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Abstract 
 
The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appro-

priate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is 
constructed mathematically. A msathematical model is developed by treating blood as a non-Newtonian fluid charac-
terized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Na-
vier-stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow 
condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate 
the effects of parameters such as pulsatility, non-Newtonian properties and the flow time on the velocity components, 
the rate of flow, and the wall shear stress through their graphical representations quantitatively at the end of the paper in 
order to validate the applicability of the present improved mathematical model under consideration.  
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1. Introduction  

In the arterial system of humans or animals, it is 
quite common to find localized narrowings, com-
monly referred to as stenoses, caused by intravascular 
plaques. There has been great interest in recent years 
in using numerical methods to study blood flow in 
stenotic arteries to obtain useful information which 
may lead to early detection, prevention and diagnosis 
of various cardiovascular diseases. Such studies are of 
particular importance because there is indirect evi-
dence that the cause and the development of many 
cardiovascular diseases are, to a great extent, related 
to the characteristics of blood flow, such as the high 
values of the shear stress at the wall or its variation [1, 
2]. In most of the investigations relevant to the do-
main under discussion, the flow is mainly considered 
in cylindrical pipes of uniform cross-section. But, it is 

well known that blood vessels bifurcate at frequent 
intervals and the diameter of the vessels varies with 
the distance as propounded by Whitmore [3]. Hence 
the concept of flow in a varying cross-section forms 
the prime basis of a large class of problems in under-
standing blood flow. Manton [4] and Porenta et al. [5] 
pointed out that most of the vessels could be consid-
ered as long and narrow, slowly tapering cones. Nu-
merous investigators have cited hydrodynamic factors 
playing an important role in the formation of stenosis 
and hence the mathematical modeling of blood flow 
through a stenosed tube is very important [6]. Though 
a great effort has been invested in steady flows [7], 
very little is known, however, about blood rheology 
in unsteady flows. Actually, in a living body the heart 
generates a pulsatile flow and its fluctuations are pro-
gressively damped owing to the elasticity of the major 
arteries; however, the periodic nature of the blood 
flow is observed in smaller vessels and arterioles 
where the distensibility of the walls is much less and 
the influence of pulsation frequency becomes more 
important. Walls of such vessels can be considered 
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sufficiently rigid and the flow will be solely deter-
mined by the pressure gradient [1]. Many authors 
have dealt with this problem by treating blood as a 
Newtonian fluid and assuming the flow to be steady 
[8]. The Newtonian behavior may be true in larger 
arteries, but blood, being a suspension of cells in 
plasma, exhibits non-Newtonian behavior at low 
shear rates in small arteries [6]. Chaturani and Palani-
samy [9] studied the pulsatile flow of blood through 
rigid tube under the influence of body acceleration. 
Chaturani and Isaac [10] re-examined the study of 
Sud and Sekhon [11] and obtained an exact analytical 
solution of flow variables as functions of real vari-
ables. All these studies were restricted to considering 
blood as a Newtonian fluid, although it is well known 
from a number of experimental observations that, in 
most cases, blood behaves as a non-Newtonian fluid. 
Shukla et al. [12] and Chaturani and Ponnalagar 
Samy [13] have studied the non-Newtonian behavior 
for steady flows in stenosed tubes. Therefore, it is of 
considerable interest to address some essential issues, 
i.e., the effect of non-Newtonian characteristics on 
unsteady pulsatile behavior of the flowing blood 
where the shear-thinning characteristics and viscoe-
lastic property of the non-Newtonian model have 
been duly accounted for. The purpose of this work is 
to simulate the behavior of two mathematical models 
for blood as cross fluid and Oldroyd-B fluid in an 
artery with partial constriction.  
2. Governing equations  

The segment of the stenosed artery under consid-
eration is simulated as a thin flexible cylindrical tube 
containing a non-Newtonian fluid representing the 
flowing blood. Let ( ), ,r zθ  be the coordinates of a 
material point in the cylindrical polar coordinate sys-
tem where the z-axis is taken along the axis of the 
artery while ,r θ  are taken along the radial and the 
circumferential directions, respectively. Let us con-
sider the blood flow through the arterial segment to be 
nonlinear, laminar and two dimensional, where blood 
is treated to be an incompressible non-Newtonian 
fluid. The Navier-Stokes equations and the equation 
of the continuity that govern the motion of blood may 
be written in the cylindrical coordinate system as: 
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In the cardiovascular system, the motion of the blood 
is driven by a local pressure gradient along the longi-
tudinal direction of the vessel, which in turn is deter-
mined by the propagation of the heart pressure pulse. 
It is worth noting that the pressure, being essentially 
periodic, can be subjected to Fourier series analysis. 
Therefore, for the sake of simplicity, it is assumed 
that the pressure gradient is known as a function of 
time [1, 2, and14]:  
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where A is the amplitude of its oscillatory part, 

2p pfω π=  ,pf being the heart pulse frequency. 

 
2.1 Shear thinning behavior of blood  

Investigation of rheological characteristics of blood 
flow is a very important and controversial subject. It 
is worth mentioning that blood is a complex fluid 
whose flow properties are significantly affected by 
the arrangement, orientation and deformability of red 
blood cells. At sufficiently low shear rates (smaller 
than 10 1s− ) RBCs (red blood cells) tend to aggregate 
attaching side-by-side and forming long clusters 
called rouleaux. If shear rate is decreased even further, 
to 1 1s− , the rouleaux form long column-like struc-
tures, inducing an additional increase of the viscosity. 
If shear rate is increased, and is high enough, the 
rouleaux break up, RBCs deform into an infinite vari-
ety of shapes without changing volume, and they 
align with the flow field and tend to slide upon 
plasma layers formed in between. This induces a de-
crease of the blood viscosity. Deformability, orienta-
tion and aggregation of red blood cells result in shear-
thinning viscosity of blood [15]. In the 1960s, 
attempts to recognize the shear–thinning nature of 
blood were initiated by Chien et al. [16]. Empirical 
models like the power-law, Cross [17], Carreau [18], 
models were seen to agree well in their predictions 
and were preferred over the power-law model which 
has an unbounded viscosity at zero shear-rate.  
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In the present study, the shear thinning behavior of 
blood is simulated by the Cross model. For this par-
ticular constitutive equation, we have [2]: 
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where γ

•

 is the symmetric rate of deformation tensor 
In this model the constants 0 ,η η∞  are the asymptotic 
viscosities at zero and infinity shear rates: 
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n is the power index and K are parameters deter-

mined by numerical fitting of experimental data.  
Table 1 summarizes some of the most common 

generalized Newtonian models that have been con-
sidered for the shear-dependent viscosity of whole 
human blood with the constant parameters of these 
models (see Sequeira and Janela [15]). 

In Fig. 1 the viscosity of the Cross model for dif-
ferent values of the shear rate is compared with the 
blood viscosity [19]. From this figure, it can be seen 
that the four parameter Cross model can predict the 
shear thinning behavior of blood reasonably well. 

 
2.2 Viscoelastic behavior of blood  

Viscoelasticity is a rheological parameter that de-
scribes the flow properties of complex fluids like 
blood. There are two components to the viscoelastic-
ity, the viscosity and the elasticity. The viscosity is 
related to the energy dissipated during flow primarily  

Table 1. Comparison of various non-Newtonian models for 
blood. 
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Fig. 1. Viscosity of blood and Cross model versus different 
values of shear rate. 

 
due to sliding and deformation of red blood cells and 
red blood cell aggregates. The elasticity is related to 
the energy stored during flow due to orientation and 
deformation of red blood cells. Since blood cells are 
essentially elastic membranes filled with a fluid, it 
seems reasonable, at least under certain flow condi-
tions, to expect blood to behave like a viscoelastic 
fluid. At low shear rates RBCs aggregate and are 
‘solid-like’, being able to store elastic energy that 
accounts for the memory effects in blood. At high 
shear rates, the RBCs disaggregate, forming smaller 
rouleaux, and later individual cells that are character-
ized by distinct relaxation times. RBCs become 
‘fluid-like’, losing their ability to store elastic energy 
and the dissipation is primarily due to the internal 
friction [15]. Thurston (see [20]) was among the ear-
liest to recognize the viscoelastic nature of blood and 
that the viscoelastic behavior is less prominent with 
increasing shear rate. Phillips and Deutsch [21] pro-
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posed a three-dimensional frame invariant Oldroyd-B 
type model with four constants. Yelesvarapu [22] has 
obtained a three constant generalized Oldroyd-B 
model by fitting experimental data in one-
dimensional flows and generalizing such curve fits to 
three dimensions. They showed that an Oldroyd-B 
type of model can capture the viscoelastic characteris-
tics of blood well.  

In the present study, the viscoelastic behavior of 
blood is simulated by Oldroyd-B model. For this par-
ticular constitutive equation, we have [1]: 

 

1

2 2 2

2

22

2
2 2

2
2

zz zz zz
r z

z
zz

z z
zz rz

z z z
r z

r z z z

V V
Vt r z

V V z
z r

V V VV V
t z r z z

V V V V
z r r z

τ τ τ

τ λ µ
τ τ

µλ

∂ ∂ ∂⎛ ⎞+ +⎜ ⎟ ∂⎛ ⎞∂ ∂ ∂⎜ ⎟+ = ⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎝ ⎠− −⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂

+ +⎜ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎟+
⎜ ⎟∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (9) 

1

2 2 2

2 2 2

2 2 2

rz rz
r

rz r z r
rz z rz

z r
rr zz

r z r
r

z r z
r z z

z r r

V
t r

V V VV
z r r z
V V
r z

V V VV
t z t r r z

V V VV V V
r z r z

V V V
r z r

τ τ

ττ λ τ µ

τ τ

µλ

∂ ∂⎛ ⎞+⎜ ⎟∂ ∂⎜ ⎟
∂ ∂ ∂⎛ ⎞⎜ ⎟+ + + = +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎜ ⎟
∂ ∂⎜ ⎟− −⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟

⎜ ⎟∂ ∂ ∂
+ + + +⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟

⎜ ⎟∂ ∂⎡ ⎤⎛ ⎞+ +⎜ ⎜ ⎟ ⎟⎢ ⎥∂ ∂⎣ ⎦⎝ ⎠⎝ ⎠

22 r z r zV V V V
z z r r

µλ ∂ ∂ ∂ ∂⎛ ⎞− +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (10) 

1

2 2 2

2

22

2
2 2

2
2

rr rr rr
r z

r
rr

r r
rr rz

r r r
z r

r z r r

V V
Vt r z

V V r
r z

V V VV V
t r r z r

V V V V
z r z r

τ τ τ

τ λ µ
τ τ

µλ

∂ ∂ ∂⎛ ⎞+ +⎜ ⎟ ∂⎛ ⎞∂ ∂ ∂⎜ ⎟+ = ⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎝ ⎠− −⎜ ⎟
∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂ ∂ ∂⎜ ⎟+

⎜ ⎟∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

 (11) 

 
The constant λ1 > 0 is the stress relaxation time (the 

larger is λ1, the slower is relaxation) and λ2 is the re-
tardation time, with 0 ≤ λ2 < λ1. The material constant 
µ is the (zero shear rate) viscosity coefficient. The 

limit case λ1 >0, λ2 = 0 corresponds to a purely elastic 
fluid (upper-convected Maxwell fluid), while the 
limit case λ1 = λ2 = 0 corresponds to a purely viscous 
(Newtonian) fluid with viscosity µ. 

 
2.3 Time dependent geometry of problem  

The time-dependent geometry of the stenoses pre-
sent in the arterial lumen is shown schematically in 
Fig. 2 and is described mathematically by [23]: 
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where ( , )R z t denotes the radius of the tapered arterial 
segment in the stenotic region, a  the constant radius 
of the non-tapered artery in the non-stenotic region, 

0l , the length of the stenosis, d, the location of the 
stenosis and mτ  is taken to be the critical height of 
the stenosis. The time variant parameter 1( )a t  is 
given by: 
 

( ) ( )1( ) 1 cos 1 expa t b t b tω ω= − − −  (13) 
 
where b  is a constant. It is reasonable and conven-
ient to assume that the pressure is independent of the 
radial coordinate (see Pedley [24]).  

  
2.4 Dimensionless form of governing equations  

To make the equations dimensionless we have de-
fined new variables as: 
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Fig. 2. Schematic diagram of the constricted tube. 
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where U  is a characteristic velocity. The momen-
tum and the continuity equations with the above 
transformation rewritten, respectively, as:   
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For the Cross model, the stress components are non-
dimensionalized as:  
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By the non-dimensional parameters, are introduced in 
Eq. (14), we obtain the following relations for the 
constitutive equations of the Oldroyd-B model.  
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2.5 Transformation of the governing equations  

The solution scheme used in the present work starts 
with the transformation below: 

 

( , )
rx

R z t
=  (25) 

 
Using this transformation, we rewrite the Eqs. (15-

24), given by:  
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For Cross model: 
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For Oldroyd-B model: 
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where the expressions of coefficients , , ,xz xz xzA B C  

, ,xz xz xzD E F  of Eq. (33), , ,xx xx xxA B C  of Eq. (34) and 
, , ,zz zz zz zzA B C D  of Eq. (35) are included in the Ap-

pendix for the sake of brevity. 

 
2.6 Boundary condition  

Boundary conditions are required for the dependent 
variables at the boundary faces of the computational 
domain. At the inlet section located far upstream of 
the constriction region, the streamwise velocity com-
ponent and the shear and the normal stress compo-
nents were set equal to fully developed values and all 
other quantities were set to zero. The outlet boundary 
face was located far from the constriction region and 
the streamwise gradient for velocity and stress could 
be safely set to zero. Due to symmetry, only half of 
the physical domain was selected for calculations, and 
boundary condition on the axis can be taken as: 

 

( , , ) 0, 0, 0

0, 0, 0, 0

z
r

xx xz zz

VV x z t on x
x

on x
x x x
τ τ τ

∂
= = =

∂
∂ ∂ ∂

= = = =
∂ ∂ ∂

 (36) 

 
Because of the time-dependent geometry and no-slip 
condition on the wall, appropriate boundary condition 
on the wall for velocity components can be expressed 
as: 

 

( , , ) , ( , , ) 0, 1r z

RV x z t V x z t on x
t

∂
= = =
∂

 (37) 

 
Also, boundary condition on the wall for the stress 
components, are given implicitly by a relation derived 
from the constitutive equation after equating the con-
vective terms to zero ( . 0V τ∇ = ). 

3. Solution methodology 

The numerical technique used in the present study 
is based on the finite difference method. The Mac 
kormak algorithm is used to solve Eqs. (26-35) as 
described in Tannehill [25]. First, the momentum 
equations (Eqs. (26, 27)), and the constitutive equa-
tions for Cross and Oldroyd-B models (Eqs. (29-35)) 
are solved using the F.T.C.S scheme (forward time-
central space), which is first order accurate for time 
derivations and second order accurate for spatial de-
rivatives. Discretized momentum and constitutive 
equations lead to algebraic equation systems for ve-
locity components ,r zV V  and stress components 

, ,rr rz zzτ τ τ  where the pressure gradient and the fluid 
properties are taken from the previous iteration except 
the first iteration where initial conditions are applied. 
By this way the value of velocity and stress compo-
nents will be predicted and the predicted velocity and 
stress fields are then used to solve the velocity-
correction and the stress-correction equations using 
the same equation solver and to the same tolerance. In 
numerical computations, the results are obtained for 
different values of the flow characteristics with step 
size in the z-direction with 0.05z∆ = , in the x-
direction 0.025x∆ =  and in the t-direction 
with 0.00001t∆ = . Further reduction of ,z x∆ ∆ , and 

t∆  produces a change in the fifth or sixth decimal 
places. Hence, the values 0.05z∆ = , 0.025x∆ =  and 

0.00001t∆ =  have been maintained throughout the 
computational work.   

 
4. Numerical results  

Once the problem has been formulated in a non-
dimensional form and a numerical scheme has been 
implemented as in the former section, the many pa-
rameters have been fixed to some likelihood to the 
blood flow: some of them are typical of physiological 
measurements and are chosen to obtain a velocity 
waveform with characteristic similar to the artery 
velocity pulses, some others are taken from the litera-
ture [1, 2]:  
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 (38) 

 
For the purpose of validation, variation of the flow 
rate through non-constricted artery assuming that 
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blood is an Oldroyd-B fluid is compared with Pon-
trelli. [1]. As shown in Fig. 3, the results are found to 
be in good agreement. 

The code developed in this work was solved for the 
blood flowing through a stenosed artery with two 
non-Newtonian models.  

Fig. 4 shows the variation of the axial velocity of 
Cross and Oldroyd-B models at midpoint of stenosis 
at an instant ( 0.5t = ). The curves are all featured to 
be analogous in the sense that they do decrease from 
their individual maxima at the axis as one moves 
away from it and finally drop to zero on the wall sur-
face. Velocity profiles corresponding to Cross model 
represented higher values than the Oldroyd-B and 
Newtonian models. As shown in Fig. 4, another point 
of comparison is the different index parameters ( n ) 
for the Cross model. From this figure, one may con-
clude that as the index parameter ( n ) increases, the 
axial velocity profile assumes a flat shape.  
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Fig. 3. Comparison of the flow rate. 
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Fig. 4. Radial variation of the axial velocity for Oldroyd-B 
and Cross models at an instant ( 0.5t = ). 

Fig. 5 shows numerical results obtained for the ra-
dial velocity component at the same axial location 
and at the same time step of ( 0.5t = ) for different 
values of relaxation time ( 1λ ). Through analysis of 
Fig. 5, one may note that all curves are found to be 
increasing from zero on the axis and to attain some 
negative finite value on the wall surface due to wall 
motion. If an arterial wall is treated to be rigid, then 
the radial velocity profile takes an almost symmetrical 
shape with zero velocity on the wall surface. From 
this figure it can be seen that the radial velocity pro-
file is affected by the change of the relaxation time 
value. As expected, the magnitude of the radial veloc-
ity is seen to be smaller than the axial velocity. 

Fig. 6 shows the profiles for flow rate of the Cross 
model at midpoint of stenosis for different index pa-
rameter ( n ). One may take note from the present 
figure that the flow rate diminishes by increasing of  
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Fig. 5. Radial variation of the radial velocity for Oldroyd-B 
and Cross models at an instant ( 0.5t = ). 
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Fig. 6. Variation of rate of flow with time for different values 
of n . 
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Fig. 7. Variation of the rate of flow with time for different 
value of 1λ . 
 
the index parameter ( n ), and it can be seen that the 
flow rate profile is strongly affected by the index 
parameter ( n ). Studying all the results referred to in 
the present figure, one may conclude that as the index 
parameter ( n ) increases, the Cross model shows 
similar behavior to the Newtonian model.  

Fig. 7 includes more results showing the effect of 
the relaxation time ( 1λ ) on the flow rate of the 
Oldroyd-B model. The deviation of the results thus 
obtained clearly estimates the effect of relaxation time 
quantitatively on the flow rate of the Oldroyd-B 
model. The pulsatile nature of the flow rate has been 
found to be distributed for all the curves throughout 
the time scale considered here. Through analyzing of 
all curves of the present figure, one may conclude that 
by increasing the relaxation time ( 1λ ), the flow rate 
increases considerably. It is quite interesting to note 
that for the fixed value of the retardation 
time 2 0.00625λ = , as the relaxation time ( 1λ ) in-
creases, the tendency of flow reversal increases so 
that for 1 0.13λ = , massive back flow for a consider-
able period of time occurs.  

Since the magnitude and the variation of the shear 
stress at the wall is relevant for the localization and 
prediction of the disease in blood vessel, the time 
history in the last two cycle is plotted in Fig. 8. The 
deviation in results for the Cross model and for the 
Oldroyd-B model can be visualized and their effects 
on the stresses from the relevant curves of the present 
figure can be quantified. As can be seen in this figure, 
for the Cross model the wall shear stress is higher 
than that for Oldroyd-B and Newtonian models. From 
this figure it is obvious that by increasing the index 
parameter ( n ) and the relaxation time ( 1λ ), the wall 
shear stress increases.  
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Fig. 8. Distribution of wall shear stress as a  function of time 
for Oldroyd-B and Cross models. 
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Fig. 9. Distribution of normal stress zzτ  as a function of 
time for Oldroyd-B model. 

 
Variations of the normal stress zzτ  with time for 

different values of the relaxation time ( 1λ ) at mid-
point of stenosis are presented in Fig. 9. It appears 
that the normal stress is pulsatile throughout the time 
period under consideration. It is observed that the zzτ  
can reach an order of magnitude larger than the shear 
stress and is most sensitive to the variation of relaxa-
tion time ( 1λ ). 

Radial distribution of the resultant normal stress 
( zzτ ) is computed at an instant ( 0.5t = ) and illus-
trated in Fig. 10. The results of the present figure 
include the effect of relaxation time ( 1λ ) on the nor-
mal stress ( zzτ ). It is interesting to note that the New-
tonian model predicts a smaller value of the normal 
stress ( zzτ ) than the Oldroyd-B model, and by in-
creasing the relaxation time ( 1λ ), the normal stress 
( zzτ ) increases considerably. 
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Fig. 10. Radial variation of the normal stress zzτ  for differ-
ent value of 1λ  at an instant ( 0.5t = ). 

 

5. Conclusions 

Localized narrowing of an artery is a frequent ef-
fect or a cause of vascular diseases. Such constriction 
disturbs normal blood flow through the vessel, and 
there is considerable evidence that fluid dynamical 
factors play a significant role in the development and 
progression of disease itself. This paper presented 
numerical results for an unsteady blood flow in an 
artery with stenosis, using the Cross and Oldroyd-B 
models of blood viscosity. The results demonstrate 
that the characteristics of blood flow are affected by 
the non-Newtonian rheology, in some typical regimes, 
change the flow pattern; and increase the normal 
stress and the shear stress at the wall in comparison 
with the Newtonian model. The differences between 
the Newtonian and non-Newtonian models show that 
the non-Newtonian behavior is an important factor 
and should not be neglected in small blood vessels 
(smaller than 1 mm).     
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Appendix 

While those of ,xx xxA B  and xxC  of Eq. (33) are 
of the form given by: 
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The expressions of the coefficients , , ,xz xz xzA B C  

, ,xz xz xzD E F  of Eq. (34) should be read as: 
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And the expressions of the coefficients 
, , ,zz zz zz zzA B C D of Eq. (35) are given by: 
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