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1. Introduction

The bearing capacity assessment approaches for foundations can 

be broadly divided into the four categories as follows: (a) the 

limit analysis approach, (b) the limit equilibrium approach, (c) 

stress characteristics approach, and (d) numerical analysis. Among

the above approaches, the limit equilibrium approach is extensively

used due to its simplicity of formulation. However, regardless of 

the analysis approach used, previous studies generally followed 

the linear Mohr-Coulomb (MC) criterion. Although the research 

on nonlinear criterion has been developed, the essence of most 

approaches is to linearize it, so the study on how to truly 

characterize the nonlinearity of geotechnical material failure is 

essential.

Prandtl adopted the ideal rigid plastic theory with linear MC 

criterion, the shape of the sliding surface of rigid strip foundation 

pressed into c and  soil and the corresponding formula of 

ultimate bearing capacity is obtained. Based on Prandtl sliding 

surface, the effect of uniformly distributed load q was added, and 

the bearing capacity of weightless and cohesionless materials 

was obtained. Considered the influence of the soil weight, 

Terzaghi (1943) divided the failure mechanism into three parts, 

contain two rigid triangles and the shear zone, in which the shear 

zone was consist of a logarithmic spiral curve equation, its 

conclusion formula is presented as follow:

. (1)

In addition, Soubra (1999) calculated the foundation bearing 
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capacity following a multi-block failure mechanism. After that, 

many scholars contributed to related research. Most of the above 

studies used the linear MC criterion, but extensive experimental 

investigations have indicated that linear damage is only a special 

case, and geotechnical media tend to obey nonlinear damage.

Zhang and Chen (1987) introduced the nonlinear failure 

criterion, the development of bearing capacity of foundation and 

slope stability research following the nonlinear failure criterion 

has increased step by step. Drescher and Christopoulos (1988) 

first combined the nonlinear yielding conditions with limit 

analysis, and constructive suggestions for subsequent research 

are presented. Hoek (1990) linearized the Hoek-Brown criterion 

using the single tangent approach and estimates the bearing 

capacities based on the failure criterion after linearization. Its 

shear strength parameters were related to the location of the 

tangent point on the strength envelope. The normal stress in the 

solution area was assumed to be the same, which was inconsistent

with the engineering practice. Yang and Yin (2005) employed 

the generalized tangential technique and combined it with upper 

bound analysis to solve the problems of slope stability. The 

essence of the approach was to linearize the nonlinear failure 

criterion and to analyze the foundation bearing capacity. Fraldi 

and Guarracino (2009) adopted the variational approach to deal 

with the Hoek-Brown criterion and studied the tunnel collapse 

problem. Serrano et al. (2016) combined the characteristic approach 

and the power-law criterion to study the bearing capacity of strip 

foundation on the weightless soil. Yu et al. (2019) considered the 

nonlinear MC criterion and pore pressure, employed three-

dimensional failure mechanisms to assess tunnel collapse issues. 

AlKhafaji et al. (2020) estimated the problem of bearing capacity 

of rock foundations employing the modified Hoek-Brown criterion, 

and the effect of horizontal seepage force was considered. 

However, the mechanisms used were still the traditional multi-

wedge failure mechanisms. Ganesh and Kumar (2021) assessed 

the bearing capacity of both rough and smooth foundations 

employing the stress characteristic approach based on the nonlinear

failure criterion. However, fewer specifically researches have 

been executed so far to calculate the foundation bearing capacity 

following upper bound analysis considering a nonlinear MC 

criterion. And most of the studies only linearized the nonlinear 

criterion, the results were conservative (Yang and Huang, 2011). 

Michalowski and Park (2020) put forward a collapse mechanism 

for slope stability analysis with the Hoek-Brown criterion, and 

obtained a more optimal solution. The collapse mechanism was 

divided into n blocks, each with its own unique rupture angle, 

thus corresponding to the variation of the strength envelope. 

The above study provided the idea for performing the analysis 

without affecting real nonlinear pressure dependency of the 

strength criterion.

For the assessment of seismic bearing capacity of foundations, 

initially most scholars used the pseudo-static method (Dormieux 

and Pecker, 1995; Kumar and Mohan Rao, 2002; Cascone and 

Casablanca, 2016; Pane et al., 2016; Conti, 2018; Zhang et al., 

2021; Beygi et al., 2022), but the seismic action is a dynamic 

corresponding process, so some scholars adopted the pseudo-

dynamic method afterwards (Ghosh, 2008; Zhong et al., 2022; 

Chen et al., 2022). However, the pseudo-dynamic approach did 

not consider the zero-stress boundary condition of the free 

surface and the effect of the damping ratio of the soil. Therefore, 

Bellezza (2014) proposed a modified pseudo-dynamic method. 

Subsequently, some scholars adopted this method for their studies 

(Soufi et al., 2021; Tavakoli et al., 2022).

Ganesh and Kumar (2022) evaluated the seismic bearing 

capacity of rough strip foundations using the stress characterization

method based on the nonlinear MC criterion, however, the 

dynamic characteristics of seismic forces were not considered. 

Nadgouda and Choudhury (2021) investigated the seismic bearing

capacity coefficient of foundations on dry sand using the modified

pseudo-dynamic method. Xu and Zhou (2023) studied the seismic

bearing capacity of foundations on unsaturated soils using the 

modified pseudo-dynamic method. But the two studies above 

did not consider the nonlinear damage characteristics of the soil. 

Liu et al. (2022) investigated the seismic bearing capacity of 

rock foundations using the modified pseudo-dynamic method, 

but it does not truly reflect the characteristics of nonlinear damage

of geotechnical bodies because it still uses the single tangent 

method to deal with the Hoek-Brown criterion.

Therefore, following the upper bound method, this paper 

proposed two types of piece-wise log-spiral failure mechanisms 

for bearing capacity estimations considering the nonlinear failure 

criterion of geotechnical materials. Changing the traditional way 

of thinking about analysis and establishing two modified failure 

mechanisms. The case of no seismic is considered using a 

symmetrical failure mechanism, and the case of seismic is 

considered based on a unilateral failure mechanism and the 

modified pseudo-dynamic approach. The optimal solution of 

the static and seismic bearing capacity can be obtained employing

the genetic algorithm (GA), and the approximate stress distribution

of part of the fracture surface is depicted. To confirm the 

feasibility of the used approach, the results are compared with 

results from previous literature, and the influence of the nonlinear

parameters is discussed. In addition, the influence of the MPD 

parameters on seismic bearing capacity is analyzed according 

to the unilateral failure mechanism. The analysis shows that a 

better upper limit solution can be obtained using the approach 

proposed in the paper. The approach provides a new idea for 

the seismic bearing capacity calculation of foundations resting 

on c and  soil.

2. Methodology

2.1 Nonlinear Mohr-Coulomb Criterion
The maximum principal stress 1 and the minimum principal 

stress 3 are linearly related in the MC criterion, as shown in Fig. 1. 

The formula is as follows.

, (2)

with the material parameters defined as

1 = qp + Mp3
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, (4)

where qp and Mp are the shear strength index of soil. However, 

many experiments have shown that the damage of soil follows a 

nonlinear criterion. To make the calculation convenient, the 

nonlinear strength criterion of soil is generally expressed by 

normal stress and tangential stress. A variety of expressions have 

been proposed in the previous literature, but the proposed 

formulas are in power exponential form, and the parameters can 

be converted to each other. The expression adopted in this paper 

is as follows:

(5)

where c0 is the cohesion at zero normal stress, and , n, t and m

are the shear stress, the normal stress, the tensile stress, and the 

nonlinear parameter, respectively. When the value of m is 1, the 

nonlinear criterion parameter can be equivalent to the linear MC 

criterion parameter. Generally, the failure characteristics of soil 

under different stress conditions are obtained through the triaxial 

test, and then the parameters of the nonlinear MC criterion are 

calculated in the fitting approach.

2.2 Piece-Wise Method
Two main methods combine the limit analysis theorem with 

the nonlinear criterion: variational principles and generalized 

tangential technique. Generalized tangential technique is widely 

adopted due to its convenience, which proposed by Yang and 

Yin (2004). The principle of the above method is to replace the 

nonlinear strength envelope with the tangent of a point on the 

failure envelope. Therefore, the strength of other points on the 

tangent must be larger than the true shear strength of materials. 

According to the theory, the upper limit solution of the tangent is 

the upper bound of the real ultimate load, which is widely used.

In this paper, the piece-wise log-spiral method is adopted. It is 

necessary for the subsequent study of the paper that the nonlinear 

criterion can be written as a connection between shear stress 

and normal stress n. Then, transforms Eq. (5) into a parametric 

equation about the angle  in Eqs. (6) and (7). The meaning of 

the angle  will be explained in the following sections.

(6)

(7)

The piece-wise log-spiral method cannot be discussed in 

isolation and is a treatment that closely links the nonlinear failure 

criterion to a specific failure mechanism. The method is reflected 

in the fact that it uses multiple points on the failure envelope, and 

it’s essentially a modified application of the multiple tangent 

method. The details of the presentation are discussed in the 

following sections.

2.3 Modified Pseudo-Dynamic Method
Compared with the traditional pseudo-dynamic method, the 

method takes into account the zero stress boundary condition of 

the free surface and the influence of the damping ratio of the 

geotechnical body (Bellezza, 2014), and its main equation is as 

follows:

(8)

(9)

, (10)

, (11)

, (12)

, (13)

, (14)
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Fig. 1. Nonlinear Mohr-Coulomb Failure Envelope: (a) Shear Stress 
and Normal Stress, (b) Stress Vector T
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, (15)

, (16)

where s is the angular frequency,  is the damping ratio, kh is the 

initial factor of seismic acceleration, H is the depth to bedrock, y1
and y2 are constants, and g is the acceleration of gravity, Vs is the 

velocity of the shear wave.

3. Seismic and Static Bearing Capacity

3.1 Failure Mechanism of Foundation
Various foundation failure mechanisms are proposed by many 

scholars. Thus, the selection of the failure mechanism leading to 

the reduction of the maximum dissipated energy rate is the key 

point for analyzing the foundation bearing capacity. Combined 

with the nonlinear MC criterion, two types of piece-wise log-

spiral failure mechanisms for strip footing, including symmetrical

and unilateral mechanisms were established in this paper. The 

failure mechanism in which bilateral symmetry is selected as an 

example is described as follows. The soil body under the strip 

foundation is divided into three parts (right side half). Each part 

moves or rotates as a whole. As the mechanism is symmetrical, 

the right half of the mechanism is presented in Fig. 2, which is 

consist of rigid body ABC, log-spiral plastic zone BCD, and 

rigid body BDE. Only the rigid body ABC is beneath the 

foundation in the failure mechanism. Energy dissipation occurs 

in the velocity discontinuity surface and inside the plastic 

zone. It should be emphasized that it is assumed that DE in the 

mechanism is tangent to the curve CD, so there is no energy 

dissipation on BD. The first block of the plastic zone BCD’s 

velocity hodograph is presented in Fig. 3 and vCB is obtained.

Different from other failure mechanisms, the log-spiral plastic 

zone BCD is mainly explained, as shown in Fig. 4. When the 

foundation is damaged, the plastic zone rotates around point B. 

A rupture surface is depicted by line C0CjCn, which can be 

thought of as a thin zone of the soil that comes under a significant

velocity gradient over its thickness. It is noted that the rupture 

surface is made up of multiple logarithmic spirals and is piece-

wise. Along the rupture surface C0CjCn, its stress reaches the 

limit state described by the nonlinear MC criterion in Eq. (5), and 

components of stress vector T also reach the limit of rupture, as 

presented in Fig. 1(b). As expected by the normality flow rule, 

the properties of geotechnical materials are dominated by pressure, 

and volumetric strain impacts the shearing stress along surface 

C0CjCn. To accommodate this strain in the failure mechanism, 

the velocity discontinuity vector is inclined to the rupture surface 

C0CjCn at rupture angle . Therefore, the logarithmic spiral is 

chosen as the shape of the rupture surface. The rupture angle 

changes along with the failure criterion (Fig. 1(b)), the plastic 

zone BCD in Fig. 4 is separated into n sectors, each sector with a 

separate, and the uncertain constant value of the rupture angle . 

Although the BCD region revolves as a whole, each sector’s 

rupture surface is regulated by a separate rupture angle . The 

BCD region is divided into several parts, which are perfectly 

combined with the strength envelope, the non-linearity of the 

strength envelope and non-uniformity of the rupture surface are 

considered. The failure surface C0CjCn is unsmooth but continuous

at points Cj. This ensures that the BCD region rotates around 

point B.

The width of the jth sector of the plastic zone BCD is restricted

by its vertex angle j, and the radial length of sector j are restricted

by the angle j−1 and j (Fig. 4). As shown in Fig. 1, with the 

change of the rupture angle , the stress vector T acting on the 

failure surface C0CjCn changes accordingly. However, such a 

stress vector T does not exist in equilibrium state of a stress field, 

but the upper bound approach does not require equilibrium.

y1 = 
sH

Vs

---------- 1 + 4
2
 + 1

2 1 + 4
2( )

-------------------------------

y2 = − 
H

Vs

-------- 1 + 4
2 − 1

2 1 + 4
2( )

-------------------------------

Fig. 2. Bilateral Failure Mechanism of Foundation (the Right Part)

Fig. 3. Velocity Hodograph for the First Block of the BCD

Fig. 4. Detailed Failure Mechanism of the BCD
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The failure mechanism can essentially be seen as a modification 

of the traditional Prandtl failure mechanism, and the above 

mechanism can better match the nonlinear failure criterion 

compared with the traditional Prandtl failure mechanism and the 

multi-wedge discretization system. To make the approach simpler 

and more universal, the following assumptions are made. The 

strip foundation is long enough, and the issue can be considered 

as a plane strain issue. The soil conforms to the associated flow 

rule. The damage of the soil body is restricted by the nonlinear 

MC criterion, as shown in Eq. (5). The failure angle of rigid body 

ABC and rigid body BDE is the same as that of the sector in their 

respective adjacent BCD. The line AC is tangent to the curve 

C0C1, and the line DE is tangent to the curve Cn−1Cn.

Polar radius r of each sector is decided by the following 

logarithmic spiral formula

. (17)

Radii rj (j  =  1, 2, 3, 4 … n) are the line BCj (Fig. 4), and are 

decided by the formula below

, (18)

, (19)

where j  =  j − j−1.

Above is a detailed description of the symmetric failure 

mechanism, a unilateral failure mechanism considering the effect 

of seismic forces is established as shown in Fig. 5.

3.2 Formation of Work-Balance Equation
According to the theorem of virtual work, for a rigid plastic 

object with volume V and surface area S, the virtual internal 

power of static allowable stress field ij on virtual strain rate  is 

equal to the virtual external work power of external force Fi and 

pi on any motion allowable velocity field vi
*, and the expression 

is as follows.

(20)

Consequently, the upper bound method can be deduced: among

all the limit loads corresponding to any allowable velocity field, 

the real limit load is the smallest. In other words, for any 

kinematically admissible velocity field, the rate at which actual 

forces perform work is tantamount to the rate at which energy is 

dissipated. The upper bound approach of limit analysis so far is 

widely employed to evaluate engineering geological problems 

(Yang et al., 2004; Fraldi and Guarracino, 2009; Yang and Wang, 

2011; Huang and Liu, 2016; Li et al., 2021; Zhong and Liao, 

2022). Therefore, this study employs limit analysis, as shown in 

the following formula:

, (21)

where  means the power of the internal force, and  

means the power of the external force.

3.2.1 Symmetrical Failure Mechanism
External force power includes vertical central load P on the 

foundations, uniformly distributed load q, and soil weight. 

According to the hypothesis proposed in this paper, the internal 

force power includes four parts: the velocity discontinuity BC, 

the fracture surface C0CjCn, the plastic zone BCD, and the 

fracture surface DE. The power of the vertical central load P can 

be expressed as follows:

, (22)

, (23)

where v0 is the velocity magnitude of the rupture surface of the 

first part of the plastic zone BCD,  is an internal angle of the 

rigid body ABC (Fig. 2), and 1 is the failure angle of Part 1 in 

BCD of the plastic zone. The power of the uniformly distributed 

load q can be expressed as follows:

, (24)

, (25)

where vn is the value of the velocity on the line DE, a is the 

vertex angle of the plastic zone BCD (Fig. 2), and n is the 
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Fig. 5. Unilateral Failure Mechanism of Foundation: (a) Speed Chart, 
(b) Force Diagram
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failure angle of Part n in BCD of the plastic zone. The rate of the 

rigid body ABC weight takes the form

, (26)

where  is the unit soil weight, and b is strip footing width. 

Integrating the area of the plastic zone BCD, the infinitesimal 

micro-element dA is depicted in Fig. 4, and the plastic zone BCD 

gravity power is expressed as follows

, (27)

where  is the angular velocity of the rotation of the plastic zone 

BCD around point B. The rate of the rigid body BDE weight 

takes the form

, (28)

, (29)

where rn is expressed in Eq. (11). The dissipation of internal 

energy on the speed discontinuity line BC is expressed as follows

, (30)

. (31)

The integrated power dissipation rate for all n segments in the 

rupture surface C0CjCn is the same as the energy dissipation 

inside the plastic zone BCD, expressed as follows

, (32)

where j and nj are the shear and normal stress in soil at different 

damage locations (Fig. 1(b)), respectively. j is the failure angle 

of part j in BCD of the plastic zone, and r is presented in Eq. (10). 

The dissipation of internal energy on the line DE is expressed as 

follows

, (33)

. (34)

Finally, according to Eq. (21), the upper limit solution of strip 

footing can be calculated, which is expressed as Eq. (35). 

Because the rupture angles of the failure mechanisms used are 

different, Nc cannot be put forward like the Terzaghi formula, so 

N  '
c is used in this paper.

, (35)

, (36)

where d is the foundation buried depth. The formulas of the 

coefficients in Eq. (35) and the calculation process will be 

described in detail in Appendix A.

3.2.2 Unilateral Failure Mechanism
The formulations for internal energy dissipation of the failure 

mechanism considering seismic forces are as follows:

, (37)

, (38)

, (39)

. (40)

The work done by external forces is divided as follows: the 

work done by load P of the foundation  the work done by 

stacking load q  the work done by soil gravity  and the 

work done by seismic forces  which are shown as follows:
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. (44)

The work done by seismic forces is calculated using the slice 
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and III

Fig. 7. The Details of the Slice Integration Approach for Region II
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integration method and divided into three parts (Liu et al., 2022), 

as shown in Figs. 6 and 7. The calculation of the plastic zone is 

complicated, in order to simplify the calculation, the piece-wise 

logarithmic spiral of the plastic zone is simplified to some straight

lines and the velocity on the same horizontal plane is assumed to 

be constant. The calculation formula is shown as follows:

(45)

, (46)

    , (47)

, (48)

, (49)

. (50)

The formula of the bearing capacity is calculated by carrying 

the above results into Eq. (21), and it is expressed as Eq. (51). 

Additional details are shown in the Appendix B.

(51)

4. Calculation Results and Discussions

The paper is dedicated to the assessment of the bearing capacity 

of strip footings on c and  soils that obeying the nonlinear MC 

criterion. Using the GA (genetic algorithm), the minimum upper 

bound of the foundation bearing capacity was computed by 

optimizing the geometric parameters , a, i, (time parameter 

t) and rupture angle i through continuous iteration. Genetic 

algorithms model the genetic behavior of biological genes. After 

forming an initial population by coding, the task of genetic 

manipulation is to impose certain operations on the individuals 

of the population according to their adaptation to the environment, 

thus realizing the evolutionary process of survival of the fittest. 

In terms of optimized search, genetic operations allow the solution

of a problem, generation after generation, to be optimized and 

approximate the optimal solution. Fig. 8 illustrates the operational

steps of the GA.

According to Coley (1999), within the given range of parameter

values, after continuous attempts, the specific parameters of the 

GA (genetic algorithm) are set as follows:

‘PopulationSize’ is 100, ‘CrossoverFraction’ is 0.8, 

‘MigrationFraction’ is 0.01, ‘Generations’ is 100 times the number 

of variables. In addition, ‘TolFun’ is 1 × e−6. It means that when 

the difference between the results of two successive calculations 

was less than 10-6, the iteration was terminated. Based on the 

above parameters settings, the result is obtained after continuous 

iterative optimization.

4.1 No Consideration of Seismic Effects

4.1.1 Astringency
The first problem in employing the bearing capacity formulation 

in Eq. (35) is the determination of the optimal value of n in the 

plastic zone BCD. Each part has a separate and uncertain rupture 

angle  in the plastic zone BCD, and the precision of calculations 

improves as the number of parts n grows. But as n increases, the 

computation time increases, while the change in the result is 

negligible when n reaches a certain value. From Table 1, the 

accuracy of the computation results did not improve obviously as 

the number of sectors continues to increase when n is more than 

8. Therefore, after calculation and comparison, the number of 
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Fig. 8. The Flowchart of Genetic Algorithm Concept

Table 1. p Values Versus the Number of Segments n (kPa)

n

c0 1 2 3 4 5 6 7 8 9 10 11 12

150 3581.6 3435.1 3413.3 3406.7 3404.0 3402.7 3401.9 3401.5 3400.3 3400.1 3399.0 3398.7

180 5557.6 5225.6 5176.2 5161.3 5155.2 5152.1 5150.4 5149.3 5147.0 5145.4 5144.4 5144.3

 = 19 kN/m3, t =247.3 kPa, m = 1.2, d = 3 m, and b = 2 m. (The unit of c0 is kPa)
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sectors, n, was determined as 8. Comparing the results for n = 8 

to for n = 1 in Table 2, the average difference is around 5%. False 

convergence may occur when using the optimization algorithm, 

in which the results fluctuate with increasing values of the 

parameters. However, it can be found from Table 1 that there is 

an extremely strong astringency on the bearing capacity as n

increases. This fact initially confirms the feasibility of the approach

in this paper. In addition, to compare optimization results more 

significantly, partial results of the calculations are presented.

4.1.2 Comparisons
In the existing literature on assessing the bearing capacity, a 

small amount of literature used the nonlinear MC failure criterion,

but the authors note that most of them use the single tangent 

method. To estimate the feasibility of the approach in the paper, 

some data results are presented and compared with Ganesh and 

Kumar (2021) and Chen et al. (2022). Ganesh and Kumar (2021) 

calculated the bearing capacity of foundations of different 

cross-sections resting on soils conforming to the nonlinear MC 

criterion by employing the stress characteristics approach, and 

the parameters of the soil are written in Table 3. Following the 

nonlinear MC failure criterion, Chen et al. (2022) evaluated the 

bearing capacity of foundations by adopting the single tangent 

method.

The comparisons are listed in Tables 4 − 6. It can be found 

that most of the results in this paper are closer to the results of 

Table 2. The Comparison of Bearing Capacity under Different n Conditions (kPa)

c0

Nonlinear parameter m

1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8

n = 1 n = 8 n = 1 n = 8 n = 1 n = 8 n = 1 n = 8

60 694.92 690.30 613.66 609.10 564.39 560.41 531.38 527.95

90 1302.85 1281.31 1074.78 1056.41 948.23 933.59 868.23 856.37

120 2221.72 2152.50 1701.78 1650.53 1437.75 1400.27 1279.96 1251.28

150 3581.57 3401.45 2534.54 2418.33 2047.98 1969.62 1772.63 1715.76

180 5557.60 5149.27 3618.81 3388.38 2794.41 2650.56 2352.01 2252.65

 =19 kN/m3, t =247.3 kPa, d = 3 m, and b = 2 m.

Table 3. Parameter Values for Different Soils

Soils  (kN/m3)
MC failure criterion Nonlinear MC failure criterion

m c (kPa) 0 (kPa) m c (kPa) 0 (kPa)

aLondon clay 18.0 1.0 6.0 9.602 1.66 1.05 0.15
bNigeria clay 18.0 1.0 29.40 76.990 1.34 0.54 0.168
cToyoura sand (Dr = 60%) 14.81 1.0 3.040 3.877 1.16 3.34 × 10-3 0.806 × 10-3

cToyoura sand (Dr = 90%) 15.79 1.0 3.040 3.294 1.16 3.62 × 10-3 0.743 × 10-3

aParameter values from the paper of Baker (2004).
bParameter values from the paper of Anyaegbunam (2015).
cParameter values from the paper of Serrano et al. (2016) and Kobayashi et al. (2009).

Table 4. A Comparison of Bearing Capacity p (kPa)

Ganesh and Kumar (2021) Present study

MC failure criterion Nonlinear MC failure criterion Nonlinear MC failure criterion

b = 1.0 m b = 2.0 m b = 5.0 m b = 1.0 m b = 2.0 m b = 5.0 m b = 1.0 m b = 2.0 m b = 5.0 m

London clay 483.82 709.83 1335.3 254.15 292.16 364.55 261.73 299.54 374.54

Nigeria clay 526.88 584.39 736.33 347.87 438.33 614.54 362.40 460.04 653.06

Table 5. A Comparison of Bearing Capacity p (kPa)

Chen et al. (2022) Present study

MC failure criterion Nonlinear MC failure criterion Nonlinear MC failure criterion

b = 1.0 m b = 2.0 m b = 5.0 m b = 1.0 m b = 2.0 m b = 5.0 m b = 1.0 m b = 2.0 m b = 5.0 m

London clay 504.86 731.74 1399.78 305.62 342.06 415.89 261.73 299.54 374.54
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Fig. 9. Effect of Nonlinear Parameter m on Ultimate Bearing Capacity: (a) p, (b) N, (c) Nq, (d) N
'

c

Ganesh and Kumar (2021), and the average difference is about 

3%. Only the results of Toyoura sand where Dr = 90% are larger. 

However, compared with Chen et al. (2022), the results in this 

paper are significantly smaller, and that’s a reduction of about 

15%. It can be found that there is a large difference between the 

nonlinear solutions of Chen et al. (2022) and Ganesh and Kumar 

(2021) by comparison, and Chen et al. (2022) explains that the 

single tangent approach is adopted. However, the results in the 

paper are similar to those of Ganesh and Kumar (2021). Therefore, 

the above comparisons prove the effectiveness of the method in 

the paper, and compared with the single tangent approach, a 

more accurate upper bound solution is obtained.

4.1.3 Effect of Nonlinear Failure Criterion Parameters
Select nonlinear failure criterion parameters: c0 = 90 kPa, t = 

247.3 kPa. The bearing capacity and its correlation coefficients 

are presented in Fig. 8 through the optimization calculation. 

From Fig. 9, the ultimate bearing capacity and coefficients both 

decrease with the increase of m. when m > 3, N is close to zero, 

so the effect of soil weight can be neglected. In addition, it can be 

noted that m = 2 is a roughly turning point, after which the curves 

become flat. It is not possible to treat the cohesion c as a factor 

using the method presented in this paper. Therefore, N'
c is used to 

represent the contribution of cohesion c to the bearing capacity 

and presented in Fig. 9(d). As m increases, N'
c decreases and 

stabilizes gradually. It can be obviously found that when m is 

large enough, the contribution of N'
c to the bearing capacity 

accounts for the major part.

Because the limitation of test conditions, it is difficult to 

accurately measure cohesion at zero normal stress c0 and uniaxial 

Table 6. A Comparison of Bearing Capacity p (kPa) with b = 0.02 m

Dr
Kobayashi et al.

(2009)

Ganesh and Kumar (2021) Present

studyMohr-Coulomb failure criterion Nonlinear MC failure criterion

Toyoura sand 60% 71.27 − 108.24 204.71 120.25 140.64

Toyoura sand 90% 113.14 − 183.52 349.23 240.45 323.57
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tensile stress t for some soil bodies. It is essential to explore its 

influence on the bearing capacity calculation. From Fig. 10, the 

bearing capacity and its coefficients both increase as c0 increases. 

When c0 is small, the bearing capacity and its coefficients are 

almost equal for taking different values of m, and as c0 increases, 

the gap becomes gradually obvious. Obviously, the larger the 

value of m, the smoother the bearing capacity and its coefficients 

curve.

From Fig. 11, the bearing capacity and its coefficients decrease

with the increase of uniaxial tensile stress t. When uniaxial 

tensile stress t is larger, the gap between curves with different 

values of m is smaller until it is stable. As m increases, the 

difference between the bearing capacity and its coefficients 

gradually decreases for the same m gap. When m is large, N

tends to 0, and it means that the effect of the soil weight can be 

ignored. It can be seen from the comparison of Figs. 10 and 11

that the influences of c0 and t on the ultimate bearing capacity 

are completely opposite.

The above analysis reveals that the selection of suitable 

nonlinear parameters is essential for the accurate assessment of 

bearing capacity.

4.2 Consideration of Seismic Effects
Earthquakes are one of the common natural disasters that cause 

engineering problems worldwide. Therefore, it is necessary to 

consider the influences of seismic action in earthquake-prone 

areas. Many analyses have shown that seismic action reduces 

the foundation bearing capacity. The pseudostatic approach is 

employed widely. However, the pseudostatic approach does not 

take into account the dynamic response of seismic action, which 

has a non-negligible shortcoming. Some scholars adopted the 

pseudo-dynamic approach to evaluate the seismic bearing 

capacity of foundation (Ghosh, 2008; Zhong et al., 2022; Chen et 

al., 2022), but the approach also has some limitations, it does not 

consider the damping ratio of geotechnical materials and the 

boundary conditions of free surface. Therefore, a modified 

unilateral failure mechanism was established in this paper, and 

the effect of seismic was studied employing a modified pseudo-

dynamic method.

Previous literature studies have shown that the influence of 

vertical soil acceleration on the seismic response of the system is 

negligible (Gazetas et al., 2004; Huang, 2005). Therefore, only the

influence of horizontal seismic forces is considered in the paper.

Fig. 10. Effect of the Cohesion at Zero Normal Stress c0 on Ultimate Bearing Capacity: (a) p, (b) N, (c) Nq, (d) N
'

c
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4.2.1 Comparisons
In order to verify the validity of the results of this paper, the 

results were compared with those of other literature. When m = 

1, the nonlinear MC criterion becomes the linear MC criterion, 

and the results of this paper are compared with the experimental 

results of Conti (2018) and Zeng and Steedma (1998) at m = 1 as 

well as n = 1, as shown in Fig. 12. Taking two different sandy 

soils as an example, the parameters are selected as follows: b = 

1.67 m, d = 0.5 m (SERC6:  = 5.5 kN/m3,  = 41o; SERC7:  = 

6.3 kN/m3,  = 42.4o). When sH/Vs = , the results of this paper 

are slightly larger than those of Conti (2018) and Zeng and 

Steedma (1998), while the opposite results are presented for 

sH/Vs = 3/4. It can be seen that sH/Vs has a greater influence 

on the seismic bearing capacity of the foundation. In addition, 

Fig. 13 illustrates a comparison of the bearing capacity using 

different methods, where  = TVs. The results using the modified 

pseudo-dynamics method and the results using the spectral 

pseudo-dynamics method has a similar regularity. The differences

of results may be due to the use of different methods as well as 

different failure mechanisms. It can be seen that the bearing 

capacity reaches its minimum at /H = 4 (sH/Vs = /2), which is 

caused by a sudden increase in the seismic acceleration coefficient

at this case. Fig. 14 compares the seismic acceleration coefficients

kh(z, t) at sH/Vs = /2 and sH/Vs = . The coefficient of seismic 

acceleration at the soil surface when sH/Vs = /2 increases by a 

Fig. 11. Effect of Uniaxial Tensile Stress t on Ultimate Bearing Capacity: (a) p, (b) N, (c) Nq, (d) N
'

c

Fig. 12. Comparison with Results from Other Literature
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factor of about 5 compared to the result when sH/Vs = . 

Therefore, the bearing capacity of the foundation is lower in this 

case.

In addition, the results are compared with those of Chen et al. 

(2022), as shown in Fig. 15. The soil parameters are selected as 

b = 3 m, d = 0 m,  = 18 kN/m3, kh = 0.2, sH/Vs = /2, and H = 3 

m. The ultimate bearing capacity obtained in this paper is 

reduced by about 15% in the case of m = 1.25 and by about 7% 

in the case of m = 1.5, compared with the results of Chen et al. 

(2022). The authors believe that there are two reasons for getting 

smaller bearing capacity values in this paper, one is the piece-

wise method used in this paper, and the other is the MPD 

approach considers the effect of normalized frequency sH/Vs.

4.2.2 Effect of Nonlinear Failure Criterion Parameters
The soil parameters are selected as b = 1 m, d = 0 m,  = 18 kN/

m3, c0 = 90 kPa, t = 247.3 kPa, kh = 0.1, sH/Vs = . From Fig. 


4
---

Fig. 13. Comparison of Results Using Different Methods

Fig. 14. Comparison of kh(z, t) for Different sH/Vs

Fig. 15. Comparison of Bearing Capacity for Different Parameter Values

Fig. 16. Influence of the Nonlinear Failure Criterion Parameters: (a) c0, (b) t
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16, it can be found that the influence of nonlinear parameters on 

the seismic bearing capacity is similar to that on the static bearing

capacity. pe increases with the increase of c0 and decreases with 

the increase of m and t. As m increases from 1.25 to 2.0, the 

seismic bearing capacity pe will decrease by about 50% at most. 

The degree of influence of c0 and t on the seismic bearing 

capacity pe also has a great relationship with m. The smaller the 

m, the more significant the effect of c0 and t. The influence of c0
on the seismic bearing capacity is greater than the effect of t. c0
decreases from 200 to 50, pe decreases up to 90%, and t

increases from 100 to 300, pe decreases up to 70%. Therefore, 

the selection of nonlinear parameters has a key role in the 

accurate assessment of the seismic bearing capacity.

4.2.3 Effect of MPD Parameters
In the paper, the influence of MPD parameters is shown in Figs. 

17 and 18. Fig. 17 illustrates that the seismic bearing capacity pe

decreases with the increase of kh for different m, and the effect of 

kh on pe decreases as m becomes larger. Fig. 18 depicts the effect 

of the normalized frequency sH/Vs and the damping ratio . As 

the damping ratio  increases, pe also increases. When sH/Vs = 

, there is a clear trough in pe, and the highest point of pe differs 

from the lowest point by about 27% at most.

Therefore, the damping ratio  and the normalized frequency 

sH/Vs have a large influence on the assessment of the seismic 

bearing capacity, while the traditional pseudo-static approach 

and pseudo-dynamic method are unable to consider these factors 

and have certain limitations. This also confirms the merits and 

feasibility of the method in this paper.

4.3 Discussion and Analysis
The linearization of the nonlinear MC criterion or the HB 

criterion is used extensively in the bearing capacity calculation 

of geotechnical foundations. For bearing capacity calculation of 

foundations, the single tangent or multi-tangent method is a 

single-sided improvement on the use of the nonlinear MC 

criterion. The approach presented in the paper shown that study 

can be performed without compromising the failure envelope’s 

real nonlinear pressure dependency.

The BCD region was viewed as a whole rotating with angular 

velocity w in the modified failure mechanism, and the BCD 

region was divided into sectors with separate rupture angles i, 

which gives geometric flexibility to the mechanism so that the 

optimal upper bound to the ultimate bearing capacity could be 

obtained. The sectors’ corresponding angle was discovered during

the optimization process, rather than being predetermined. The 

rupture surface is not strictly smooth. Nonetheless, as the number 

of sectors n grows, it will approximate a smooth curve. By 

comparison, n was chosen to be 8. A larger n does not significantly

improve the calculation accuracy. Then the selection of the 

nonlinear parameters and the influence of seismic forces are 

studied. The data indicate that a more accurate solution is 

obtained considering the modified failure mechanism and the 

piece-wise method.



2
---

Fig. 17. The Variation of pe with kh in the Case of Different m

Fig. 18. The Variation of pe with sH/Vs in the Case of Different 
Fig. 19. The Case of an Impermissible Stress Vector for a Piece-Wise 

Linear Failure Envelope
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The essence of the single tangent approach is to approximate 

the soil as a linear failure material, to calculate its ultimate bearing

capacity. A similar explanation is not suitable for the piece-wise 

log-spiral failure mechanism, since it would mean that the failure 

envelope of the soil body on the plane , n is piece-wise linear. 

In the above envelope, there may be stress vectors that are not 

allowed. For example, the stress vector T pointing to the ABC 

range in Fig. 19 is the one that crosses the envelope boundary.

In the proposed failure mechanism, the stress vector follows 

the surface C0CjCn is distributed in multiple segments, and the 

rupture angle of each sector corresponds to a point on the failure 

criterion. The approach can be interpreted as the stress vector 

along the whole surface C0CjCn is characterize by scattered points

on the failure envelope, for instance, the eight spots illustrated as 

black circles in Fig. 20 for n = 8. Such a stress field is unbalanced, 

but the stress fields constructed by the kinematic analysis are not 

required to be equalized. Although the stress vector produced 

thusly is not the genuine stress, from another point of view, the 

trend of the solutions can be seen by observing the obtained 

stress data on the rupture surface. From the stress distribution in 

Fig. 20, it can be found that the failure of the soil presents a 

nonlinear situation. Taking the right half of the mechanism as an 

example, the normal stress decreases gradually from left to right 

on the rupture surface, which is more in accordance with the real 

state of soil damage. When the bearing capacity is evaluated 

following the linear MC criterion, there is no doubt that a large 

upper bound solution will be obtained. Therefore, the piece-wise 

approach based on the proposed specific failure mechanism in 

this study is different from the single tangent method or multi-

tangent method. The calculated ultimate bearing capacity in this 

paper is a strict upper limit solution, for the soil that follow the 

nonlinear MC criterion without the used linear approximation.

5. Conclusions

Numerous studies have shown that nonlinear failure is closer to 

the true situation of soil strength. Therefore, based on the modified 

failure mechanism, the upper bound approach of limit analysis 

was used for c and  soil that are restricted by the nonlinear MC 

criterion, and the static and seismic bearing capacity of 

foundations was calculated by using the GA in this paper.

Two types of piece-wise log-spiral failure mechanisms for 

bearing capacity estimation are proposed in this paper, where the 

rotating plastic zone BCD was separated into sectors with varying 

rupture angles. The distribution of the stress vector on the surface 

C0CjCn is reflected by different rupture angles on the failure 

envelope. Based on the symmetrical failure mechanism, the bearing 

capacity of foundations under static condition was studied. And 

following the unilateral failure mechanism, the seismic bearing 

capacity of the foundation was evaluated using the modified pseudo-

dynamic approach. To illustrate the significance of the work in this 

paper, the comparisons with other literature data was made and the 

parametric analysis was performed, with the following main 

conclusions:

1. The bearing capacity values using the nonlinear MC 

criterion are significantly lower than those using the linear 

MC criterion. In addition, compared with the single tangent 

approach, a more accurate upper bound solution is obviously

obtained using the method of the paper, which confirms 

that the method of the paper is more suitable for the 

nonlinear failure criterion.

2. The parameters of the nonlinear MC criterion have a 

significant effect on the bearing capacity of foundations. 

The bearing capacity decreases rapidly when the nonlinear 

parameter m increases from 1 to 3, and slows down when 

m is greater than 3. Similarly, the bearing capacity tends to 

decrease with increasing t. However, as c0 increases, the 

bearing capacity gradually increases.

3. Compared to the pseudo-static method and the conventional

pseudo-dynamic method, the modified pseudo-dynamic 

method takes into account the effects of damping  as well 

as normalized frequency sH/Vs. By parametric analysis, 

both  and sH/Vs have a non-negligible effect on the 

seismic bearing capacity of foundations, and when the

normalized frequency sH/Vs is equal to  + n (n = 0, 1,

2…), the seismic bearing capacity of foundations will be 

significantly reduced.

This paper gives a theoretical basis for the calculation of the 

seismic bearing capacity of foundations based on the nonlinear 

MC criterion. However, there are some limitations. This study 

did not consider the effects of variation in moisture as well as 

variation in temperature. This direction should be explored in 

future work. In addition, the work can be further extended by, for 

example, considering transient flow, three-dimensional failure 

mechanism for foundations.
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Fig. 20. Stress on the Failure Surface Mapped on the Nonlinear MC 
Failure Envelope
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c0 = Cohesion at zero normal stress

d = Overburden thickness

= The power of the internal force

g = Acceleration of gravity

H = The depth to bedrock

kh = Initial factor of seismic acceleration

m = Nonlinear parameter

n = Number of logarithmic spiral areas

N'
c = Static parameter related to soil cohesion

N'
ce = Seismic parameter related to soil cohesion

Nq = Static parameter related to uniform load

Nqe = Seismic parameter related to uniform load

N = Static parameter related to soil unit weight

Ne = Seismic parameter related to soil unit weight

p = Static bearing capacity of the foundation

pe = Seismic bearing capacity of the foundation

q = Uniform load

ri = The line BCi

t = Time parameter

vi = velocity of the ith part

Vs = Velocity of the shear wave

= the power of the external force

y1 = Constant

z = Depth below ground surface

 = Angle between line BA and line BC

i = Top corner of part i

 = Unit weight of soil

 = Internal friction angle

i = Rupture angle of the ith part

a = Angle between line BC and line BD

n = Normal stress

t = Tensile stress

 = Shear stress

 = Damping ratio

 = Angular velocity of failure mechanism

s = Angular frequency

2 = Constant
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Binding conditions:
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Unilateral failure mechanism (considering seismic forces):
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