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1. Introduction

Monitoring and controlling of water-quality (WQ) indicators are 

of vital importance. Dissolved oxygen (DO) is a significant indicator 

of the health and productivity of aquatic ecosystems. It is essential

for the survival of fish and other aquatic organisms and plays a 

key role in the decomposition of organic matter. Low DO 

concentrations can lead to fish kills and the proliferation of harmful 

algal blooms, while high DO concentrations can indicate an over-

enriched ecosystem. Therefore, measuring DO concentration can 

provide valuable information about the overall health and functioning 

of an aquatic ecosystem. Additionally, it can help identify potential

pollution sources and aid in the conservation and management of 

aquatic resources (Nas et al., 2008; Csabragi et al., 2017). DO 

concentration changes depending on various factors such as water 

temperature (WT), pH, conductivity, and salinity, as well as 

atmospheric pressure. The solubility of oxygen is inversely 

proportional to temperature. In other words, the solubility of oxygen 

decreases as WT increases. Because WT and pH have an inverse 

proportion, pH values could be used to estimate DO concentrations. 

Lower conductivity and salinity and higher atmospheric pressure are 

the factors that increase DO concentration in water (Kalff, 2002). 

On the other hand, hydraulic structures impact the amount of DO 

in a river system (Bayram and Kankal, 2015).

The impacts of anaerobic conditions caused by low DO 

concentrations in a river system generate unstable ecosystem 

with fish reproductive problems and mortalities, pollution, odor, 

and other unaesthetic situations (Cox, 2003). In addition, DO 
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concentration reveal more about aquatic systems than any other 

single parameter. Therefore, monitoring DO concentrations is 

important in most surface waters and near-shore coastal systems. 

There is a need for cost-efficient and effective methods that can 

estimate DO concentration using limited monitoring data due to 

the reasons, i.e., resource deficiencies, budget constraints, and 

difficulties of constantly monitoring DO changes (Money et al., 

2009). Thus, modeling DO concentration using readily measurable 

and available variables has become an essential scientific advantage.

Recently, modeling river DO concentration has attracted 

considerable attention in the literature. Many researchers have 

tried to estimate DO concentration in surface waters using different 

methods such as artificial neural networks (ANNs) (Rajaee et al., 

2020; Yang et al., 2021; Bhardwaj and Singh, 2022), fuzzy logic 

and neuro-fuzzy (Ay and Kisi, 2017; Arora and Keshari, 2021), 

evolutionary models (Sedighkia et al., 2021; Li et al., 2023), and 

support vector machine (Song et al., 2021; Nong et al., 2023). In 

addition, the use of combinations of different methods has been 

suggested in the literature (Tiyasha et al., 2021; Li et al., 2023). 

Until now, the multivariate adaptive regression splines (MARS) 

method has been successfully used by researchers in the modeling 

of various engineering problems such as predicting pile drivability 

(Zhang and Goh, 2016), estimating pan evaporation (Kisi, 2015), 

modeling air pollutants (Kisi et al., 2017), and estimating suspended 

sediment load (Yilmaz et al., 2018). The MARS method was 

firstly used by Heddam and Kisi (2018) for modeling daily DO 

concentrations together with a version of the support vector 

machine and Model 5 tree methods. 

Regression-based methods, especially linear regression 

commonly used in DO modeling studies, can provide a strong 

starting point when model is sufficiently simple, whereas 

ANNs method can more flexible and suitable for modeling 

complex data structures (Ghahramani, 2015). The present study 

focuses on constructing different regression-based methods, 

namely conventional regression analysis (CRA) and MARS, 

and ANNs to model DO concentration in the Clackamas River, 

Oregon. The main reason for selecting the Clackamas River Basin 

as the study area is the lack of a comprehensive WQ modeling study 

previously conducted in this basin. The methods were selected to 

ensure the reliability and comparability of the analysis results. 

Furthermore, comparing the performance of different modeling 

methods on DO estimation, one of the main indicators of WQ, 

increases the value of this study. The literature review reveals 

that no such study has been conducted so far. This highlights the 

uniqueness of this modeling study on the WQ of the Clackamas 

River. The objectives of this study are to (i) compare the ability 

of ANNs and regression-based methods method to estimate the 

river DO concentration, (ii) investigate the role of WQ variables 

in DO estimation, and (iii) investigate whether the model established 

for a particular station can be used for another station in the basin. 

The methods used are important for monitoring and management of 

WQ in the basin, and it is thought that a comparison study, which 

has not yet been carried out in this field, will contribute to 

practice.

2. Material and Methods

2.1 Study Area 
The Clackamas River Basin is located in the Pacific Northwest 

Region, one of the 22 hydrological regions in the USA. The river 

has approximately 134 km length main branch and 2,434 km2

drainage area. The river is home to various fish species and provides

hydroelectric power and drinking water to Portland metropolitan 

area (Edrington, 1993). Precipitation and soil erosion cause water-

Fig. 1. The Locations of the Water-Quality Monitoring Stations Operated by USGS in the Clackamas River Basin, Oregon, USA (Lee, 2011)
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quality problems such as high turbidity levels in the upper basin 

with steep topography and geologic instability. Moreover, the 

contaminants that emerged from the results of human activities 

(fishing, hiking, camping, hunting, etc.) have impacts on the river 

WQ in the lower basin (Carpenter, 2003).

The data used in this study are daily average values of measured 

and recorded data at thirty-minute intervals for each monitoring 

station operated by United States Geological Survey (USGS), 

namely USGS 14210000 (latitude 45°18'00" N and longitude 

122°21'10" E) and USGS 14211010 (latitude 45°22'46" N and 

longitude 122°34'34" E) in the Clackamas River, Oregon, USA. 

The upstream station USGS 14210000 is in a relatively undisturbed 

and sparsely populated area, while the downstream station USGS

14211010 near the city of Oregon is located in a more densely 

populated area. The locations of the monitoring stations are 

illustrated in Fig. 1.

2.2 Data Sets and Modeling Applications 
To decide input parameters is very important in modeling studies 

(Nacar et al., 2020a). Various water-quality indicators have been 

considered for modeling river DO in the literature (Table S1). In 

this study, monitoring stations USGS 14210000 and USGS 

14211010 located in the Clackamas River Basin were taken into 

account. Considering the hydro-chemical indicators measured in 

the monitoring stations and the input parameters frequently 

preferred in the literature, it was decided to consider WT, pH, 

SC, and discharge (Q) for this study. The hydro-chemical data were 

downloaded from the USGS website. Electrical conductivity 

(EC) values corresponding to SC values were computed.

There were 3586 daily average data (from October 2012 to 

September 2022) for each indicator. The data were divided into 

three sets, training (six years from October 2012 to September 

2018), validating (two years from October 2018 to September 

2020), and testing (two years from October 2020 to September 

2022). Thus, it was tested whether the function that gave good 

estimation or not for the training data set gave satisfactory 

estimations for another data set as well. Descriptive statistics of 

the daily monitored indicators for training, validating, testing, 

and all data are given in Table 1. The expressions Xmin, Xave, Xmax, 

Sx, Csx, and Ckx indicate the minimum, average, maximum, standard 

deviation, skewness coefficient, and kurtosis coefficient, respectively. 

Many statistical tests require normally distributed data. Neglecting 

to test for normality can affect the results of their findings (Matore 

and Khairani, 2020). Skewness and kurtosis quantitatively indicate 

non-normal variation in a statistical series. Skewness refers to the 

asymmetry of the curve, while kurtosis refers to the height or 

flatness of the curve (Blanca et al., 2013). Skewness and kurtosis 

values between -3 and 3 are considered normal by Peat and 

Barton (2005). When the Csx, and Ckx values are considered, it is 

seen that the Q data do not fit the normal distribution. For this 

Table 1. Descriptive Statistics for the River Water-Quality Indicators Monitored at the USGS 14210000 and USGS 14211010 Stations on the 
Clackamas River, for the Training, Validating, Testing, and All Data Sets

Data Sets
Water-quality 

indicators

USGS 14210000 USGS 14211010

Xmin Xave Xmax Sx Csx Ckx Xmin Xave Xmax Sx Csx Ckx

Training DO (mg/L) 8.09 11.12 14.36 1.54 -0.14 -1.27 8.16 11.13 14.82 1.41 -0.12 -1.08

WT (°C) 0.36 10.14 20.59 4.90 0.30 -1.15 0.23 11.48 23.61 5.59 0.36 -1.12

EC (µS/cm) 18.04 37.69 64.02 13.13 0.47 -1.31 20.22 40.41 69.22 13.72 0.54 -1.24

Q (ft3/s) 650.57 2,694.47 23,875.78 2,430.22 2.82 12.11 624.36 3,363.32 27,515.38 3,183.89 2.53 9.17

pH 6.97 7.45 8.36 0.13 0.56 3.79 6.77 7.48 8.09 0.23 -0.46 -0.48

Validating DO (mg/L) 8.69 11.23 13.83 1.29 -0.08 -1.24 8.58 11.27 13.66 1.36 -0.36 -1.21

WT (°C) 2.17 9.69 18.99 4.63 0.43 -1.15 3.14 10.95 22.09 5.25 0.50 -1.10

EC (µS/cm) 18.62 39.18 60.48 11.75 0.47 -1.12 20.63 41.75 66.58 12.57 0.58 -0.98

Q (ft3/s) 548.68 1,997.62 15,159.08 1,666.46 3.31 15.72 709.54 2,547.67 20,303.74 2,262.37 3.31 16.40

pH 7.10 7.48 7.79 0.13 0.18 -0.89 7.20 7.60 8.11 0.18 -0.30 -0.77

Testing DO (mg/L) 8.32 11.26 14.72 1.57 -0.30 -1.26 8.20 11.08 13.67 1.42 -0.44 -1.12

WT (°C) 2.48 10.25 20.32 5.05 0.58 -1.02 3.44 11.55 23.92 5.66 0.62 -0.98

EC (µS/cm) 19.74 38.93 64.50 12.83 0.64 -1.16 22.48 42.15 71.38 13.77 0.67 -1.12

Q (ft3/s) 617.07 2,665.85 23,506.91 2,468.21 3.06 13.73 700.61 3,435.58 29,801.75 3,208.05 2.88 12.88

pH 7.04 7.48 7.65 0.09 -0.75 0.82 7.01 7.51 8.01 0.21 -0.09 -0.60

All data DO (mg/L) 8.09 11.17 14.72 1.50 -0.17 -1.24 8.16 11.15 14.82 1.41 -0.23 -1.11

WT (°C) 0.36 10.08 20.59 4.89 0.39 -1.10 0.23 11.39 23.92 5.54 0.44 -1.07

EC (µS/cm) 18.04 38.23 64.50 12.83 0.50 -1.24 20.22 41.02 71.38 13.54 0.57 -1.16

Q (ft3/s) 548.68 2,555.15 23,875.78 2,327.22 2.99 13.51 624.36 3,221.90 29,801.75 3,051.47 2.74 11.08

pH 6.97 7.46 8.36 0.13 0.31 2.56 6.77 7.51 8.11 0.22 -0.46 -0.34

Xmin: minimum, Xave: mean, Xmax: maximum, Sx: standard deviation, Csx: skewness coefficient, and Ckx: kurtosis coefficient
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reason, log transformation was applied to Q data. Additionally, 

correlations between water-quality data were also examined. The 

Spearman correlation is a non-parametric measure used to assess 

the strength and direction of association between two variables. 

It does not rely on assumptions about the distribution of the 

variables, making it applicable to a wide range of data types. The 

Spearman correlation coefficient ranges from -1 to 1. A value of 1 

(high) indicates a perfect positive relationship, -1 (high) indicates a 

perfect negative relationship, and 0 (low) indicates no relationship 

between the variables (Hauke and Kossowski, 2011). 

The Spearman correlations between water-quality data are 

given in Table S2. The hydro-chemical indicators with the highest 

and lowest correlations with DO concentration for both stations 

are WT and pH, respectively. Eight models were established 

considering the correlations to determine the contribution of the 

parameters to be used in the modeling of DO concentration to the 

model performance. The univariate model was established using 

the river WT data, which are highly correlated with the DO 

concentration data. Other models were established by including 

different combinations of the river EC, Q, and pH in this univariate

model. In this way, all models having one to four variables were 

tested. Those models are given in Table 2.

It may be challenging to model extreme values in data sets. 

Therefore, all data were normalized to minimize the effects of 

the size differences of the parameters in the data set on the 

modeling ability and to increase the model performances. Despite 

different normalization formulas in the literature (Dawson and 

Wilby, 1998; Bayram et al., 2012; Fetene et al., 2018), there are 

no definitive rules as to which procedure will be applied under 

what conditions. The most used transfer function for neurons in 

the hidden and output layers of an ANN has a limited output 

range between 0 and 1. For this reason, the data must be normalized 

so as to stay within the limited output range (Rajurkar et al., 

2002). In this study, Eq. (1), in which Xn, Xi, Xmin, and Xmax stand for

the normalized, raw, minimum, and maximum values, respectively, 

was used to normalize the data belonging to the river water-

quality indicators. Normalized values close to the limit values cause 

the training of the network to slow down and become ineffective 

(Van Ooyen and Nichhuis, 1992). Therefore, the coefficients a

and b were selected as 0.8 and 0.1, respectively. Thus, all data 

were normalized between 0.1 and 0.9.

, (1)

2.3 Conventional Regression Analysis (CRA)
Regression analysis includes determining whether there is a 

significant relationship between two or more variables, if there is 

a significant relationship, expressing this relationship mathematically, 

and determining the confidence intervals of predictions using 

equations (Bayazıt, 1981). In this study, four types of regression 

functions, which are linear (LF), power (PF), exponential (EF), and

quadratic (QF), were used to model the river DO concentrations. 

The regression coefficients of the functions were obtained by 

using the least-squares method, which is a standard optimization 

method used to estimate the coefficients of the regression model, 

with IBM SPSS statistics 26 software. The least-squares method 

tries to minimize the sum of squared errors between the observations 

in the data set and the values estimated by the function. 

2.4 Multivariate Adaptive Regression Splines (MARS)
MARS, introduced by Friedman (1991), is a form of nonparametric, 

flexible, and rapid regression method that does not make assumptions 

about the functional relationship between dependent and 

independent variables. This method has included basis functions 

and coefficients based on the available data. It divides the values 

of the independent variables into regions and explains each 

region with a regression equation. In addition, the independent 

variable is estimated by the contributions of both dependent 

variables and basis functions. In the MARS method, there is a 

two-stage process that continues until the best model is obtained. 

In the first stage, all possible basis functions are created. The 

model is developed with the basis functions that are added until 

the complexity of the model reaches its maximum level. In the 

second stage, the basis functions are eliminated one by one from 

the maximum model to achieve the optimum model. A general 

MARS model can be defined by Eq. (2), in which the n, N, X, an, 

0, n(Xt), and ɛi stand for the number of knots, number of basis 

functions, argument, nst coefficient of the basis function, constant 

term in the model, n for the argument of tst basis function, and 

disturbance, respectively.

, (2)

2.5 Artificial Neural Networks (ANNs)
An ANN is a type of machine learning model that is inspired 

by the structure and function of the human brain. The ANNs 

are widely used to model complex and non-linear relationships, 

especially when the explicit form of the relationship between 

variables is unknown (Kohonen, 1988). An ANN architecture 

typically consists of three main layers, an input layer, a set of 

hidden layers and an output layer, which are connected to each 

other by neurons (Singh et al., 2009). The advantages of ANNs 

are that they make no assumptions about the structure of the 

data set and the models are developed based on the training 

algorithm (Rezaei et al., 2009).
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Table 2. The Input Combinations of Different Dissolved Oxygen Models

Models Independent variables

M1 WT

M2 WT EC

M3 WT Q

M4 WT pH

M5 WT EC Q

M6 WT EC pH

M7 WT Q pH

M8 WT EC Q pH
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2.6 Model Performance Statistics
To determine the most capable method used in the study, root 

mean square error (RMSE), Willmott’s index of agreement 

(d), and Nash-Sutcliffe efficiency coefficient (NSEC) were 

used as performance statistics. Lower RMSE values indicate 

higher model performances (Moriasi et al., 2007). A statistical 

measure used to evaluate the degree of agreement between 

two data sets, d is commonly used in the fields of hydrology, 

meteorology, and environmental science. It ranges between 0 

and 1, with 1 indicating perfect agreement between the two 

data sets, and 0 indicating no agreement at all (Willmott, 1981).

A NSEC less than 0 occurs when the monitored mean is a 

better predictor than the model. As NSEC approaches 1, the 

model accuracy increases (Singh et al., 2005). While the 

NSEC primarily focuses on predictive performance relative 

to the mean of the monitored data, d focuses on both mean 

bias and scatter. The performance statistics are calculated by 

Eqs. (3) − (5) given below:

, (3)

, (4)

, (5)

where N, ti, tdi, and , stand for data number, monitored and 

estimated values, and average of measured values, respectively.

3. Results 

In this section, the performances of the estimation methods were 

investigated in modeling the river DO concentration. For each 

monitoring station, eight models were constituted using particular 

combinations of the hydro-chemical indicators, WT, pH, EC, and 

Q, as input parameter for modeling the river DO concentration. 

The performance statistics of the models and methods were 
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Table 3. The Performance Statistics of the CRA, MARS, and ANNs Methods Concerning the Training, Validating, and Testing Phases for the USGS 
14210000 Station on the Clackamas River

Models Statistics
Training Validating Testing

LF PF EF QF MARS ANNs LF PF EF QF MARS ANNs LF PF EF QF MARS ANNs

M1 RMSE 0.357 0.702 0.353 0.353 0.327 0.347 0.447 0.494 0.440 0.439 0.444 0.427 0.414 0.689 0.402 0.400 0.392 0.374

NSEC 0.946 0.792 0.947 0.947 0.955 0.949 0.880 0.854 0.884 0.884 0.882 0.891 0.930 0.806 0.934 0.935 0.941 0.946

d 0.986 0.933 0.986 0.986 0.988 0.986 0.972 0.956 0.973 0.973 0.973 0.974 0.982 0.929 0.983 0.983 0.985 0.985

M2 RMSE 0.309 0.405 0.267 0.257 0.240 0.265 0.414 0.450 0.374 0.340 0.348 0.331 0.392 0.569 0.363 0.348 0.387 0.328

NSEC 0.960 0.931 0.970 0.972 0.976 0.970 0.897 0.878 0.916 0.931 0.927 0.934 0.937 0.868 0.946 0.950 0.943 0.959

d 0.990 0.981 0.992 0.993 0.994 0.992 0.975 0.966 0.980 0.983 0.982 0.984 0.984 0.958 0.986 0.987 0.984 0.989

M3 RMSE 0.254 0.347 0.214 0.203 0.178 0.264 0.370 0.503 0.328 0.329 0.304 0.264 0.303 0.406 0.247 0.256 0.284 0.214

NSEC 0.973 0.949 0.981 0.983 0.987 0.971 0.918 0.848 0.935 0.935 0.945 0.958 0.963 0.933 0.975 0.973 0.969 0.982

d 0.993 0.986 0.995 0.996 0.997 0.992 0.980 0.960 0.985 0.985 0.987 0.989 0.991 0.981 0.994 0.993 0.992 0.995

M4 RMSE 0.355 0.687 0.350 0.342 0.318 0.324 0.450 0.443 0.439 0.402 0.395 0.389 0.414 0.672 0.397 0.383 0.370 0.365

NSEC 0.947 0.800 0.948 0.951 0.957 0.956 0.879 0.882 0.884 0.903 0.907 0.909 0.930 0.816 0.936 0.940 0.948 0.949

d 0.986 0.937 0.986 0.987 0.989 0.988 0.972 0.965 0.973 0.977 0.978 0.978 0.982 0.934 0.983 0.984 0.986 0.986

M5 RMSE 0.251 0.339 0.213 0.198 0.168 0.247 0.363 0.491 0.331 0.328 0.348 0.281 0.290 0.429 0.254 0.272 0.313 0.202

NSEC 0.973 0.951 0.981 0.984 0.988 0.974 0.921 0.855 0.934 0.935 0.927 0.953 0.966 0.925 0.974 0.970 0.962 0.984

d 0.993 0.987 0.995 0.996 0.997 0.993 0.981 0.962 0.984 0.985 0.983 0.988 0.991 0.978 0.993 0.992 0.990 0.996

M6 RMSE 0.308 0.398 0.267 0.251 0.234 0.275 0.408 0.451 0.373 0.316 0.331 0.302 0.393 0.569 0.363 0.340 0.395 0.308

NSEC 0.960 0.933 0.970 0.973 0.977 0.968 0.900 0.878 0.916 0.940 0.934 0.945 0.937 0.868 0.946 0.953 0.940 0.964

d 0.990 0.982 0.992 0.993 0.994 0.992 0.976 0.966 0.980 0.985 0.984 0.986 0.984 0.957 0.985 0.987 0.984 0.990

M7 RMSE 0.250 0.346 0.213 0.196 0.173 0.243 0.353 0.502 0.323 0.302 0.276 0.266 0.298 0.405 0.245 0.249 0.278 0.182

NSEC 0.974 0.949 0.981 0.984 0.987 0.975 0.925 0.849 0.937 0.945 0.954 0.958 0.964 0.933 0.975 0.975 0.970 0.987

d 0.993 0.987 0.995 0.996 0.997 0.994 0.982 0.960 0.985 0.987 0.989 0.990 0.991 0.981 0.994 0.993 0.992 0.997

M8 RMSE 0.652 0.336 0.212 0.189 0.162 0.218 0.596 0.488 0.326 0.303 0.305 0.276 0.763 0.430 0.253 0.265 0.311 0.216

NSEC 0.820 0.952 0.981 0.985 0.989 0.980 0.787 0.857 0.936 0.945 0.944 0.954 0.762 0.924 0.974 0.971 0.963 0.982

d 0.943 0.987 0.995 0.996 0.997 0.995 0.939 0.962 0.985 0.987 0.986 0.989 0.927 0.978 0.993 0.992 0.990 0.995

Bold italic: the highest values, 
The unit of RMSE: mg/L
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compared with each other to determine the model and method 

with the highest performance. Firstly, the CRA method was 

applied to the river water-quality data, and the optimum values 

for the coefficients of different regression forms were determined. 

The optimum coefficients obtained for each model and function 

as a result of the analysis are given in Tables S3 and S4 for 

upstream and downstream monitoring stations, respectively. In 

the next step, the MARS and ANNs methods were implemented. 

For the MARS method, the equations were determined using the 

basis functions. The basis functions and equations of the MARS 

method are presented in Tables S5 − S7 for the same monitoring 

stations, respectively.

The estimation methods were compared with each other based 

on their performance statistics in training, validating, and testing 

sets. It was determined that there were differences between the 

performances of the models for all data sets. However, it was 

observed that each model had acceptable performance statistics, 

which are given in Tables 3 and 4 for the monitoring stations, 

respectively. For both stations, the most appropriate performance 

statistics were obtained from QF for training and validating data 

sets, and EF and QF for the testing data sets in the CRA method. 

Since the performance statistics values of EF and QF were very 

close to each other in the testing data sets, QF was selected as the 

best function of the CRA method and its results were considered 

in the evaluation of the models.

For upstream station, the RMSE range was 0.189 − 0.439 mg/

L for CRA, 0.162 − 0.444 mg/L for MARS, and 0.182 − 0.427 mg/

L for ANNs. The NSEC values changed 0.884 − 0.985, 0.882 −

0.989, and 0.891 − 0.987 for the same methods, respectively. The 

d values changed 0.973 − 0.996, 0.973 − 0.997, and 0.974 −

0.997 for the same methods, respectively. The lowest RMSE and 

highest NSEC and d values were obtained from Model 8 for 

training phase by the MARS method, and Model 7 for validating 

and testing phases by the ANNs method.

For downstream station, the RMSE range was 0.168 −

0.241 mg/L for CRA, 0.184 − 0.240 mg/L for MARS, and 0.158 

− 0.245 mg/L for ANNs. The NSEC values changed 0.971 −

0.985, 0.969 − 0.984, and 0.970 − 0.987 for the same methods, 

respectively. The d values changed 0.993 − 0.996, 0.992 − 0.996, 

and 0.992 − 0.997 for the same methods, respectively. The lowest 

Table 4. The Performance Statistics of the CRA, MARS, and ANNs Methods Concerning the Training, Validating, and Testing Phases for the USGS 
14211010 Station on the Clackamas River

Models Statistics
Training Validating Testing

LF PF EF QF MARS ANNs LF PF EF QF MARS ANNs LF PF EF QF MARS ANNs

M1 RMSE 0.266 0.495 0.240 0.241 0.234 0.245 0.217 0.428 0.206 0.206 0.209 0.201 0.213 0.490 0.200 0.200 0.213 0.205

NSEC 0.965 0.877 0.971 0.971 0.973 0.970 0.974 0.901 0.977 0.977 0.976 0.978 0.978 0.881 0.980 0.980 0.979 0.981

d 0.991 0.964 0.993 0.993 0.993 0.992 0.993 0.969 0.994 0.994 0.994 0.994 0.994 0.960 0.995 0.995 0.995 0.995

M2 RMSE 0.265 0.387 0.233 0.225 0.214 0.227 0.215 0.479 0.208 0.199 0.240 0.194 0.211 0.452 0.198 0.206 0.232 0.209

NSEC 0.965 0.925 0.973 0.975 0.977 0.974 0.975 0.876 0.977 0.979 0.969 0.980 0.978 0.899 0.981 0.979 0.975 0.980

d 0.991 0.980 0.993 0.994 0.994 0.993 0.993 0.962 0.994 0.994 0.992 0.995 0.994 0.968 0.995 0.994 0.993 0.995

M3 RMSE 0.266 0.388 0.239 0.234 0.224 0.229 0.217 0.488 0.207 0.194 0.195 0.193 0.213 0.419 0.201 0.206 0.230 0.204

NSEC 0.965 0.925 0.971 0.973 0.975 0.974 0.975 0.871 0.977 0.980 0.980 0.980 0.978 0.913 0.980 0.979 0.976 0.981

d 0.991 0.979 0.993 0.993 0.994 0.993 0.993 0.960 0.994 0.995 0.995 0.995 0.994 0.974 0.995 0.994 0.994 0.995

M4 RMSE 0.266 0.492 0.238 0.236 0.222 0.240 0.214 0.449 0.197 0.191 0.203 0.190 0.211 0.501 0.195 0.193 0.205 0.193

NSEC 0.965 0.879 0.972 0.972 0.975 0.971 0.975 0.891 0.979 0.980 0.978 0.980 0.978 0.876 0.981 0.982 0.981 0.983

d 0.991 0.965 0.993 0.993 0.994 0.993 0.994 0.965 0.995 0.995 0.994 0.995 0.994 0.958 0.995 0.995 0.995 0.996

M5 RMSE 0.263 0.379 0.228 0.218 0.210 0.218 0.207 0.487 0.196 0.192 0.221 0.187 0.208 0.426 0.195 0.195 0.223 0.199

NSEC 0.965 0.928 0.974 0.976 0.978 0.976 0.977 0.872 0.979 0.980 0.974 0.981 0.979 0.910 0.981 0.981 0.977 0.982

d 0.991 0.980 0.993 0.994 0.994 0.994 0.994 0.961 0.995 0.995 0.993 0.995 0.995 0.972 0.995 0.995 0.994 0.995

M6 RMSE 0.265 0.377 0.226 0.212 0.197 0.210 0.208 0.437 0.176 0.168 0.196 0.164 0.207 0.426 0.180 0.179 0.188 0.169

NSEC 0.965 0.929 0.974 0.977 0.981 0.978 0.977 0.897 0.983 0.985 0.979 0.985 0.979 0.910 0.984 0.984 0.984 0.987

d 0.991 0.981 0.993 0.994 0.995 0.994 0.994 0.969 0.996 0.996 0.994 0.996 0.995 0.972 0.996 0.996 0.996 0.997

M7 RMSE 0.266 0.380 0.236 0.224 0.207 0.222 0.214 0.451 0.191 0.175 0.194 0.169 0.212 0.391 0.192 0.185 0.205 0.187

NSEC 0.965 0.928 0.972 0.975 0.979 0.975 0.975 0.890 0.980 0.984 0.980 0.985 0.978 0.925 0.982 0.983 0.981 0.984

d 0.991 0.980 0.993 0.994 0.995 0.994 0.994 0.967 0.995 0.996 0.995 0.996 0.994 0.978 0.995 0.996 0.995 0.996

M8 RMSE 0.312 0.368 0.224 0.207 0.192 0.216 0.237 0.443 0.175 0.170 0.184 0.158 0.272 0.393 0.181 0.172 0.192 0.170

NSEC 0.951 0.932 0.975 0.979 0.982 0.977 0.970 0.894 0.983 0.984 0.982 0.986 0.963 0.924 0.984 0.985 0.983 0.987

d 0.988 0.982 0.994 0.995 0.995 0.994 0.992 0.968 0.996 0.996 0.995 0.996 0.991 0.977 0.996 0.996 0.996 0.997

Bold italic: the highest values, 
The unit of RMSE: mg/L
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RMSE and highest NSEC and d values were obtained from 

Model 8 for training phase by the MARS method, Model 8 for 

validating phase by the ANNs method, and Model 6 for testing 

phases by the ANNs method.

It is seen from Tables 3 and 4 that the performance statistics 

obtained from Models 7 and 8 for upstream station and Models 6 

and 8 for downstream station are close to each other, and the river 

DO concentration can be successfully modeled for all methods. 

Based on the results, the optimal model for both stations was 

selected as Model 8, the combination using all hydro-chemical 

indicators as input. For the optimal model, the graphical results 

in the training, validating, and testing phases are given in the forms 

of scatter plots (Figs. 2 and 3). As the estimated and monitored 

values get closer to each other, the scattering becomes intense 

around the diagonal. The relative error on the diagonal is zero. It 

is seen from Figs. 2 and 3 that the estimated values are very close 

to the measured data.

Eight models established with data from October 2012 to 

September 2018 data for upstream station were tested with the 

same period data for downstream station. Similarly, the models 

built for downstream station were tested with the same period 

data for upstream station. The performance statistics calculated 

for the test results of the stations related to these studies are given 

in Table 5. 

The most appropriate performance statistics of the CRA 

method were obtained from the LF and QF for upstream station 

Fig. 2. The Scatter Plots of the River DO Concentrations Monitored versus Estimated by Model 8 Using the Methods: (a) CRA_QF, (b) MARS, (c) ANNs for 
USGS 14210000
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and EF and QF for downstream station. The lowest RMSE values

and highest NSEC and d values for the CRA, MARS, and ANNs 

methods were obtained from Models 8, 7, and 1, respectively, for 

upstream station and Models 4, 4 and 1, respectively, for downstream 

station. The highest NSEC values for the CRA, MARS and ANNs 

methods were 0.940, 0.926, and 0.910, respectively, for upstream 

station and 0.957, 0.887, and 0.948, respectively, for downstream 

station. According to the classification by Moriasi et al. (2007), 

these values are categorized as “very good”.

4. Discussion

This study, which estimated DO concentrations using daily average 

WQ data from two stations on the Clackamas River, has some 

limitations. Firstly, the use of WQ data in the study, although 

intended to assess general trends over a given time period, may 

be limited in reflecting changes in higher temporal resolution 

data. Furthermore, the study results may not be directly applicable 

to other rivers or different geographical regions due to the focus 

on specific stations on a particular river. The most frequently 

used independent variables in DO modeling studies are WT, Q, 

EC or SC, and pH, respectively (Nacar et al., 2020a). Therefore, 

these variables were considered in this study. Eight models were 

established to evaluate the effect of each parameter on model 

performance. Although the selected WQ variables represent various 

aspects of DO concentrations, they do not cover all factors affecting 

Fig. 3. The Scatter Plots of the River DO Concentrations Monitored versus Estimated by Model 8 Using the Methods: (a) CRA_QF, (b) MARS, (c) ANNs for 
USGS 14211010
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DO dynamics. There are also studies in the literature (Nacar et 

al., 2020b; Abba et al., 2021; Garabaghi et al., 2023) to determine 

the effects of parameters on the performance of DO models. 

In the estimation of DO concentrations for different periods of 

the same station, the model having all parameters as input was 

selected as the optimal model. For both stations, the highest 

estimation performance was obtained from the MARS method in 

the training data set and from the ANNs method in the validating 

and testing data sets. However, the best performance statistical 

values vary slightly from model to model. In the DO modeling 

study conducted by Yaseen et al. (2018) using WT, pH, SC, and 

Q parameters, the most successful predictions were obtained 

from the model having all parameters as input. It was stated that 

providing more information to the model by increasing the number 

of input parameters could improve the model performance. The 

performance of the models established by adding different 

combinations of EC, Q, and pH parameters to Model 1, which was 

created using WT, the WQ variable with the highest correlation 

with DO concentration for upstream station, increased between 

1.32 and 4.33%. It was calculated that the performances of the 

two-input models established by adding EC, Q, and pH parameters, 

respectively, to Model 1 increased by 1.32, 3.81 and 0.28%, 

respectively, compared with Model 1. It was determined that 

Model 7 established with the Q and pH parameters added to 

Model 1 had the highest performance in DO estimation. According 

to the NSEC values, Model 7, in which EC parameter was excluded, 

outperformed the optimal model by 0.53%. In the study performed 

by Kisi et al. (2020), it was determined that SC parameter had a 

negligible effect on DO concentration compared to WT and pH 

parameters. For downstream station, the performance of the models 

established by adding different combinations of EC, Q and pH 

parameters to Model 1 changes between -0.07 and 0.63%. It was 

calculated that the performances of the two-input models established 

by adding EC, Q and pH parameters, respectively, to Model 1 

increased by -0.07, 0.02 and 0.21%, respectively, compared with 

Model 1. It was determined that Model 6 established with the EC 

and pH parameters added to Model 1 had the highest performance. 

Although Model 6 had the highest performance, it performed 

Table 5. The Comparison of the Results from the CRA, MARS, and ANNs Methods for the USGS 14210000 and USGS 14211010 Stations, 
Clackamas River, Oregon (October 2012 to September 2018) 

Models Statistics
USGS14210000 USGS14211010

LF PF EF QF MARS ANNs LF PF EF QF MARS ANNs

M1 RMSE 0.480 0.751 0.480 0.479 0.543 0.460 0.295 0.506 0.280 0.279 0.566 0.323

NSEC 0.903 0.762 0.903 0.903 0.875 0.910 0.956 0.872 0.961 0.961 0.840 0.948

d 0.972 0.923 0.972 0.972 0.963 0.975 0.990 0.961 0.991 0.991 0.967 0.987

M2 RMSE 0.475 0.568 0.462 0.460 0.494 0.463 0.339 0.450 0.327 0.326 0.598 0.370

NSEC 0.904 0.863 0.910 0.910 0.897 0.910 0.943 0.899 0.947 0.947 0.821 0.931

d 0.973 0.958 0.974 0.975 0.970 0.974 0.986 0.974 0.987 0.987 0.957 0.984

M3 RMSE 0.483 0.566 0.475 0.471 0.525 0.469 0.420 0.532 0.421 0.425 0.585 0.480

NSEC 0.901 0.865 0.905 0.906 0.884 0.907 0.912 0.858 0.911 0.910 0.829 0.885

d 0.972 0.959 0.973 0.974 0.966 0.973 0.980 0.966 0.980 0.979 0.965 0.972

M4 RMSE 0.489 0.727 0.501 0.496 0.508 0.501 0.301 0.506 0.292 0.353 0.475 0.551

NSEC 0.899 0.776 0.894 0.896 0.891 0.894 0.955 0.872 0.957 0.938 0.887 0.848

d 0.971 0.927 0.970 0.970 0.969 0.970 0.989 0.963 0.990 0.983 0.975 0.955

M5 RMSE 0.485 0.554 0.472 0.467 0.548 0.468 0.430 0.511 0.415 0.413 0.571 0.477

NSEC 0.901 0.870 0.906 0.908 0.873 0.907 0.907 0.869 0.914 0.915 0.837 0.886

d 0.972 0.961 0.973 0.974 0.964 0.974 0.979 0.969 0.980 0.980 0.964 0.973

M6 RMSE 0.489 0.607 0.502 0.505 0.427 0.580 0.348 0.465 0.328 0.327 0.508 0.530

NSEC 0.899 0.844 0.894 0.892 0.923 0.858 0.939 0.892 0.946 0.947 0.871 0.860

d 0.972 0.954 0.970 0.969 0.979 0.964 0.985 0.972 0.987 0.987 0.971 0.963

M7 RMSE 0.489 0.608 0.502 0.504 0.419 0.574 0.433 0.532 0.422 0.447 0.533 0.579

NSEC 0.899 0.844 0.894 0.892 0.926 0.861 0.906 0.858 0.911 0.900 0.858 0.832

d 0.971 0.954 0.970 0.969 0.980 0.964 0.978 0.966 0.979 0.975 0.970 0.957

M8 RMSE 0.378 0.600 0.500 0.514 0.465 0.500 0.486 0.511 0.417 0.450 0.519 0.582

NSEC 0.940 0.848 0.895 0.889 0.908 0.894 0.882 0.870 0.913 0.899 0.865 0.831

d 0.984 0.955 0.971 0.968 0.975 0.970 0.965 0.969 0.980 0.974 0.970 0.957

Bold italic: the highest values

The unit of RMSE: mg/L
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only 0.02% above the optimal model according to NSEC values. 

Ay and Kisi (2012) stated that the accuracy of the model obtained by 

including Q in the model established with WT, EC, and pH 

parameters was lower for ANNs method. For downstream station, 

the effect of the parameters added to Model 1 is lower compared 

to upstream station. This is thought to be due to the fact that the 

factors affecting WQ may be more balanced and stable in 

upstream station, which is surrounded by relatively undisturbed 

lands, and may be also more diverse and variable in downstream 

station, where human effect is higher because it is closer to 

settlements.

The best model for estimating DO concentrations from one 

station to another varies according to the methods. The lowest 

RMSE and the highest d and NSEC values were obtained from 

Model 8 using LF in the CRA method, Model 7 in the MARS 

method and Model 1 in the ANNs method for upstream station, 

and from Model 1 using QF in the CRA method, Model 4 in the 

MARS method, and Model 1 in the ANNs method for downstream 

station. The highest performance statistics among the models 

determined as the best belong to the CRA method for both 

stations. When compared the NSEC values of the best models 

for each method, it was determined that the performance of the 

CRA method was higher than the MARS and ANNs methods as 

1.52 and 3.27%, respectively, for upstream station and 8.32 and 

1.40%, respectively, for downstream station. Ahmed and Lin (2021) 

stated that vegetation cover, agricultural and build-up areas in the 

watersheds may be effective in the relationship between SC and 

pH parameters with DO. While pH parameter had a great 

importance in DO estimation in some studies (Heddam and Kisi, 

2018; Yang et al., 2021), its effect on model performance was 

negligible in some studies (Ay and Kisi, 2017; Nacar et al., 2020b). 

This is thought to be due to the fact that the models established 

are specific to the relevant stations.

The hydro-chemical data for upstream station were also used 

by Keshtegar and Heddam (2018) with different variables, methods, 

and time intervals for DO modeling. They used two nonlinear 

mathematical modeling approaches, namely modified response 

surface method (MRSM) and multilayer perceptron neural network 

(MLPNN). As input parameters, Q, pH, SC, and turbidity were 

considered in their estimation models. The NSEC values were 

calculated as 0.802 and 0.804 for the training data set, 0.776 and 

0.796 for the validating data set, and 0.782 and 0.791 for the testing 

data set for the MLPNN and MRSM methods, respectively. This 

study has higher NSEC values, for DO concentrations modeled 

using different parameters and methods in different time periods 

at the same station It is thought that the characteristics of the 

different models and data sets used are effective on these values. 

However, the calculated NSEC values support the efficiency and 

reliability of the methods used for modeling DO concentrations.

5. Conclusions

In this study, the applicability of three modeling methods, 

conventional regression analysis (CRA), multivariate adaptive 

regression splines (MARS), and artificial neural networks (ANNs), 

were investigated in modeling daily average dissolved oxygen 

(DO) concentration. The hydro-chemical data of two monitoring 

stations (USGS 14210000 and USGS 14211010) located on the 

Clackamas River, Oregon, were used for modeling. The daily 

average data of the discharge (Q), water temperature (WT), pH, 

and specific conductance (SC), as well as DO data from October 

2012 to September 2022, were used for the modeling DO. Eight 

models having different input combinations have been compared 

using several performance statistics. 

The function with the best performance in the CRA method 

varied from model to model and station to station. The highest 

performance values were generally obtained from QF in the 

CRA method. The performances of the methods are quite close 

to each other. For both stations, it was determined that the best 

methods were the MARS for the training data set and the ANNs 

for the validating and testing data sets. 

In the estimation of DO concentrations for different periods of 

the same stations, the model performance increases for all methods 

as the number of inputs increases. On the other hand, for the 

same period from one station to another, the models with fewer 

input parameters performed better in the ANNs method.

The models and methods could estimate the river DO 

concentrations very close to monitored data both same periods 

for another station and another period for same station. In this 

way, it is thought that data deficiencies caused by the inability to 

perform measurements at the stations due to various reasons, 

such as adverse weather conditions, maintenance and repair 

works, and staff shortage, could be overcome.

Modeling complex and dynamic river systems requires 

simplifications and assumptions that no fully reflect the complexity 

of real-world conditions. In this study, daily averages of hydro-

chemical parameters were considered, and temporal variations 

were neglected. In addition, climate change projections and land 

use changes were not included in the models. It is thought that 

investigating the accuracy of estimations by including these 

parameters in the models may be the subject of another study.
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