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1. Introduction

Pavement surfaces are susceptible to various types of cracks that 

directly impact pavement serviceability and driving safety (Cui 

et al., 2022; Wen et al., 2022). The inspection and maintenance 

of roads in the early stage of crack propagation can greatly 

reduce overall costs (Xu and Liu, 2022). Different crack types are 

caused by distinct factors, requiring engineers to employ specific 

techniques for treatment. Thus, pavement crack classification is 

aligned with the needs of the Department of Transportation (Liu et 

al., 2020). Classification algorithms play a crucial role in the 

development of other algorithms such as object detection or 

segmentation, as they form the foundation. Therefore, the 

classification of different crack types becomes one of the most 

important tasks in road maintenance.

Traditional methods like manual counting and crack recognition 

are labor-intensive and time-consuming (Deng et al., 2019). In 

order to enhance the efficiency and accuracy of crack classification, 

researchers have proposed image-based methods such as threshold 

segmentation (Zhang et al., 2022), edge detection (Han et al., 

2021), and minimal path selection algorithms (Kaddah et al., 

2019). Although these methods are computationally efficient, 

they often exhibit poor robustness, particularly in the presence of 

illumination changes or irregularly shaped cracks. Due to the 

limitations of image-based methods, deep learning-based models 

have emerged as the most advanced and popular approach for 

intelligent pavement crack detection.

Since AlexNet (Krizhevsky, 2014) first showed its potential 

for image classification tasks in the ImageNet large-scale visual 

recognition competition in 2012 (Deng et al., 2009), deep learning 

has become a key advanced detection method in various fields 

(Zhang et al., 2023b), including pavement crack inspection (Zhang 

et al., 2023c). The overall process in deep learning does not need 

manually designed features as traditional machine learning requires. 
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It learns from large-scale data which requires little human 

involvement during training. Numerous works indicated that 

deep learning, especially Convolutional Neural Network (CNN) 

has become a popular and powerful tool for road inspection. 

Gopalakrishnan et al. (2017) developed a modified VGG16 

which was pretrained on the ImageNet dataset and the output 

layer was connected to a linear neural network. This network 

was trained on 760 images (250 crack images and 510 non-crack 

images) which were collected from the Long-Term Pavement 

Performance (LTPP) program, and got an F1 score of 0.90 in 

classification. Huyan et al. (2020) proposed a modified U-net 

network, named CrackU-net, to detect pavement crack images. 

3000 pavement images (1695 linear cracks and 1305 map cracks) 

were collected from highways using high-speed vehicle-mounted 

action cameras and smartphones, and the model was trained on 

this dataset. The precision of CrackU-net reached 0.986, which 

was higher than U-net and Fully-Convolutional Network (FCN). 

Fei et al. (2019) proposed a CrackNet-V by following the VGG 

network through reducing the number of parameters and utilizing 

efficient feature extraction. The proposed network was trained on 

the Crack Forest Dataset (CFD) which contained 118 urban road 

surfaces, and got an F1 score of 0.892. Chen et al. (2021) proposed a 

deep learning-based thermal image analysis model for pavement 

detection using a pretrained EfficientNet as the architecture. The 

model was trained on a self-collected dataset which contained 

500 road images and were collected from Liverpool, UK., and it 

achieved a high damage detection accuracy (0.989). Qu et al. 

(2020) established a CCD1500 dataset (the images were collected 

from Google) to train his model which used a combination of 

LeNet-5 and VGG16 to detect the cracks in concrete pavement. 

It got an F1 score of 0.892 on the CFD dataset and 0.901 on the 

DeepCrack Dataset. Liu et al. (2022a) compared four main 

variations of typical CNN classification models based on a self-

built asphalt pavement crack dataset and found EfficientNet-B3 had 

the highest accuracy on all types of images tested. His comparison 

mainly focused on four kinds of structures: MobileNet, ResNet, 

DenseNet and EfficientNet. 

A common drawback of these deep learning-based models is 

their dataset specificity. They are designed for particular databases, 

making them prone to failure when applied to different datasets. 

Hence, evaluating and comparing the performance of these CNN 

models on a standardized dataset becomes essential. Although 

there are open-source datasets available for pavement crack 

segmentation and object detection (such as DeepCrack (Liu et 

al., 2019) and CRACK500 (Yang et al., 2019)), there is currently 

a lack of open-source datasets specifically designed for crack 

classification.

Apart from constructing a standardized dataset, selecting a 

suitable algorithm for a crack detection task for different users is 

also an important consideration. Generally, data scientists and 

computer vision engineers prefer to use deeper convolutional 

layers to improve the accuracy of deep learning algorithms. The 

classification accuracy has been significantly improved by novel 

deep learning structures such as VGG (Simonyan and Zisserman, 

2014), GoogLeNet (Szegedy et al., 2015), ResNet (He et al., 

2016), DenseNet (Huang et al., 2017), ResNeXt (Xie et al., 

2017), ConvNeXt (Liu et al., 2022b). For example, GoogLeNet 

proposed a new neural network architecture, Inception, to improve 

the utilization of computing resources and its accuracy. ResNet 

adopted a residual learning block to ease the training of networks. 

The ResNeXt network was constructed by repeating the same 

building block which could reduce the number of hyperparameters. 

The common characteristics for these models are the deeper layers 

and large parameters. However, because of the high-demanding 

requirements of computer hardware, computation time, and the 

increased volume of data from road maintenance companies, the 

efficiency of these deep learning algorithms has become a 

new concern in civil engineering applications. Compared to 

the computing-intensive deep learning model, efficiency and the 

mobile model has become a new trend in both computer vision 

field and the civil engineering field. Wang et al. (Wang and Su, 

2021) proposed a lightweight crack segmentation model inspired 

by Xception and BiSeNet, which showed a good balance between 

computational cost and performance based on a Crack500 dataset. 

Hou et al. (2021) proposed a mobile deep learning method, 

MobileCrack, to classify cracks in asphalt pavement using high 

classification accuracy inspiration from the classic lightweight 

CNN model MobileNet (Howard et al., 2019) which was designed

for mobile phone CPUs. Zhang et al. (2023a) developed an 

ECSNet to accelerate real-time pavement crack detection which 

maintains a good balance between accuracy and efficiency. Que 

et al. (2023) proposed an integrated generative adversarial network 

and improved VGG model to automatically classify the asphalt 

pavement cracks. A lightweight model (or an efficiency model) 

has fewer parameters and uses less computation power. Thus, it 

is more suitable for practical application (Wen et al., 2022). The 

lightweight CNN models, including SqueezeNet (Iandola et al., 

2016), MobileNet, MNASNet (Tan et al., 2019), EfficientNet 

(Tan and Le, 2019) and ShuffleNet (Ma et al., 2018), are designed to 

work specifically for mobile and resource-constrained situations. 

For instance, MobileNet proposed a novel layer module which 

could transfer input from a low-dimensional compressed 

representation to a high dimension (Sandler et al., 2018). The 

EfficientNet used a simple yet highly effective compound coefficient 

to scale all dimensions of depth, width and resolution. ShuffleNet 

was designed based on the computation complexity. In the civil 

engineering field, government agencies and practitioners desire to 

have most efficient classification method with adequate accuracy. 

Thus, there is a demand to pursue performance-based deep learning 

pavement crack inspection with a good balance between 

computational cost and accuracy.

To evaluate and compare the performance of different deep 

learning-based models for various users, it is crucial to establish 

a standard dataset. Therefore, this work proposes the Road Cracks 

Classification Dataset (RCCD) as a publicly available dataset 

for pavement crack classification tasks. The dataset comprises 

four balanced types of cracks: Transverse Crack, Longitudinal 

Crack, Alligator Crack, and Block Crack. Based on this dataset, 
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a benchmark study of fourteen deep learning-based models is 

conducted to assess their performance and aid in selecting the most 

suitable model for specific projects. The evaluation includes 

accuracy and efficiency metrics, allowing for a comprehensive 

comparison between computationally intensive CNN models 

and lightweight alternatives. Recommendations will be provided 

based on a balanced selection approach, catering to different users, 

including precision-oriented users, highway agencies, industry 

practitioners, and lightweight/mobile users.

2. Methods

2.1 RCCD Dataset
In previous studies, researchers often encountered difficulties in 

comparing different models due to the use of specific datasets. 

This issue highlights the need for a comprehensive crack 

classification dataset that can facilitate meaningful comparisons. 

To address this challenge, we have developed an open-source 

Road Cracks Classification Database (RCCD), which serves as 

an empirical basis for crack classification research. The RCCD 

dataset, available at https://github.com/tjboise/RCCD, was carefully

curated by manually cropping images provided by the Federal 

Highway Administration (FHWA).

The dataset comprises 1600 grayscale images acquired from 

multiple sources, including Google Street View and ARAN 

Vehicles, in three different cities: Kansas City, Jefferson City, and 

Columbia, Missouri. Each image in the RCCD has a resolution of 

256 × 256 pixels and contains only one type of crack. The images 

are annotated into four crack types: Transverse Crack, Longitudinal 

Crack, Alligator Crack, and Block Crack. Transverse cracks are 

characterized by cracks that run perpendicular to the direction of 

the road. Longitudinal cracks, on the other hand, are cracks that 

run parallel to the direction of the road. Alligator cracks are a 

type of fatigue cracking and are characterized by interconnected 

cracks that form a pattern resembling a series of small, 

irregularly shaped polygons. Block crack is a typically square 

or rectangular crack that forms a pattern resembling a grid or 

blocks on the road surface. It often results from the expansion 

and contraction of the pavement due to temperature changes. 

Fig. 1 illustrates the distribution of each crack type in the dataset 

and provides some sample images. The longitudinal and transverse 

cracks may appear visually similar in some cases, primarily 

differing in their orientation. However, CNNs can learn specific 

filters that are sensitive to certain orientations. These filters can 

help the model differentiate between cracks running in different 

directions.

The RCCD has been designed to ensure a balanced representation 

of each crack type, enabling deep learning models to be trained 

effectively across different crack types. By utilizing this dataset, 

researchers can overcome the limitations of small-scale and 

specialized datasets, facilitating more comprehensive and reliable 

evaluations of crack classification models.

We provide a Python script in this repository to randomly 

divide each type crack into training, tuning and testing data sets 

with a ratio of 6:2:2. The training data is used for training and 

installation of models. Image augmentation methods including 

random vertical flip and random horizontal flip are applied 

during the training procedure when inputting the images to the 

CNN models. This is because increasing the data amount can 

improve the accuracy and robustness of the deep learning model. 

The tuning data is utilized to validate the model and pick up the 

best-performed model, while the test data is utilized to evaluate 

the performance of models. As shown in Table 1, a total of 960 

training images, 320 tunning images and 320 testing images are 

used in the training, tuning and testing procedure. 

The open-source RCCD would be updated novel photos from 

various conditions in the future. We welcome users and developers 

to contribute to this repository. It can provide recommendations 

for the pavement crack detection community when the algorithms 

are evaluated on this dataset. We also provided a Python script to 

let the users easily implement the dataset into their codes.

2.2 Benchmark Study
To demonstrate the applicability of the proposed standard testing 

hub, we carried out a series of experiments. Moreover, we want 

to compare some advanced and commonly used deep learning 

algorithms to figure out their accuracy and efficiency in the 

pavement crack detection task and provide recommendations to 

different users, including precision-oriented users, highway 

agencies, industry practitioners, and lightweight/mobile users.

A benchmark study of fourteen deep learning-based methods 

is implemented within a single computer code to facilitate the 

comparison between them. The details of these models are 

summarized in Table 2. Fourteen classic deep learning neural 

Fig. 1. The Distribution of Each Crack Type in RCCD and Some Crack 
Samples in Each Kind of Crack

Table 1. Training, Tuning and Testing Datasets for CNN Models

Crack type Training Tuning Testing Total

Transverse crack 240 80 80 400

Longitudinal crack 240 80 80 400

block crack 240 80 80 400

alligator crack 240 80 80 400

Total 960 320 320 1600
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networks evaluated in this study, including AlexNet, ResNet50, 

VGG16, GoogLeNet, DenseNet12, RegNet_y_400mf, EfficientNet 

_b0, ConvNeXt_base, ShuffleNetv2, SqueezeNet1_0, Resnext50_ 

32, MobileNetv3, MNASNet0_5, and Wide Resnet50_2. We 

selected these fourteen models to ensure diversity in architecture, 

optimization techniques, and model size. As shown in Table 2, 

Resnext50_32 has a unique ResNeXt Block. ResNet50 contains 

residual modules. This diversity allows us to comprehensively 

evaluate the performance of deep learning models across a range 

of design choices and complexities. Also, many of these models 

have gained significant popularity and have been widely used in 

various computer vision tasks. This makes them relevant choices 

for benchmarking and comparison studies. These models are 

representative of different architectural paradigms, including 

traditional CNNs (e.g., AlexNet, VGG16), Residual Networks 

(e.g., ResNet50, Wide ResNet50_2), Inception Networks (e.g., 

GoogLeNet), and efficient architectures (e.g., EfficientNet_b0, 

MobileNet v3, RegNet_y_400mf).

As we can see from Table 2, all the models are classic models 

in the computing vision area rather than the models from the civil 

engineering area. This is mainly because that most models applied 

in pavement crack detection are modified from the classic CNN 

models. Thus, the working theory and performance are similar. 

Furthermore, most of these modified models in civil engineering 

are not open source, so it is difficult to repeat the coding work. 

Therefore, these fourteen classic deep learning neural networks 

are evaluated in this study. The proposed year of these CNN 

models is distributed from 2014 to 2022. The whole benchmark 

evaluating and comparing process is shown in Fig. 2.

During the training process, the accuracy of the model on the 

tuning data is calculated at each epoch simultaneously. In each 

epoch, the deep learning structure would update its weights and 

biases and this updated model would be evaluated on the tunning 

dataset to get its accuracy. The highest accuracy epoch is chosen 

among all the epochs. The weights and biases in this epoch are 

saved as the best-trained model which would be used to evaluate 

the testing data. By doing this, it can prevent the overfitting 

problem and improve the robustness of the model. At last, the 

evaluation results are compared between the different models.

Table 2. Summary of the CNN Models Discussed in This Benchmark Study

Models Year
Params

 (M)

Model size 

(MB)

Architecture

layers Basic building blocks

AlexNet (Krizhevsky, 2014) 2014 61.1 233 8 Conv, MaxPool and Dense layers

VGG16 (Simonyan and Zisserman,

2014)

2014 138.4 527 16 Conv, MaxPool, ReLU, Softmax

GoogLeNet (Szegedy et al., 2015) 2015 13.0 49.7 22 Inception

ResNet50 (He et al., 2016) 2016 25.56 97.8 50 Residual Blocks

DenseNet121 (Huang et al., 2017) 2017 7.98 30.8 121 Dense Blocks

SqueezeNet1_0 (Iandola et al., 2016) 2016 1.25 4.77 18 1x1 Conv, Fire Module, Dropout, Global AvePool, 

Residual Connection, ReLU, MaxPool, Softmax

Resnext50_32 (Xie et al., 2017) 2017 25.03 95.7 50 ResNeXt Block

Wide Resnet 50_2 (Zagoruyko and

Komodakis, 2016)

2016 68.88 131 50 1x1 Conv, Conv, Grouped Conv, Global AvePool, ResNeXt 

Block, Residual Connection, ReLU, MaxPool, Softmax

ShuffleNet v2 (Ma et al., 2018) 2018 2.28 5.28 50 Pointwise Group Conv, Channel Shuffle Operation

MNASNet0_5 (Tan et al., 2019) 2018 4.38 8.59 52 Inverted Residual Block, Conv, deConv

EfficientNet_b0 (Tan and Le, 2019) 2019 5.29 20.4 237 Inverted Bottleneck Residual Block, Squeeze-and-exci-

tation Block

MobileNet v3 (Howard et al., 2019) 2019 5.48 21.1 28 Conv2d, MobileNet v3 Block

RegNet_y_400mf 

(Radosavovic et al., 2020)

2020 4.34 16.8 50 Conv2d, Squeeze-and-Excitation Blocks

ConvNeXt_base (Liu et al., 2022b) 2022 88.53 338 55 Residual Blocks, Conv2d

Fig. 2. Schematic View of the Evaluating and Comparing Procedure in 
the Benchmark Study
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To implement the benchmark study in each model, some 

hyperparameters are modified in the neural networks according 

to the data. The initial learning rate is set to 0.01 and adjusted 

during training, where the learning rate decreases by 10% for 

every 30 steps. Cross entropy is used for the loss function and 

Stochastic gradient descent (SGD) is utilized as an optimizer to 

update the network weight with a momentum of 0.4. The batch 

size of the dataset is set to 32 and each model is trained for 300 

epochs. The output classes in the final layer of each model are 

modified to four classes. These models are all implemented in 

Python and computed under the following machine speculations: 

Windows 10, Intel(R) Core (TM) i9-10900X CPU, NVIDIA 

RTX A4000 with 16 GB memory, and 64GB RAM. 

2.3 Evaluation Metrics
In order to evaluate and compare the performance of different 

deep learning models statistically, each model is trained and 

tested three times, and each assessment is trained and tested on 

randomly divided data. The performance of model in each crack 

type is evaluated by precision, recall, F1 score, and accuracy, the 

equations are shown below. The F1 score is the harmonic mean 

of precision and recall. It provides a single metric that balances 

both precision and recall. The harmonic mean gives more weight 

to lower values, so the F1 score penalizes models that have a 

significant imbalance between precision and recall. It ranges 

from 0 to 1, where one indicates perfect precision and recall, and 

zero means both precision and recall are at their worst.

, (1)

, (2)

, (3)

, (4)

where TP is the True Positive, TN is True Negative, FP is False 

Positive, FN is False Negative, P stands for the Precision, R

stands for the Recall, F1 stands for the F1 score and Acc represents 

Accuracy. 

The Micro average computes the overall metrics for all classes 

which will result in a bigger penalization when the model does 

not perform well with the minority classes compared to the 

weighted average. Thus, micro average precision, micro average 

recall, and micro average F1 score are calculated for each model, 

the equations are shown below.

, (5)

, (6)

, (7)

where K is the number of crack types (K = 4 in this work), Pi is 

the precision value for class i, Ri is the recall value for class i, 

PMacro stands for the micro average precision, RMacro stands for the 

micro average recall, F1Macro  represents the micro average F1

score.

For the efficiency evaluation, training time and prediction 

time are calculated. The training time is counted from the first 

epoch to the last epoch during the training procedure. Prediction 

time is calculated when predicting a single image using a trained 

model. It is used to represent the prediction speed of a model. A 

faster prediction time means the model can perform better in a 

real-time crack detection task, as a real-time task requires a quick 

and in-time prediction. The ratio of macro F1 score and training 

time (RFT) is proposed in this work and can be calculated 

through Eq. (8). 

 (8)

The RFT shows the efficiency of the model transferring the 

computing power to good performance in macro F1 score. A high 

RFT means that this model can use a small computing source 

and achieve a high accuracy. It is an important factor for 

industries whose computing source is limited but want to achieve 

a relatively high accuracy in road crack inspection. 

The ratio of macro F1 score and prediction time (RFP) is also 

proposed and calculated to show how much macro F1 score a 

model can achieve in a unit predicting time. The RFP value can 

be calculated using Eq. (9). 

(9)

This value is an index to show which deep learning-based 

model can work better in a real-time task. A higher value means 

that the model uses a shorter prediction time but higher performance 

in accuracy.

3. Results

3.1 Training Procedure of the Models
Figure 3 shows the relationship between loss and epochs during 

training process as well as the relationship between accuracy and 

epochs during the validation procedure of all the models. 

As shown in Fig. 3, for CNN models including AlexNet, 

GoogLeNet, and VGG16, the loss value fluctuates during the 

training procedure as the epoch increases (Figs. 3(a), 3(f) and 

3(m)) It means these models do not learn a lot during the training 

procedure. In comparison, the loss value decreases and tends to 

converge as the epoch increases for the models including 

ConvNeXt_base, ShuffleNet v2, EfficientNet_b0, MNASNet0_5, 

MobileNet v3, SqueezeNet1_0 and Wide ResNet 50_2. In other 

words, these models can learn more features from the images and 
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Fig. 3. The Training Loss and Tunning Accuracy of Different Models: (a) AlexNet, (b) ConvNeXt_Base, (c) ShuffleNet v2, (d) DenseNet121, (e) EfficientNet, 
(f) GoogLeNet, (g) MNASNet0_5, (h) MobileNet v3, (i) RegNet_y_400mf, (j) ResNet50, (k) ResNeXt50_32, (l) SqueezeNet1_0, (m) VGG16, 
(n) Wide ResNet 50_2
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update their parameters more efficiently. The red point stands for the 

highest performance that happened during the validation process. 

The parameters in this iteration would be used as the final model 

to detect the images in the test procedure. 

The accuracy curves of tuning data for the fourteen CNN 

models are also shown in Fig. 3. The red point indicates the best-

chosen model which is selected depending on the accuracy of the 

tuning dataset. This selected model would be tested on the test 

data to evaluate its performance. Throughout the beginning of 

the whole training process, the accuracy value of ShuffleNet v2, 

MNASNet0_5 and ResNeXt50_32 starts out quite low. In contrast, 

ConvNeXt_base, DenseNet121 and MobileNet v3 begin with 

relatively high accuracy (about 0.7). However, the accuracy of 

ShuffleNet v2 and MNASNet0_5 improve rapidly during the 

training epochs and surpass that of DenseNet121.

3.2 Accuracy Metrics of the Models
The average value (Avg) and standard deviation (Std) of accuracy,

macro precision, macro recall and macro F1 score of all the CNN 

models are evaluated and summarized in Table 3. As we can see, 

ConvNeXt_base obtains the highest value in all metrics, followed 

by SqueezeNet1_0 and ResNet50. It means that ConvNeXt_base 

has the best performance in accuracy among all CNN models in 

this crack detection task. It further shows that the macro F1 

score, macro recall and macro precision are almost consistent 

with the accuracy. On the other hand, AlexNet, Resnext50_32 

and EfficientNet0_5 obtain the lowest three accuracy values in 

all models.

By combining and comparing the accuracy metrics and training

procedure, the CNN models’ performance in the training procedure 

can be divided into two groups: one is that the loss value fluctuated 

Table 3. The Accuracy, Macro Precision, Macro Recall and Macro F1 Score of CNN Models

Model
Accuracy Macro Precision Macro Recall Macro F1 Score

Avg Std Avg Std Avg Std Avg Std

AlexNet 0.637 0.050 0.678 0.133 0.616 0.207 0.601 0.094

VGG16 0.720 0.017 0.703 0.044 0.688 0.062 0.691 0.023

GoogLeNet 0.693 0.055 0.694 0.061 0.666 0.113 0.671 0.064

ResNet50 0.747 0.015 0.748 0.085 0.725 0.129 0.723 0.040

DenseNet121 0.730 0.026 0.716 0.061 0.713 0.062 0.708 0.022

SqueezeNet1_0 0.813 0.032 0.800 0.075 0.793 0.082 0.790 0.026

Resnext50_32 0.673 0.042 0.683 0.103 0.647 0.184 0.636 0.082

Wide Resnet 50_2 0.740 0.010 0.729 0.073 0.693 0.056 0.700 0.028

ShuffleNet v2 0.733 0.021 0.769 0.033 0.658 0.037 0.668 0.033

MNASNet0_5 0.713 0.015 0.693 0.036 0.665 0.042 0.676 0.033

EfficientNet_b0 0.687 0.035 0.648 0.051 0.648 0.052 0.645 0.045

MobileNet v3 0.713 0.015 0.698 0.035 0.682 0.039 0.688 0.029

RegNet_y_400mf 0.703 0.046 0.686 0.061 0.694 0.086 0.683 0.046

ConvNeXt_base 0.857 0.011 0.858 0.060 0.829 0.073 0.834 0.036

Fig. 4. The Ranked Results of all CNN Models: (a) Accuracy, (b) Macro F1 Score
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during the training procedure as the epoch increase, such as 

AlexNet, GoogLeNet, VGG16. This kind of model does not 

perform well in accuracy metrics as the average accuracy of 

AlexNet, GoogLeNet, and VGG16, is just 0.637, 0.720, and 

0.693 respectively. It is mainly due to the fact that during the 

training procedure, the deep learning structures do not study well 

about the features of pavement crack images effectively enough. 

On the other hand, models whose loss decreases with the epochs 

seem to perform well in accuracy, such as ConvNeXt_base, 

ShuffleNet v2, and EfficientNet_b0.

The accuracy and macro F1 score of the CNN models are 

ranked in the bar plots, respectively which can be seen in Fig. 4.

As we can see from Figs. 4(a) and 4(b), the median value of 

accuracy and macro F1 score is both around 0.7. Only ConvNeXt_

base and SqueezeNet1_0 get an accuracy higher than 0.8 while 

for the macro F1 score, only ConvNeXt_base is higher than 0.8. 

This suggests that ConvNeXt_base is the most accurate deep 

learning algorithm for the pavement crack classification tasks 

when compared to other algorithms. The ShuffleNet v2 ranks 5th 

in accuracy, however, it ranks 11th in the macro F1 score. This is 

mainly because the recall value (0.658) is quite low in ShuffleNet 

v2, and the macro F1 score is calculated based on the recall. 

Recall suggests the level of sensitivity for different crack types. 

In this crack classification task, a good classifier should perform 

well in both precision and recall. Thus, the macro F1 score can be 

considered a better evaluation than accuracy in certain cases.

3.3 Accuracy Metrics on Different Cracks
After learning the distribution of the overall accuracy metrics of 

the CNN models, the resulting difference between the four crack 

types is also studied. Fig. 5 depicts the precision, recall, F1 score 

and accuracy distribution of the four kinds of cracks. It apparently 

shows that the block crack has the lowest metrics among these 

cracks. This is seen especially in recall value, as the lowest recall 

of block crack in all models is even lower than 0.2. This means 

that the model tends to predict cracks as the other three kinds of 

cracks which can ultimately lead to a lower loss value during the 

training procedure. In comparison, the evaluation metrics for 

Alligator crack, Longitudinal crack and Transverse crack are 

similar, which means the distribution of models’ prediction ability in 

these cracks is similar. In the boxplot, the green triangle stands 

for the mean value and the yellow line represents the median 

value location. As we can see, the median and mean value for 

Alligator crack and Longitudinal crack are around 0.8, for 

Transverse crack is around 0.7 while for Block crack, it results in 

roughly 0.5. 

The F1 score of cracks in different CNN models is calculated 

and compared as shown in Fig. 6. It is noteworthy that the F1

score of Block crack is apparently lower than other crack types 

in each CNN model. The main reason could be that the 

Block crack is similar to the Alligator Crack. In most CNN 

models, Alligator crack and Block crack get the two highest 

F1 scores. Only in SqueezeNet1_0 and ConvNeXt_base, the 

F1 score of the Longitudinal crack and Transverse crack is 

higher than other cracks. The ConvNeXt_base get the highest 

F1 score on all the crack types among the fourteen deep-

learning algorithms.

Fig. 5. Box Plots of Four Cracks in Different Metrics: (a) Precision, (b) Recall, (c) F1 Score, (d) Accuracy

Fig. 6. The F1 Score Comparison of Four Kinds of Crack in Different 
CNN Models
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3.4 Efficiency of CNN Models
CNN models aim to use deeper networks to improve the prediction 

ability. However, crack classification work in civil engineering 

requires not only the high accuracy of classification but also the 

speed and efficiency. Crack detection should be real-time work 

to decrease its influence on transportation flow. Thus, the testing 

time for each image is an important factor. Because a high-

performance GPU is not always equipment in highway agencies, 

the training time is also considered as a key factor when deploying 

the CNN models. Advances in neural network efficiency not only 

improve user experience via higher accuracy and lower latency 

but also reduce the power consumption to perform identification. 

In order to evaluate the efficiency of each model, the computing 

time during the training procedure and the prediction time for 

each image are recorded in this work which is shown in Figs. 

7(a) and 7(b).

As seen in the Fig. 7(a), ConvNeXt_base spends the longest 

time (3567 seconds) in training, although it gets the highest 

accuracy and macro F1 score among all the fourteen models. The 

AlexNet only spends about 1333 seconds which is the shortest 

time among all the models, but it also obtains the lowest accuracy on 

the crack classification task. The training time for CNN models 

including AlexNet, ShuffleNet v2, MNASNet0_5, SqueezeNet1_0, 

MobileNet v3, RegNet_y_400mf and GoogLeNet fall within the 

range of 1300 to 1500 seconds, which are quite low in comparison

to other networks. However, a longer training time does not 

mean a higher accuracy as we can see in Fig. 7(c). The R-square 

value is only 0.247 for the linear regression between training time

and the macro F1 score, which means that there is no apparent 

positive linear relationship between training time and test accuracy. 

The testing time per image is important for real-time detection. 

As we can see in Fig. 7(b), AlexNet uses the least prediction time 

among all CNN models. The ConvNext_base uses the second 

least time for predicting an image although it uses the longest 

time in training. Eight models use a prediction time less than 

0.05s in total. 

However, achieving a balance between efficiency and accuracy 

is crucial for a reliable CNN model. Thus, RFT is used in this 

study to work as an evaluation metric of trade-off between training 

efficiency and test accuracy. It is calculated by considering the 

Macro F1 score in test data divided by the time consumed during 

the training procedure, which means how much accuracy a 

model can get using one unit of computing power. RFP is utilized to 

work as an evaluation metric of a trade-off between real-time 

efficiency and test accuracy. It is calculated by considering the 

Macro F1 score in test data divided by the time consumed in 

Fig. 7. The Training Time and Prediction Time used in Each Model: (a) The Training Time Used in Each Model, (b) The Prediction Time Needed 
for a Single Image in Each Model, (c) The Relationship between the Model’s Training Time and Test Accuracy
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predicting an image. Fig. 9 displays the ranked RFT and RFP 

among different CNN models in this crack classification task.

As we can see from Fig. 8(a), SqueezeNet1_0 has the highest 

value in RFT while the ConvNeXt_base has the lowest. This is 

because the SqueezeNet1_0 is one of the only two models which 

have an accuracy above 0.8, but its training time is very low at 

only 1390 seconds, similar to the AlexNet time. Although 

ConvNeXt_base has the highest macro F1 score among all 

models, the training time for a ConvNeXt_base model is quite 

high, which will consume a lot of computing source power.

Figure 8(b) shows the results of RFP in CNN models. If the 

RFP is high, that means the model can use a small prediction time to 

get a high accuracy which is very significant in the real-time work. 

In this case, the ConvNeXt_base get the highest value. AlexNet’s 

macro F1 score, training time and prediction time are all the lowest 

among CNN models. However, it ranks third in the RFP. 

3.5 Lightweight Model versus Computing-Intensive 

Model
Traditional CNN models are more concerned about using deeper 

layers or constructing complex structures to increase the accuracy of 

models. However, it ignores the requirements for the computing 

source. The emerging lightweight model has attracted interest 

due to its small computing time and the low requirement for 

computing power. Models including SqueezeNet1_0, MobileNetv3, 

MNASNet0_5, EfficientNet_b0 and ShuffleNet v2 are all 

lightweight models designed for efficiency. In this benchmark 

study, the CNN models are divided into computing-intensive and 

lightweight models depending on the model’s parameters. The 

average training time, prediction time and macro F1 score are 

evaluated and compared between these two kinds of models. 

As we can see from the Figs. 9(a) and 9(b), the lightweight 

model has a big difference when compared to the computing-

intensive model in terms of computing time. The median value 

of average training time for lightweight models is lower than 

1500 seconds while it is around 2500 seconds for the computing-

intensive model. The median value of average testing time for a 

single road image is about 0.125 for the computing-intensive 

models while around 0.025 for the lightweight models. That 

means the lightweight models consume much less computing 

Fig. 8. The RFT and RFP Metrics in Different CNN Models: (a) RFT, (b) RFP

Fig. 9. The Comparison of Lightweight Models and Traditional Models: (a) The Average Training Time during Training Procedure, (b) The Average 
Testing Time for Each Image, (c) The Average Macro F1 Score in Test Data
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time and prediction time than the traditional designed models.

As we can see from the Fig. 9(c), the median and mean value 

of average macro F1 score are very close between these two 

kinds of models. A student t-test (alpha = 0.05) is conducted to 

compare the mean value of average macro F1 score in lightweight 

model and computing-intensive models. The p-value results in 0.74 

which means that we cannot reject the hypothesis that the mean 

value of average macro F1 score in these two kinds of models is 

equal. In other words, the lightweight model results in similar 

accuracy in classifying cracks as the computing-intensive model. 

According to balanced selection criteria, the lightweight model 

could be a good choice for mobile users as it consumes less training 

time and prediction time without decreasing much accuracy.

4. Discussion

An RCCD dataset is first presented in this work as an open-

source dataset contributing to standardizing the evaluation of 

deep learning models in pavement crack classification tasks. 

Highway agencies and researchers can train and test their models 

based on this dataset in order to choose a suitable model for their 

practical application. A benchmark study is conducted to show 

the performance of state-of-the-art CNN models, which can 

work as a baseline for other models. 

Although there are some important improvements revealed by 

this work, there are also limitations. The biggest limitation is the 

representativeness of the RCCD dataset, as it only contains 1,600 

images total, which might cause overfitting when training a big 

model. Also, the images are collected from three cities. More 

scenarios, including varying lighting, road surfaces, and weather 

(snow, rainy, and so on) should be included into the dataset to 

improve its regularization capacity. The lightweight models 

outperform the computing-intensive models in this dataset, but 

the lightweight models still contain some drawbacks. For example, 

lightweight models typically have fewer parameters and a 

shallower architecture compared to larger, more complex models. 

This reduced capacity can limit their ability to learn and represent 

highly intricate or complex patterns in data. Also, they may not 

generalize as well to diverse or out-of-distribution data and 

maybe less robust in handling noisy data.

In future studies, more images collected from different scenarios, 

and various cities would be added into the RCCD dataset to 

expand its scope, which is beneficial for model training and 

testing. Moreover, other popular CNN models as well as ensemble 

learning would be introduced to explore their performance in this 

dataset. Some code implementations would be done to improve 

the RCCD’s ability to deploy in the existing infrastructure 

maintenance system. The interpretability of different CNN models 

will also be learned in the future to gain a deeper insight into the 

interaction between the model and dataset. 

5. Conclusions

In this work, we propose an open-source RCCD dataset as a 

standard dataset for pavement crack classification tasks. By doing 

this, we can evaluate and compare deep learning-based models 

on the same baseline. In order to figure out a proper deep learning 

method in pavement crack classification for different users, like 

highway agencies and many industries, a benchmark study is 

conducted to evaluate the robustness and efficiency of different 

deep learning architectures based on the proposed dataset. 

Fourteen classic deep learning-based models are compared and 

evaluated. The resulting conclusions are summarized below.

1. ConvNeXt_base obtains the highest value in all accuracy 

metrics (accuracy, macro precision, macro recall and macro 

F1 score) among all deep learning models, followed by 

SqueezeNet1_0, and ResNet50. ConvNeXt_base is also 

the only model that results in all the metrics larger than 0.8.

2. When comparing the accuracy metrics between different 

cracks, the block crack has the lowest accuracy metrics 

among cracks in every model. It also indicates that the 

Transverse crack, Longitudinal crack, and Alligator crack are 

easier to classify than the Block crack. The ConvNeXt_base 

gets the highest accuracy and F1 score on all kinds of cracks 

among all CNN models. This suggests the ConvNeXt_base 

performs better in identifying all types of cracks in 

comparison to other models.

3. By comparing the efficiency of the fourteen deep learning 

algorithms, the ConvNeXt_base consumes the longest training 

time among models, although it has the highest accuracy 

and macro F1 score. Though the highest accuracy model 

uses the longest training time and the lowest accuracy 

model, AlexNet, uses the shortest training time, the training 

time does not indicate a significant linear relationship with 

test accuracy. Wide ResNet50_2 uses the longest prediction 

time after the model has been trained, while AlexNet still 

consumes the shortest predicting time. A model with a 

short prediction time means it can be applied in a real-time 

detection task. AlexNet, ConvNeXt_base, MNASNet0_5, 

ShuffleNet v2, SqueezeNet1_0, RegNet_y_400mf, MobileNet 

v3, and GoogLeNet are the models whose prediction time 

is lower than 0.05 s.

4. SqueezeNet1_0 is the most efficient deep learning model 

on computing power usage, while the ConvNeXt_base is 

the least training-efficient model. However, in prediction 

efficiency, the ConvNeXt_base is the most efficient model 

while Wide ResNet50_2 is the lowest efficient because its 

prediction time is larger than 0.2. 

5. By comparing the lightweight model and traditional model 

types, it is noteworthy that the lightweight model consumes 

less training time and prediction time, but the macro F1

scores made by these two types of models are similar.

Through the benchmark study of deep learning models in 

pavement crack classification tasks, some recommendations 

based on balanced selection criteria can be made to different 

users. For a precision-oriented user, ConvNeXt_base may be 

chosen as the best model because the accuracy and macro F1

score are both the highest among all models in this benchmark 
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study. When computing efficiency comes to the biggest metric, 

the SqueezeNet1_0 is suggested, as it can decrease the training 

time dramatically without losing much accuracy. For a mobile 

user or when the computing power is limited, lightweight 

models such as SqueezeNet1_0, ShuffleNet v2, MNASNet0_5, 

EfficientNet _b0, MobileNet v3 can be the first choice as these 

models use less training time and prediction time than computing-

intensive models, but the accuracy does not decrease. For a real-

time task, AlexNet, ConvNeXt_base and MNASNet0_5 are the 

fastest models in real-time predicting, and can be the first choice 

in a real-time task. If considering both the accuracy and the 

predicting speed, the ConvNeXt_base could be the best choice as 

it has the highest value in both macro F1 score and RFP.
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