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Abstract 
 
This paper examines the problem of robust extended Kalman filter design for discrete -time Markovian jump nonlin-

ear systems with noise uncertainty. Because of the existence of stochastic Markovian switching, the state and meas-
urement equations of underlying system are subject to uncertain noise whose covariance matrices are time-varying or 
un-measurable instead of stationary. First, based on the expression of filtering performance deviation, admissible un-
certainty of noise covariance matrix is given. Secondly, two forms of noise uncertainty are taken into account: Non-
Structural and Structural. It is proved by applying game theory that this filter design is a robust mini-max filter. A nu-
merical example shows the validity of the method. 
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1. Introduction 

One of the main issues in control systems is their 
capability of maintaining an acceptable behavior and 
meeting some performance requirements even in the 
presence of abrupt changes in the system dynamics. 
These changes can be due, for instance, to abrupt 
environmental disturbances, component failures or 
repairs, changes in subsystems interconnections, 
abrupt changes in the operation point for a nonlinear 
plant etc. Examples of these situations can be found 
in economic systems, aircraft control systems, control 
of solar thermal central receivers, robotic manipulator 
systems, large flexible structures for space stations, 
etc. [1]. In some cases, these systems can be modeled 
by a set of discrete-time systems with mode transition 
given by a Markov chain. This family is known in the 
specialized literature as a Markovian jump system.  

With further study of Markovian jump systems, 
many achievements have been made in the last dec-

ade on stability analysis [2, 3], filtering [4, 5] and 
controller design [6, 7]. Among the efforts towards 
filtering, the celebrated Kalman filtering provides an 
optimal state estimator for the Markovian jump sys-
tems with satisfying performance. By assuming the 
dynamical system is subject to stationary Gaussian 
input and measurement noise process, the optimal 
filtering gain could be deduced in terms of coupled 
algebraic Riccati equations. Based on this, Boukas [8] 
and Mahmoud [9] gave Kalman filtering equations 
for continuous-time and discrete-time Markovian 
jump linear systems with structure uncertainty, re-
spectively. However, in the above referred contribu-
tions to filtering problems, all the research work was 
grounded on one assumption: both the state equation 
and output measurement are subjected to stationary 
Gaussian noises so that an optimal filtering gain is 
obtained based on the exactly-known noise covari-
ance matrix. But this is not the case for Markovian 
jump systems.  

In a practical environment, because of the stochas-
tic switching in Markovian jump systems, which is 
usually accompanied by sudden change of working 
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environment or system dynamics, the statistical char-
acteristics (covariance matrix) of noise may be time-
varying instead of stationary. In some cases it is im-
possible to get the exact measurement value of the 
noise covariance matrix, which means the noise co-
variance matrix is uncertain instead of exactly known; 
for this reason the stochastic noise is so-called “uncer-
tain”. As it has been pointed out above, the optimal 
Kalman filtering gain is deduced in terms of coupled 
algebraic Riccati equations using noise statistical 
characteristics. Thus, uncertainty to noise covariance 
matrix affects the Kalman filtering gain and the esti-
mation of system state, which will ultimately affect 
the control signals. Obviously, noise uncertainty will 
decrease system performance and in the worst case 
lead to system instability. And with larger noise un-
certainty, system instability tends to occur with more 
probability. For these reasons, there must be some 
limitation (bound) to noise uncertainty so that the 
whole system can maintain an acceptable behavior. 
This paper is focusing on how to achieve the maxi-
mum bound of noise uncertainty according to system 
performance requirements.  

The rest of this paper is organized as follows: First, 
some assumptions are given so that the nonlinear 
jump systems could be modeled as a linear one by 
local linearization. Second, according to system per-
formance requirements, the maximum upper bound of 
uncertainty to noise covariance matrix is discussed in 
two forms: non-structural and structural. Then the 
analytical solution of maximum bound is obtained by 
using Lagrange method. Finally, the establishment of 
saddle inequality is proved, and this result shows that 
this robust extended Kalman filter design is a mini-
max robust filter. At the end of the paper, an illustra-
tive example is used to show the validity of the men-
tioned method.  
 

2. Problem description 

Throughout the paper, unless otherwise specified, 
we denote by 0( { } )t tF F Pr≥Ω, , , , a complete probabil-
ity space with a filtration 0{ }t tF ≥  satisfying the usual 
conditions (i.e., it is right continuous and 0F  con-
tains all p-null sets). Let x| |  stand for the usual 
Euclidean norm for a vector x, and X| |  denote the 
Frobenius norm of a matrix X  defined by 

1
2 ( )T

maxX XXλ| |= , where ( )maxλ ⋅  is the maximum 
eigenvalue of matrix and the superscript T  repre-
sents transpose. Operator ( )tr ⋅  denotes the matrix 

trace and we denote by 0( 0)X > ≥  that matrix X  
is positive definite (semi-positive definite). Let 
{ 0}kr k, ≥  be a discrete-time Markov chain on the 
probability space taking values in finite state space 

{1 2 }S N= , , ,  with [ ]ijP p=  the chain generator, 
an N N×  matrix. The entries ijp i j S, , ∈  are inter-
preted as transition rates such that  

1( )ij k kp Pr r j r i+= = | =  
Here 0ijp ≥  is the transition probability from i to 

j. Notice that the total probability axiom imposes  

1
1 0

N

ij ij
j

p p i S
=

= , ≥ ∀ ∈∑  

Consider the following discrete-time Markovian 
jump nonlinear system with uncertain noise:  

0( 1) ( ( ) )kx k f x k r ω+ = , +  
0( ) ( ( ) )ky k h x k r υ= , +   (1) 

where ( ) nx k ∈R  is state vector, ( ) my k ∈R  is meas-
urement output. ( ) nf ⋅,⋅ ∈R , ( ) mh ⋅,⋅ ∈R  are nonlin-
ear vector functions. 0 0ω υ, are n-dimensional and m- 
dimensional white noise and satisfy the following 
assumption:  
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In Assumption 1, 0 0n n m mW V× ×∈ , ∈R R consist of 
two parts, where W V,  denote the stationary noise 
covariance matrices and the values are exactly known. 

W V∆ ,∆  denote the uncertainty caused by distur-
bance or time-varying; they are unknown but 
bounded. ( )δ ⋅,⋅  is a Dirac  function taking values 
in {0 1}, .  

For the deduction of extend Kalman filter, the fol-
lowing assumption is proposed:  

Assumption 2. For any fixed system mode 
kr i S= ∈ , the nonlinear vector functions ( )f ⋅,⋅ , 
( )h ⋅,⋅  are assumed to satisfy (0 ) (0 ) 0f i h i, = , =  and  
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( ( ) ) ( ( ) ) ( ) ( )f x k i f x k i A i A iσ σ σ| + , − , − |≤| ∆ || |  (2) 
( ( ) ) ( ( ) ) ( ) ( )h x k i h x k i C i C iσ σ σ| + , − , − |≤| ∆ || |  (3) 

where ( ) ( )A i C i, are Jacobian matrices of ( ) ( )f h⋅,⋅ , ⋅,⋅  
and ( ) ( )A i C i∆ ,∆  satisfy  

1( ) ( ) ( ) ( )A i H i F i E i∆ =  
2( ) ( ) ( ) ( )C i H i F i E i∆ =   (4) 

Here 1 2( ) ( ) ( )H i H i E i i S, , , ∈  are known constant 
matrix and ( )F i i S, ∈  is unknown matrix satisfy-
ing ( ) ( )TF i F i I≤ . It is known that with Assumption 2 
established [10], the Markovian jump nonlinear sys-
tem could be transformed to a nominal linear model 
via local linearization technique:  

0( 1) [ ( ) ( )] ( )k kx k A r A r x k ω+ = + ∆ +  
0( ) [ ( ) ( )] ( )k ky k C r C r x k υ= + ∆ +   (5) 

For simplification, we denote ( )kA r i= , 1( )kH r i= , 
2 ( )kH r i= , ( )kE r i= , ( )kA r i∆ = , ( )kC r i= , 

( )kC r i∆ =  by iA , 1 2i iH H, , iE , iA∆ , iC , iC∆ .  
Theorem 1 Consider stochastically stable Mark-

ovian jump system (1) or (5) and assume the noise is 
stationary, which means 0W V∆ = ∆ = ,the standard 
extended Kalman filter is as follows [9]:  

ˆ ˆ ˆ ˆˆ( 1) ( ) [ ( ) ( )]ii ix k x k K y k x kCA+ = + −  (6) 

where filtering gain iK  is given by the following 
coupled Riccati equations:  

1 1
1

( )
N

T T T
i i ij j i i i i i i i

j
A p A E E H H Wε ε

=

Ψ = Ψ + + +∑  
1

1 1ˆ ( )T
i i i i ii A H H WA ε −= + + Ψ  

1
2 1

1ˆ T
i i i ii

i

C H HC ε
−= + Ψ  

1 1
1

ˆ ˆˆ ˆ( )( )( )
N

T T T
i i ij j i i i i i ii ii i

j

Q K p Q K KVK W H HC CA A ε
=

= − − + + +∑  

1
2 2

1 1

1ˆ ˆ ˆˆ[ ( ) ][ ( ) ]
N N

T TT
i ij j i i ij ji i i i

j ji

K p Q V H H p QC C CA ε
−

= =

= + +∑ ∑
  (7) 

Here matrix 0 0i iQΨ > , >  and scalar 0iε >  are 
chosen such that ( )itr Q  reaches the minimum. With 
the above standard Kalman filter gain (6) adopted, the 
state estimation error satisfies:  

ˆ ˆ{( ( ) ( )) ( ( ) ( ))} max ( )T
jj S

E x k x k x k x k tr Q
∈

− − ≤   (8) 

Define the estimation error performance of stan-
dard Kalman filtering as  

1 2( ) max ( )N jj S
J K K K W V tr Q

∈
, , , , , =   (9) 

According to Theorem 1 and quality of Kalman fil-
tering, if the noise is stationary ( 0)W V∆ = ∆ = , the 
estimation error performance could achieve the 
minimum value by adopting standard Kalman filter-
ing (6).  

However, in practice, the standard Kalman filter 
may fail with uncertain noise: 0  0W V∆ ≠ , ∆ ≠ ; thus, 
the new covariance matrix of noise is 0 0W V, . If the 
designer still adopts the former pre-designed Kalman 
filter gain iK , the new state estimation error should 
be 0

iQ , which satisfies:  
0 0 0 0

1 1
1

ˆ ˆˆ ˆ( )( )( )
N

T T T
i i ij j i i i i i ii ii i

j

Q K p Q K KV K W H HC CA A ε
=

= − − + + +∑   

 (10) 
Therefore, the new estimation performance is  

0 0 0
1 2( ) max ( )N jj S

J K K K W V tr Q
∈

, , , , , =   (11) 

According to (9) and (11), the deviation of estima-
tion performance yielded by noise uncertainty 
( )W V∆ ,∆  can be written as:  

0 0
1 2 1

1

( ) ( )
( )

N N

N

J K K K W V J K K W V
J K K W V

∆ , , , ,∆ ,∆ = , , , ,
− , , , ,

 

0max ( ) max ( )j jj S j S
tr Q tr Q r

∈ ∈
= − ≤    (12) 

Thus the problem is: if the designer wants the pre-
designed Kalman filter to still meet the performance 
requirements under uncertain noise ( )W V∆ ,∆ , he or 
she should limit noise uncertainty to a certain bound. 
As long as ( )W V∆ ,∆ is within this bound, the admis-
sible deviation of estimation performance 1(J K∆ ,  

2 )NK K W V r, , ,∆ ,∆ ≤  where 0r >  is a constant 
parameter given by the designer according to practi-
cal requirement. In the following work, the author 
sets out to find the corresponding expression of noise 
uncertainty ( )W V∆ ,∆  and the performance r .  
 

3. Upper bound of noise uncertainty 

3.1 Mathematical expression 

Combining Eq. (7) and (10), there is  

1

ˆ ˆˆ ˆ( ) ( )
N

T T
i i ij j i i ii ii i

j

Q K p Q K K VK WC CA A
=

∆ = − ∆ − + ∆ +∆∑   

 (13) 
Where 0

i i iQ Q Q∆ = − . According to Eq. (13), it is easy 
to see that ( )itr Q∆  is a linear mapping of ( )W V∆ ,∆ .  

Define a compact convex set as {( )W VΞ = ∆ ,∆ :  
0 0 }W W V V∗ ∗≤ ∆ ≤ ∆ , ≤ ∆ ≤ ∆ ; thus, the deviation of 
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performance 1 2( )NJ K K K W V∆ , , , ,∆ ,∆  is a map-
ping from Ξ  to 1R , and it has the following facts:  

Fact 1 For any given ( ) 1 2j jW V j∆ ,∆ ∈Ξ, = , , 
if 1 2 1 2W W V V∆ ≤ ∆ ,∆ ≤ ∆ , there is  

1 2 1 1 1 2 2 2( ) ( )N NJ K K K W V J K K K W V∆ , , , ,∆ ,∆ ≤∆ , , , ,∆ ,∆  
This means the deviation performance is a mono-

tonically increasing function of noise uncertainty.  
Fact 2 Define the maximum admissible deviation 

of estimation performance r  as  

1 2( )
max ( )NW V

r J K K K W V
∆ ,∆ ∈Ξ

= ∆ , , , ,∆ ,∆  

Thus r  could be achieved only by maximum ma-
trix pair ( )W V∗ ∗∆ ,∆ . This fact is deduced according 
to Fact 1, and thatΞ is a compact convex set.  

The purpose of the following work is to construct a 
maximum compact convex set {( )}W V∗ ∗ ∗Ξ = ∆ ,∆ ; 
for any uncertainty ( )W V ∗∆ ,∆ ∈Ξ , inequality (12) is 
sure to establish, and a mini-max robust filtering is 
applied to minimize the worst performance under the 
noise uncertainty.  

According to the finite of mode S , inequality (12) 
is equivalent to  

0( ) max ( )i jj S
tr Q r tr Q i S

∈
≤ + ∀ ∈   (14) 

Therefore, for each mode i S∈ , there is  

0( ) ( ) ( ) max ( ) ( )i i i j ij S
tr Q tr Q tr Q r tr Q tr Q

∈
∆ = − ≤ + −   

 (15) 
 

3.2 Bound of nonstructural uncertainty 

Suppose there is no limitation or requirement on 
the structure of noise uncertainty. Let W a| ∆ |≤ , 

V b| ∆ |≤ ; thus  

0 0n mW aI V bI≤ ∆ ≤ ≤ ∆ ≤  

According to Fact 2, if the noise uncertainty 
( )W V∆ ,∆ reaches maximum n maI bI, , the deviation 
of estimation performance will reach the maximum 
value r .  

According to (13) and (15), for any system 
mode i S∀ ∈ , there is 

( ) ( ) max ( ) ( )i i j ij S
atr D btr G r tr Q tr Q

∈
+ ≤ + −   (16) 

where matrix 0i iD G i S, > , ∈  satisfies the following 
equations:  

1

1

ˆ ˆˆ ˆ( ) ( )

( ) ( )ˆ ˆˆ ˆ

N
T

i i ij j i ni ii i
j

N
T T

i i ij j i i ii ii i
j

D K p D K IC CA A

G K p G K K KC CA A

=

=

= − − +

= − − +

∑

∑

 

By the above analysis, the search for an admissible 
upper bound of nonstructural noise uncertainty 
( )W V∆ ,∆  is equal to getting the optimal solution of 
a b,  which satisfies the inequalities:  

max a b⋅  
( ) ( ) max ( ) ( )i i j ij S

s t a tr D b tr G r tr Q tr Q
∈

. . ⋅ + ⋅ ≤ + −  

0 0a b i S≥ ≥ ∈   (17) 
Therefore, the search for an admissible upper 

bound of ( )W V∆ ,∆  is transformed to be a nonlinear 
programming problem with linear inequalities con-
straints.  

 
3.3 Bound of structural uncertainty 

Section 3.2 discusses the bound of nonstructural 
noise uncertainty, which means only inequali-
ties W a| ∆ |≤ , V b| ∆ |≤ are necessary to stand instead 
of caring for the detailed form of ( )W V∆ ,∆ . Thus, the 
uncertainty ( )W V∆ ,∆  may have infinite forms in 
structure. In this section, we will focus on giving the 
upper bound of structural noise uncertainty, and this 
work is also very useful for the actual producing 
process. Consider practical dynamic systems working 
in a complicated environment; this process must be 
disturbed by noises from different sources. Thus, for 
each noise source, there should be a limitation on 
noise uncertainty in order to meet the performance 
requirements. Suppose that all the noise sources are 
independent and noises are therefore uncorrelated; 
thus, the noise covariance matrix is as follows: 

2
11

2
20 2

2

0 00 0
0 00 0

0 00 0 nn

W W W

ςσ
ςσ

ςσ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

= +∆ = +
⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅

 

2
11

2
20 2

2

0 00 0
0 00 0

0 00 0 mm

e
e

V V V

e

δ
δ

δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

= + ∆ = +
⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅

 

Here ( 1 2 )s s nσ = , , ,  and ( 1 2 )t t mδ = , , ,  are 
the entries of noise covariance matrix without uncer-



1136  J. Zhu et al. / Journal of Mechanical Science and Technology 22 (2008) 1132~1139 
 

tainty ( )W V∆ ,∆ . Non-negative parameters s teς ,  
represent noise uncertainty.  

Denote by ( )s tW V  an ( )n n m m× ×  matrix whose 
( )s th t th− − diagonal entry is 1 and other entries are 

zero:  

0 0 0 0 0 0 0 0
0 0 0 0

0 1 0 0 1 0
0 0 0 0

0 0 0 0 0 0 0 0

s tss tt

n n m m

W V

× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

 (18) 
According to Eq. (18), the noise uncertainty 

( )W V∆ ,∆  is  

1 1

n m

s s t t
s t

W W V eVς
= =

∆ = ∆ =∑ ∑  

By combining (13) and (15) together, there is 
i S∀ ∈   

1 1
( ) ( ) max ( ) ( )

n m

s si t ti j ij Ss t
tr E e tr F r tr Q tr Qς

∈= =

+ ≤ + −∑ ∑  (19) 

Where matrix 0 1 2 1,2,si tiE F i S s n t, > , ∈ , = , , , ; =  
m,  satisfies the following equations:  

1

1

ˆ ˆˆ ˆ( ) ( ) 1 2

ˆ ˆˆ ˆ( ) ( ) 1 2

N
T

si i ij sj i si ii i
j

N
T T

ti i ij tj i i t ii ii i
j

E K p E K W s nC CA A

F K p F K KVK t mC CA A

=

=

= − − + = , , ,

= − − + = , , ,

∑

∑

 

In the following discussion, without the loss of 
generality, suppose that each column vector of filter-
ing gain matrix iK  is non-zero. This fact can be 
easily shown by the following proof:  

For any given 0 0(1 )t t m≤ ≤ , if the 0t th−  column 
vector of matrix iK  is zero, there is 

0
0T

i t iK V K =  
which immediately results in

0
0t iF = ; thus, there is no 

limitation or bound for parameter 
0t

e  because 
0t

e  
has no contribution to the performance deviation J∆ . 
In the subsequent part of this paper, only the bound of 

0t
e  with each column vector of iK  non-zero is con-
sidered. 

Similarly, the search for an upper bound of struc-
tural noise uncertainty ( )W V∆ ,∆  with inequality 
constraints (19) is equivalent to the following nonlin-
ear programming problem:  

1 2 1 2… …n mmax e e eς ς ς⋅ ⋅ ⋅  

1 1
( ) ( ) max ( ) ( )

n m

s si t ti j ij Ss t
s t tr E e tr F r tr Q tr Qς

∈= =

. . + ≤ + −∑ ∑

1 2 1 20 0n me e e i Sς ς ς, , , ≥ , , , ≥ ∈  (20) 

According to (17) and (20), the upper bound of 
both nonstructural and structural noise uncertainty 
could be deduced to solve a nonlinear programming 
problem with inequality constraints. In next section 
we will discuss the solution of this problem. 

 
3.4 Analytical solution 

{( )}W VΞ = ∆ ,∆  is a compact convex set while the 
inequalities in (17) and (20) compose a compact 
closed set on which function a b⋅  and 

1 1… …n me eς ς  
are defined as continuous functions. Since continuous 
functions defined on a bounded closed set must have 
a maximum and minimum value, there exist the op-
timal solutions of 

1 1… …n ma b e eς ς, , ,  to satisfy (17) 
and (20).  

Decompose the original nonlinear programming 
problem (17) into N sub-problems:  

1 1

1 1 1 1 1( ) ( ) max ( ) ( )jj S

max a b
s t a tr D b tr G r tr Q tr Q

∈

⋅
. . ⋅ + ⋅ ≤ + −  

2 2

2 2 2 2 2

      
( ) ( ) max ( ) ( )jj S

max a b
s t a tr D b tr G r tr Q tr Q

∈

⋅
. . ⋅ + ⋅ ≤ + −  

         

( ) ( ) max ( ) ( )
N N

N N N N j Nj S

max a b
s t a tr D b tr G r tr Q tr Q

∈

⋅
. . ⋅ + ⋅ ≤ + −

 

By using the Lagrange method, the optimal ana-
lytical solution for each sub-problem is:  

max ( ) ( )
2 ( )

j S j i
i

i

r tr Q tr Q
a

tr D
∈∗ + −

=  

max ( ) ( )
2 ( )

j S j i
i

i

r tr Q tr Q
b

tr G
∈∗ + −

=   (21) 

Thus, the analytical solution for the original 
nonlinear programming problem (17) is taken as  

max ( ) ( )
min min{ }

2 ( )
j S j i

ii S i S
i

r tr Q tr Q
a a

tr D
∈∗ ∗

∈ ∈

+ −
= =  

max ( ) ( )
min min{ }

2 ( )
j S j i

ii S i S
i

r tr Q tr Q
b b

tr G
∈∗ ∗

∈ ∈

+ −
= =  (22) 

Similarly, for the analytical solution of problem 
(20), decompose it into N sub-problems:  

11 21 1 11 21 1

1 1 1 1 1
1 1

 

( ) ( ) max ( ) ( )

n m

n m

s s t t jj S
s t

max e e e

s t tr E e tr F r tr Q tr Q

ς ς ς

ς
∈

= =

⋅ ⋅ ⋅

. . + ≤ + −∑ ∑
 



 J. Zhu et al. / Journal of Mechanical Science and Technology 22 (2008) 1132~1139 1137 
 

12 22 2 12 22 2

2 2 2 2 2
1 1

1 2 1 2

1 1

( ) ( ) max ( ) ( )

( ) ( ) max ( ) ( )

n m
n m

s s t t jj S
s t

N N nN N N mN
n m

sN sN tN tN j Nj S
s t

max e e e

s t tr E e tr F r tr Q tr Q

max e e e

s t tr E e tr F r tr Q tr Q

ς ς ς

ς

ς ς ς

ς

∈
= =

∈
= =

⋅ ⋅ ⋅

. . + ≤ + −

⋅ ⋅ ⋅

. . + ≤ + −

∑ ∑

∑ ∑

 

By using the Lagrange method, the optimal ana-
lytical solution for each sub-problem is  

max ( ) ( )
1 2

( ) ( )
j S j i

si
si

r tr Q tr Q
s n

n m tr E
ς ∈∗ + −

= = , , , ,
+

 
max ( ) ( )

1 2 1 2 ,
( ) ( )

j S j i
ti

ti

r tr Q tr Q
e t m i N

n m tr F
∈∗ + −

= = , , , , = , ,
+

 (23) 

The analytical solution for the original nonlinear 
programming problem (20) is taken as  

max ( ) ( )
min min{ }

( ) ( )
j S j i

s sii S i S
si

r tr Q tr Q
n m tr E

ς ς ∈∗ ∗

∈ ∈

+ −
= =

+
 

max ( ) ( )
min min{ }

( ) ( )
j S j i

t tii S i S
ti

r tr Q tr Q
e e

n m tr F
∈∗ ∗

∈ ∈

+ −
= =

+
  (24) 

Remark: The analytical solutions of the nonlinear 
programming problem (17), (20) are given by the 
above analysis; however, they are only optimal solu-
tions for each sub-problem. These analytical solutions 
in Eq. (22) and (24) are local optimal but global sub-
optimal. For a global optimal solution, only a numeri-
cal solution could be achieved by applying “fmincon” 
function in Matlab software. The optimal analytical 
solution of such nonlinear programming problem is 
still an open problem in mathematics for further ex-
ploration.  

 
Theorem 2 Consider Markovian jump system (1) 

and (5). If the designer adopts state estimator (6) and 
Kalman filter gain (7), there exists a maximum ad-
missible compact set Ξ . When the uncertainty of 
noise covariance matrix ( )W V∆ ,∆ ∈Ξ , the deviation 
of system state estimation performance is ensured to 
be within the given precision r .  
 
4. Mini-max robust filter 

Let 1 2 … NK K K∗ ∗ ∗, , ,  denote the standard extended 
Kalman filtering gain corresponding to new noise 
covariance matrix ( )W W V V∗ ∗+ ∆ , + ∆ . According to 
the quality of Kalman filtering, there is  

1 2 1 2( ) ( )N NJ K K K W V J K K K W V∗ ∗ ∗ ∗ ∗ ∗ ∗∆ , , , ,∆ ,∆ ≤∆ , , , ,∆ ,∆  
On the other hand, for the same Kalman filtering 

gain 1 2 NK K K∗ ∗ ∗, , , , by applying Fact 1,  

1 2

1 2

( )

( )
N

N

J K K K W V

J K K K W V

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∆ , , , ,∆ ,∆ ≤

∆ , , , ,∆ ,∆
 

Thus the saddle point inequality stands according 
to the above analysis:  

1 2

1 2

( )

( )
N

N

J K K K W V

J K K K W V

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∆ , , , ,∆ ,∆ ≤

∆ , , , ,∆ ,∆ ≤
 (25) 

1 2( )NJ K K K W V∗ ∗∆ , , , ,∆ ,∆   
By game theory, the optimal estimator under the 

worst situation is the mini-max estimator:  

1 2( )

1 2( )

min max ( )

max min ( )
i

i

NK W V

NKW V

J K K K W V

J K K K W V
∆ ,∆ ∈Ξ

∆ ,∆ ∈Ξ

∆ , , , ,∆ ,∆ =

∆ , , , ,∆ ,∆
  (26) 

Remark: Traditional Kalman filtering design is per-
formed on the basis that the noise covariance matrix 
is stationary and exactly known, and it will fail when 
the noise covariance matrix is unknown or has uncer-
tainty. In our method, the filter design could be di-
vided into two steps. First, design standard Kalman 
filter according to the stationary noise covariance 
matrix ( )W V, , then via some technical methods such 
as noise control, the designer imposes the noise un-
certainty to be within the given bound ( )W V∗ ∗∆ ,∆ , 
which could be presented in different forms (struc-
tural and nonstructural). In a practical dynamic proc-
ess, the ideal deviation of performance under noise 
uncertainty is 1 2( )NJ K K K W V∗ ∗ ∗∆ , , , ,∆ ,∆ . When the 
noise uncertainty reaches the maximum, the deviation 
of performance also reaches the maximum, which 
is 1 2( )NJ K K K W V∗ ∗ ∗ ∗ ∗∆ , , , ,∆ ,∆ , and this deviation is 
less than the worst case 1 2( NJ K K K W ∗∆ , , , ,∆ ,  

)V r∗∆ ≤ . Saddle point inequality (25) means that as 
long as the noise uncertainty is within the admissible 
bound ( )W V∗ ∗∆ ,∆ , the deviation of performance for a 
practical process is less than given precision r . For 
this reason, the Kalman filter design has robustness 
over noise uncertainty and it is also a mini-max filter 
with Eq. (26) established.  
 
5. Simulation 

Consider the following two-mode discrete-time 
Markovian jump system:  

Let the system mode 1kr =  be given by  
0

1 1 2 1 2 1

0
2 2 1 2 2

( 1) 0 5 ( ) 0 2 ( ) 0 02 [ ( ) ( )]
( 1) 0 6 ( ) 0 01 [ ( ) ( )]

x k x k x k cos x k x k
x k x k sin x k x k

ω
ω

+ = . − . + . + +
+ = . + . − +  
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0
1 2( ) ( ) 0 5 ( )y k x k x k υ= + . +  

Let the system mode 2kr =  be given by  

0
1 1 2 2 1

0
2 1 2 1 2

0
1

( 1) 0 3 ( ) 0 1 ( ) 0 03 ( )
( 1) 0 1 ( ) 0 4 ( ) 0 01 ( )

( ) ( )

x k x k x k sinx k
x k x k x k cosx k

y k x k

ω
ω

υ

+ = − . + . + . +
+ = . + . + . +

= +
 

Where uncertain state and measurement noise is 
0 0 0

1 2[ ]Tω ω ω=  and 0υ , and its stationary covariance 

matrix is known as
0 4 0
0 0 5

W
.⎡ ⎤

= ⎢ ⎥.⎣ ⎦
, 0 6V = . ; system 

mode transition probability matrix is 
0 6 0 4
0 5 0 5

P
. .⎡ ⎤

= ⎢ ⎥. .⎣ ⎦
 

the admissible bound of performance deviation is 
0 2r = . .  

The detailed algorithm is as follows: 
1)  By applying Assumption 2, there is: 

1

0 5 0 2
0 6 0

A
. − .⎡ ⎤

= ⎢ ⎥.⎣ ⎦
, 1 [1 0 5]C = . , 2

0 3 0 1
0 1 0 4

A
− . .⎡ ⎤

= ⎢ ⎥. .⎣ ⎦
, 

2 [1 0]C = , 11 [0 2 0 1]TH = . . , 1 [0 1 0 1]E = . . , 

12 [0 15 0 1]TH = . . , 2 [0 2 0 1]E = . . , 21 22 0H H= =   
2) Solve the equation Eq. (7), get 1 2Q Q,  and 

1 2K K, : 1

0 9577 0 4102
0 4102 1 1021

Q
. .⎡ ⎤

= ⎢ ⎥. .⎣ ⎦
, 2

0 9856 0 5373
0 5373 1 2732

Q
. .⎡ ⎤

= ⎢ ⎥. .⎣ ⎦
, 

1

0 9484
1 1290

K
.⎡ ⎤

= ⎢ ⎥.⎣ ⎦
, 2

0 6956
0 7311

K
.⎡ ⎤

= ⎢ ⎥.⎣ ⎦
  

3) Substitute the result to Eq. (17); by using the La-
grange method, the upper bound of nonstructural 
noise uncertainty is given as:  

0 1309 0 1301a b∗ ∗= . , = .  
4) Let the new noise covariance matrix correspond 

to the maximum uncertainty:  

2W W W W a I∗ ∗= + ∆ = + ⋅ , 

1V V V V b I∗ ∗= + ∆ = + ⋅   

5) Repeat step 2), and the correspondent 1 2Q Q∗ ∗, , 
1 2K K∗ ∗,  for new noise covariance matrix ( )W V∗ ∗,  

are:  

1

1 0178 0 4417
0 4417 1 2142

Q∗ . .⎡ ⎤
= ⎢ ⎥. .⎣ ⎦

, 2

1 1044 0 5845
0 5845 1 3097

Q∗ . .⎡ ⎤
= ⎢ ⎥. .⎣ ⎦

,  

1

0 9877
1 2014

K ∗ .⎡ ⎤
= ⎢ ⎥.⎣ ⎦

, 2

0 7112
0 7633

K ∗ .⎡ ⎤
= ⎢ ⎥.⎣ ⎦

 

6) With robust extended Kalman filtering applying, 

there is a saddle point inequality:  

1 2 1 2

1 2 1 2

( ) ( )

{ ( ) ( )} { ( ) ( )}
0 1553 0 2

J K K W V J K K W V

max tr Q tr Q max tr Q tr Q

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

∆ , ,∆ ,∆ ≤ ∆ , ,∆ ,∆

= , − ,
= . < .

 

7) Substitute the result of 1 2 1 2Q Q K K, , ,  to Eq. 
(20); by using the Lagrange method, the upper bound 
of structural noise uncertainty is given as:  

1 2 10 2077 0 1227 0 0866eς ς∗ ∗ ∗= . , = . , = .  
8) Let the new noise covariance matrix correspond 

to the maximum uncertainty:  

1 2{ }W W W W diag ς ς∗ ∗ ∗= + ∆ = + , , 

1V V V V e∗ ∗= + ∆ = +   

9) Repeat step 2), and the correspondent 1 2Q Q∗ ∗, , 
1 2K K∗ ∗,  for new noise covariance matrix ( )W V∗ ∗,  

are:  

1

1 1098 0 4782
0 4782 1 2755

Q∗ . .⎡ ⎤
= ⎢ ⎥. .⎣ ⎦

, 2

1 1401 0 6033
0 6033 1 2996

Q∗ . .⎡ ⎤
= ⎢ ⎥. .⎣ ⎦

,  

1

1 0017
1 2234

K ∗ .⎡ ⎤
= ⎢ ⎥.⎣ ⎦

, 2

0 7208
0 7711

K ∗ .⎡ ⎤
= ⎢ ⎥.⎣ ⎦

  

10) With robust extended Kalman filtering apply-
ing, there is a saddle point inequality:  

1 2 1 2

1 2 1 2

( ) ( )

{ ( ) ( )} { ( ) ( )}
0 1809 0 2

J K K W V J K K W V

max tr Q tr Q max tr Q tr Q

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

∆ , ,∆ ,∆ ≤ ∆ , ,∆ ,∆

= , − ,
= . < .

 

 

6. Conclusion 

In this paper, a robust extended Kalman filter for a 
discrete-time Markovian jump nonlinear system un-
der uncertain noise is considered. To maintain stabil-
ity of a dynamic system when noise is “uncertain”, a 
new design method is given to obtain the maximum 
admissible bound of uncertainty to noise covariance 
matrix. The deviation of system estimation perform-
ance is thus guaranteed to be within a given precision. 
The noise uncertainty is in two different forms: non-
structural and structural. The analytical solution of the 
bound to noise uncertainty is also discussed in this 
paper, which is a global sub-optimal and conservative 
solution by using the Lagrange method. This work 
provides another way to achieve the optimal filter 
under the maximum noise uncertainty. The designer 
could first design the optimal filter by using stationary 
noise information and then impose the noise uncer-
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tainty to be within an admissible bound via noise 
control. It is proved that these two choices are equiva-
lent by considering performance precision.  
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