of this work is to study a model sub-
ject to multi-external excitation forces. The model is
represented by a two-degree-of-freedom system con-
sisting of the tool holder and tool simulating the ultra-
sonic machining process. The multiple time scale
perturbation technique is applied throughout to get an
approximate solution up to the second order approxi-
mation. The stability of the system is investigated
numerically by applying both phase-plane and fre-
quency response function. The effects of the different
parameters of the tool on system behavior are studied
numerically. Comparison with the available published
work is reported.

2. Mathematical modeling

Fig. 1 presents the actual ultrasonic machining and
its simulation by a two-degree-of-freedom system
consisting of the tool holder (machine head) and tool.
The tool holder is excited by multi-external forces as
shown in the following equations:

mX, +ec X, +ec,(X, - X,)+ &', X}

+hk X, + ek, (X, — X))+ eh X} + eh (X, - X,)’
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mX, +ec,(X, - X))+ k,(X, - X))
+5h2(X2_X1)2_5h3(X2_X|)3:0 (®)

_—~ TRANSDUGER HOSE
COPPER WASIER

SUCTION LINE

ARG
TOOL HOLDER
ULTRASONS
v““ VIBRATION
- SLVER BAALE
N
ABRASHE SLURRY —»- 3 SHAPED TOOL

1 4wk welo
i BACKUP WATERLL {

(@

(©)

Fig. 1. (a) Ultrasonic machine (USM), (b) Schematic diagram of
USM.
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Dividing Eq. (a) by m, and Eq. (b) by m,, we
obtain:

X, +26 X, +264,(X, - X,) + £°(, X}

+a} X, + ey, (X, — X)) +en X} +en, (X, - X,)

—en,(X, - X,) +&n, X} =52ch0szt (D)

=

X, +2&¢,(X, - X))+ @l (X, - X,)
teny(X, — X, —en (X, ~ X, =0 )
where all parameters of Egs. (1)-(2) are defined in the
nomenclature. Non-linear terms are practically pre-
sent in the stiffness and damping of all materials.
Usually, even power non-linear terms are not present

in stability analysis. We demonstrate that we included
it just once in tool equations.

2.1 Perturbation analysis

Multiple scale perturbation method is conducted to
obtain an approximate solution for Egs. (1) and (2).
Assume the solution in the form,

Xl(t;g):xlo(%bﬂ)‘*"gxn(z)?z)'FO(gz) 3)
X, () = x,0 (T, 1)) + &3, (T, 1)) + O(&7) “)

and the time derivatives become

2

d d
E:DO-'—SDI , W:D; +28D0D1 (5)

where T,= £"t. (n=0, 1) are the fast and slow time
scales, respectively.

Substituting Egs. (3), (4) and (5) into Egs. (1) and
(2), and equating the coefficients of the same power
of ¢ in both sides, we obtain

(D5 + @))%, =0 (6)

(D(f + w22 )Xy = a)zleo @)

(D} +@)x, = D F,cos JOT, 2D, +6,+¢,)

=
X(Dyxio) + 28,Dyx = 7,(X,5 = Xy0)

_771x|30 —,(x — X0 )2 +, (xl() Xy )3 3
(Dé + w22 )X, = —2D,Dyx, +26,Dyx,

_2;4anzn + a)zlel - ns(xlﬂ - xzo)z - m(xm - xzo)3 (9)

The solution of Eq. (6) can be expressed in the
form

X, = A explimT) +cc (10)

Using Eq. (10) into Eq. (7) yields
x,=Bexp(iw,T)+T4dexpiw, T)+cc (11)

2

10)
Where T''=——2—
w, — 0,

and 4, B, are complex func-

tions in 7, which can be determined from eliminat-

ing the secular terms at the next approximation, and
cc, stands for the conjugate of the preceding terms.
Substituting Egs. (10) and (11) into Eq. (8), eliminat-
ing the secular terms, then the first order approxima-
tion is given by:

X, = ;“EI exp(jial,)+E,exp(iwT,)

+E.exp2ioT,)+ E,exp(2i.T,)
+E.expioT})+ E exp(BinT)

+E,exp(i(@,+ o)1)+ E;exp(i(®, - 0)T)
+E,exp(i(w +2w,)T))+ E,,exp(i(®, -20,)T)
+E, exp(iCw +w)T,)

+E,exp(iCo - w)T))+ E,+cc (12)

where E (s=1,2,....,13) are complex functions in
T, and j= (1...n); for simplicity we take n=2 in the
study of stability. From Egs. (10), (11) and (12) into
Eq. (9) and eliminating the secular terms, the solu-
tion is given by:

X, = 2:H1 exp(jiaTl,)+H,exp(iwT,)

+H. exp(2ioT)+ H,exp(2iwT})
+H.expQioT,)+ H exp(3imT,)
+H,exp(i(w+w)T))+ Hexp(i(w,-w)T})
+H,exp(i(w+20)T))+ H exp(i(o,-20,T,)
+H, exp(iQw +w)T,)+ H ,exp(iCw - »,)T})
+H, +cc (13)

where H (s=1,2,....,13) are complex functions in
T, and j= (1.....n). The reported resonance cases at
this approximation order are:
(a) Trivial resonance: Q= w, =@, =0
(b) Primary resonance: Q=w, , Q= w,
(c) Sub-harmonic resonance:
Q=20,Q0=30, ,Q=20,,Q=30,
(d) Super-harmonic resonance:
0z0/2,0=0/3, Qz0,/2,0=a0,/3
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(e) Internal resonance:
o =20, 0, =30,,0, =40, 0, =50, ,
o, 220,00, =30,,0, = 40,0, =50, ,
20, =3w,,20, =50, ,30, = 2m,, 30, =50, ,
Sw, =2w,, 50, = 3w,
(f) Combined resonance:
Q= (v +w,),Q=H0 -,

Simultaneous or incident resonance: Any combina-
tion of the above resonance cases is considered as
simultaneous resonance.

2.2 Stability of the system

Here, we investigate the stability at simultaneous
primary and internal resonance cases. We introduce
the detuning parameters o, and o, such that,

Qzw+eo,, 0,20 +¢co, (14)

This case represents the system worst case and at
the same time tool or tool high amplitude. Substitut-
ing Eq. (14) into Egs. (8) and (9) and eliminating the
secular terms, leads to the solvability conditions for
the first order approximation, and noting that 4, and
B, are functionsin 7, we get

2im[DA + & A+ A+ 7,4 + 3,404,

- - K zch
30,47 A, — 617,4,B,B, — 2‘ -[2ie,B¢,

+7|B| - 3773BZE - 6773A|‘Z|B| :|elO-2TI

[n,48: )27 4 348 ] =0 (15)

2ia)z I:DIBI + 4431]_ 3’76312B1 - 6776‘412131
+|:377621B12:|QZO-ZTI _I:Ziwlé/zt Al - 3775‘41221

~6n,4B8,B, ] (3,48 ]2 =0 (16)

Putting 4, = %al(ﬂ)eﬂ/l‘(ﬂ), B = Ebl(Tl)ei‘A(Tl) (17)

where a,,b, and w4, are the steady state ampli-
tudes and the phases of the motion, respectively. Sub-
stituting Eq. (17) into Egs. (15) and (16) and separat-
ing real and imaginary part yields,

=—({,+¢)a, + 242 ]co 0, +{72/‘b] -

2]

3773b1 3773a1b1:| né, +isln9+ Z; ab; sin26, (18)
]

8o 8q 2c3
/:ﬁ_ 3(773 —771)‘1.3 _ 3773”11712 _ 7|_bl_
T 2, 8w, 4o, 20,
3 2
b b, cosd, + @6h, sin 6, —icosﬁ1
8w, , o, ,
_3nab =211 cos26,
@ (19)
3 2
——gh + 22 154 cosd, +| STy b |Gy g
8w, 8w,
2
b Goog, 20)
a)l
3 2 3 2
b =23t | 3y Inaby g
8w, 4o, 8w, 8w,
2
aLe sin@, — 31,4 b, cos26,=0 @2n
@, 8w,
where
O =0l -y, 6,=0,[+¢ -y, (22)
For steady state solutions, a =b/ =6 =0. Then
from Eq. (22), we get:
y=0,¢ =0 -0, (23)

It follows from Eqgs. (18)-(21) that the steady state
solutions are given by

3
G+ &+ 252 s, {7‘—1’1——3’73“

2w 8w

I 1 1

2
3mab sind, +isin0l +=10 3nab —11sin26, =0 (24)
o, 2w, 2]

_&_ 3(773 _771)a13

a,0, =

_3nabl | rb
2w, 8w, 4o, 20,

37731713 _9773a12b1 cos . +w2§2b1
8w, 8w, ’

. F
sin@, ——-cos 6,
1 wl

2
—Mcos 26, (25)

3 2
—¢ b+ 2ouh 144 Loosd, + {M+M}in 0,

@

8w, 8w,

L 3mab, 42 Gin26, =0 (26)

8w,
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Table 1. Frequency response equations.

No Cases
a,#0,b,=0
2 a,=0,b#0

Frequency response equations (FRE)

ol +ko,+k, =0

o; +ko,+k, =0
o] + ko, +k, =0 and
o; +k,o, +k =0

3 a,#0,b#0

_3ndl_3naih | 3na

b(o,—0o,)=
(0= 8w, 4o, 8w,
2 2
+ oM1sb, cosf, — D618, sin6, —MCOS 20,=0
, , 8w,

27

From Egs. (24)-(27) we have the following cases:
(1) a,#0,b, =0 (Tool is ineffective)
(2) a,=0,b, #0 (Ideal case)
(3) a,#0,b, %0 (Practical case)

Table (1) gives the results of the frequency re-
sponse equations.
Where k,k,,k,,k,, k., k,,k, and k, are defined in
the appendix.

The stability of the linear solution of the obtained
fixed points will be determined as follows. Con-
sider 4,, B, in the form:

1 j 1 j
Al = El:pl - iql :IerTl P Bl ZEI:pz - iqz :IEZVZTI (28)

where p,,p,,qand ¢, are real and
v, = (o, —0,) . Substituting Eq. (28) into the linear
part of Egs. (15) and (16) and separating real and
imaginary part yields,

v, =0,,

pl’ +(§1 +é;)p1 +(vl _L]q] _alz_é;pz +Lq2 :0(29)
209 203

@

’ 7/1 F;
q, +(§1 +§2)‘]1 _[Vl _2_0)1+K1}71]p]
S EO (S (30)

{ 20,

, ®

)23 +§4p2 W, — i p=0 (3D
3

, ,

q, + é'qu VD, — a])é:‘ q, = 0 (32)

2

The eigen equation of the above system of equa-
tions is obtained from:

O = N W
|

Anplitude

o 50 100 150 200
Time

10

Velocity

Amplitude

Fig. 2. Response of the tool holder without tool at primary reso-
nance case Q = o; ¢,=0.02, £,=0.001, 7,=0.02, 7,= 0.005
Q/w,=1,F, =0.5, F,=0.25.

i+6+4) S/ S TR

{vl _L +EJ /l+(§]+ 2) i
2 2ap 2 a5
g,

The eigenvalues are given by the equation
A+ + A+ A+, =0 (34)

where, s, r,, r, and r, are functions of the pa-
rameters (a,, a,, o, o,, 0,,0,, F ,60) and they
are given in the appendix. According to the Routh-
Hurwitz criterion, the necessary and sufficient condi-
tions for all the roots of Eq. (34) to possess negative
real parts is that

n>0,5n-1>0, rnn-r)-rr>0, r,>0 (35)

Investigation of the other two simultaneous reso-
nance cases where Q=@ /2 , w,=zw@ and
Q=w/3, w,=zw leads to similar Eqs. (24)-(27)
with replacement of F, and F, instead of F, ,
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respectively. This means that all parameters have the
same effect as the simultaneous primary case.

3. Results and discussion

The differential equation of the tool holder is
solved numerically (applying Runge-Kutta 4th order
method) at primary resonance case without tool as
shown in Fig. 2. The steady state response is about

0.1 ‘
a
< 0.05
5
2 0
3
E -0.05
0.1
300
Lal
-0} 0.01
0.06

Amplitude(x1)

Amplitude(X2)

Amplitude(x2

Fig. 3. Response of the tool holder and tool at simultaneous
primary and internal resonance case Q= ®; = , (a) the tool
holder (b) the tool ¢=0.02, ¢£,=0.001, ¢£;=0.001, ¢£,=0.01,
7,=1.6, 1,=0.02, 7,=0.02, 7,=0.005, 7,=0.005, =02,
7,=0.05, Q/q=1, g =an.

430% of (the fundamental) excitation amplitude F;.
The system is stable with fine limit cycle, denoting
that the system is free from dynamic chaos.

3.1 System behavior

Fig. 3(a), illustrates the results at simultaneous pri-
mary and internal resonance case when the tool is
connected, i.e., when Q= m; = ®,. It can be seen for
the tool holder that the steady state amplitude is 1.4%,
but the steady state amplitude of the tool is about 62%
of excitation amplitude F,. This means that the effec-
tiveness of the tool Ea (E, = the steady state ampli-
tude of the tool holder without tool / the steady state
amplitude of tool holder with tool) is about 307.

3.2 Stability numerical results

The effects of different parameters were investi-
gated by solving Eqgs. (24)-(27). The results are illus-
trated graphically in Figs. 4 and 5. Both figures illus-
trate the occurrence of jump and saturation phenom-
ena for two different cases of stability. Fig. 4(a)
shows the effect of the detuning parameter o, on the
steady state amplitude of the tool holder g, for the
stability of the case a, #0, b, =0 .

Figs. 4(b), (c) show that the effects of increasing or
decreasing the damping coefficients ¢, and £, on
the steady state amplitude of the tool holder are trivial
due to saturation occurrence. For increasing value of
the non-linear parameter y,, the steady state ampli-
tude of the tool holder is shifted and bent to the right,
leading to the occurrence of the jump phenomena and
multi-valued amplitudes as shown in Fig. 4(d). For
negative and positive values of the non-linear pa-
rameters 77, and 7, the curve is bent to right or left
leading to the occurrence of the jump phenomena and
multi-valued amplitudes as shown in Figs. 4(e), ().
For decreasing values of the natural frequencies @,
and o, the steady state amplitude of the tool holder
is bent to the right, leading to the occurrence of the
jump phenomenon and multi-valued amplitudes as
shown in Figs. 4(g), (h).

Fig. 4(i) shows that the steady state amplitude of
the tool holder is a monotonic increasing function in
its excitation amplitude F; .

Fig. 5(a), shows the effect of the detuning parame-
ter o, on the steady state amplitude of the tool b,
for the stability of the practical casea, # 0,5, #0 . In
Fig. 5(b) the effect of increasing or decreasing the
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Fig. 4. Response curves (Different parameters against o, ) ¢, =0.001,4, =0.02,77, =0.02,77, =0.005, y, =L =1L, =1,F =5.
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Fig. 5. Response curves (Different parameters against o,) ¢,=0.01, n,=3, v,=2, ®,=2, 0,=5.

damping coefficient £, on the steady state ampli-
tude of the tool is trivial due to saturation occurrence
and the fact that the region of unstable solutions in-
creases.

Figs. 5(c), (e) show that the steady state amplitude
of the tool is a monotonic increasing function in the
natural frequencies @, and w,, and the region of
unstable solutions increases. For positive and negative
value of the non-linear parameter, 77, the curve is
bent to the right or left leading to the occurrence of
the jump phenomenon and multi-valued amplitudes
as shown in Fig. 5(d).

Fig. 5(f) shows that the steady state amplitude of
the tool is a monotonic decreasing function in the
detuning parameter o, and the region of unstable
solutions increases.

3.3 Resonance cases

All extracted resonance cases were studied numeri-
cally. The results of worst cases are summarized in
Table 2. It is clear that the best results have been ob-
tained for the simultaneous primary and internal reso-
nance case. This case gives the best results for tool
holder vibration reduction and the reasonable high
tool amplitude.

4. Conclusions

The vibrations of a second order, 2-DOF non-linear
mechanical system (tool holder) and the tool were
investigated. The physical motivation for the system
stems from applications in ultrasonic machining in
which an exciter drives a tuned blade having both
linear and cubic non-linearities. The (USM) can be
controlled by applying a non-linear tool. Multiple
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Table 2. Summary of the worst resonance cases with and without tool.

* Amplitude Amplitude Amplitude
Cases Conditions ratio (x,/F,) ratio (x,/F)) ratio (x,/F ) E, Remarks
without tool with tool (tool holder) (tool )
w, = o, 430% 1.4 % 62 % 307 Limit cycle
w, =20, 430% 46 % 62 % 9.35 Limit cycle
Qzo, w, =30, 430% 54 % 64 % 8 Limit cycle
w, =40, 430% 58% 62% 7.5 Limit cycle
Q=2 w, =2, 8.6% 1.2% 60% 7 Limit cycle
Q=3 w, =3w, 7.2% 1.18 % 60 % 6 Limit cycle
3 o
0,220, 140% 5.4% 8.6 % 2 | Multilimit
1 2 cycle
0= Multi limit
0, =0 140% 1.8 % 9.5% 78 I
cycle
o= 50% 12% 24% g | Muli limit
1 cycle
Q=5 2 Multi Timit
w,==0 50% 2.8% 8.4 % 18 Y
cycle

* Amplitude ratio is the steady state amplitude divided by the excitation force amplitude. The multi limit cycles in Table 2 are
shown in Fig. 6.
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time scale perturbation technique was applied to de-
termine semi-closed form solutions for the coupled
deferential equations up to the second order approxi-
mations. To study the stability of the system, the fre-
quency response equations were applied and the
phase-plane technique was used. From the above
study the following may be concluded.

The proposed technique improves machine effi-
ciency and saves machining time.

The worst behavior of the tool holder occurs at the
primary resonance case where the steady state re-
sponse is about 430% of the excitation amplitude F;.

The vibration of the tool holder can be reduced via
a tool and the effectiveness of the tool may be about
E, = 307, at simultaneous resonance case Q=a,,
®,=20,.

Optimum working conditions are obtained when
Q=w , o, =0 , where the vibration of the tool
holder is suppressed to about 1.4% of the original
amplitude, and the tool has a reasonable amplitude
about 62% of the fundamental amplitude F;.

The reported results are in good agreement with
Ref [21] regarding the amplitude reduction and satu-
ration phenomenon occurrence. Also, the results con-
firmed the shift of the excitation frequency to the left
at resonance, compared to the system natural fre-
quency.

Next papers will deal with USM having multi-tools,
to different excitation forces.

Nomenclature

¢;»(G=1,2,3) The damping coefficients
of the tool holder and the
tool .

k ,(s=1,2) The stiffness of the tool
holder and the tool .

h,,(n=1,2,3,4) : The non-linear parame
ters of the tool holder and
the tool .

F,Q (=1,2,3): The excitation amplitudes
and frequencies.

m,m, The masses of the tool
holder and the tool.

& =c,/2m, The linear damping

(s=1,2) coefficients of the tool
holder.

So=c/m The quadratic damping
coefficient of the tool
holder.
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$,=c,/2m, The damping coefficient
of the tool.

n,=h/m, The non-linear

(n=1,2,3,4) parameters of the tool
holder.

n,=hy/m,, The non-linear

7y =h,/m, parameters of the tool.

o=k /m,, The natural frequencies

(s=1,2) of the tool holder and
tool .

v, =k /m, The stiffness of the tool
holder.

x,,s=1,2 Displacement of both tool
holder and tool
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