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1. Introduction

With the continuous expansion of bridge construction throughout

the world, the scale of bridge construction has increased significantly.

In recent years, there have been reports of bridge fracture and 

collapse accidents continuing to occur worldwide, which has 

been a cause of concern for bridge engineers and technical 

researchers. For example, in order to ensure the anti-slip safety of 

main cable in the main saddle of long-span suspension bridge, Wang 

et al. investigated the contact and slip behaviors of main cable of 

the long-span suspension bridge (Wang et al., 2022); Tran-Ngoc 

et al. pointed out that the Guadalquivir bridge is has come into 

operation for a long time, and proposed a novel approach to model 

updating for the Guadalquivir bridge based on the vibration

measurements combined with a hybrid metaheuristic search 

algorithm (Tran-Ngoc et al., 2022); Qin et al. assessed the condition 

of a concrete-filled steel tube arch bridge using in-situ vibration 

measurements, finite element model updating and an improved 

artificial fish swarm algorithm (Qin et al., 2024). 

Bridge bearings are important components to bear the loads of 

main girders, and bearing damage will directly affect the safety of 

bridge. Currently, there are many bridge inspection or monitoring
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technologies to detect bearing damage or other bridge damage 

such as acoustic emission monitoring (Xu et al., 2023), digital 

image monitoring (Wang et al., 2020), infrared monitoring (Zheng 

et al., 2022) and LVDT sensor monitoring (Bai et al., 2022). 

Acoustic emission monitoring is a passive non-destructive testing

technique that can monitor the internal activity of materials in 

real time and continuously, with advantages such as insensitivity 

to geometric shape and strong adaptability, but it also faces some 

challenges such as environmental noise interference, complexity 

in signal interpretation, which is difficult to accurately detect 

bearing wear at complex bridge site; digital image monitoring is 

a nondestructive technique, but it is usually used for monitoring 

damage on the bearing surface and is susceptible to weather such 

as rain and fog; infrared monitoring has the advantages of non-

contact, high sensitivity and strong resistance, but it has the 

disadvantage of being greatly affected by environment and also 

having a limited measurement range, which is actually difficult 

to use for bearing inspection. Hence, data-driven method based on 

the monitoring data of LVDT sensors combined with temperature 

data has been widely used to evaluate the bearing damage with 

the advantage of little interference of weather and noise.

With regard to the data-driven method, the monitoring bearing 

displacement by LVDT sensors refers to the relative change 

between bridge bearings and beams (Gong and Agrawal, 2016; 

Wang and  Ye, 2018; Wu et al., 2020; Mei et al., 2021). Hence, 

extensive studies have been dedicated to simulating and predicting 

bearing displacements using monitoring data, focusing on 

establishing correlation models between temperatures and 

thermally-induced displacements using data-driven method (Wu 

et al., 2021). For example, Wu et al. proposed an early-warning 

method for bearing displacement of long-span bridges using a 

proposed time-varying temperature-displacement model, and the 

results show that the modeling and prediction errors of the time-

varying model are smaller than that of the linear model (Wu et 

al., 2024; Wu et al., 2024); Wang et al. employed a multivariate 

linear regression method to formulate a correlation model between 

the chord temperature and bearing displacement in a steel truss 

bridge (Wang et al., 2016). These methods can establish a correlation

analysis between temperature and bearing displacement and 

predict bearing displacement changes through temperature changes, 

but there are also some defects of these methods. One defect is 

that the temperature variables have a correlation with each other 

because the temperatures at different locations have similar seasonal 

changing trends, which results in the temperature variables in the 

model are not independent; the other defect is that the temperature 

differences or gradient temperatures are not treated as variables 

for consideration in the time-varying temperature-displacement 

model, but in some cases there are high temperature differences 

existing in bridge girders.

 Furthermore, artificial neural networks are also used to model 

the temperature-induced displacements. For example, Zheng et 

al. proposed a modeling approach utilizing long short-term 

memory (LSTM) neural networks to capture the multivariate 

relationship between temperature and bearing displacement 

(Zheng et al., 2021); Asad et al. constructed an prediction model 

for long-term horizontal displacement under varying external 

environmental conditions to bearing the reliable assessment of 

bridge structures using artificial neural network and Bayesian 

optimization, and the analysis of the results concludes that the 

proposed method can generate an robust long-term horizontal 

displacement prediction model (Asad et al., 2023); Huang et al. 

proposes a spatial -temporal nonlinear modeling method for 

temperature and temperature-induced bearing displacement (TIBD) 

of long-span single-pier rigid frame bridge based on DCNN-

LSTM network with elastic modulus fusion (Huang et al., 2024). 

However, with regard to the artificial neural networks, there are 

also some defects of these methods. One defect is the number of 

layers in a neural network is an important parameter that determines 

the depth and complexity of the model; as the number of layers 

increases, the model can extract more feature information, thereby 

improving the accuracy and generalization ability of the model; 

but if the number of layers is too many, there will be over-fitting 

problems in this method, resulting in bad fitting results of testing 

data; the other defect is the weight and bias in neural networks 

are constant values without change with time; if bearing damage 

occurs in the future, the values of weight and bias will maybe not 

appropriate for accurate simulation of displacement under the 

influence of bearing damage.

In general, current researches on the simulation of bearing 

displacement mostly considers the linear correlation between 

uniform temperature and bearing displacement, without considering 

the influence of gradient temperatures and the nonlinear 

characteristics of temperature displacement, resulting in low model 

accuracy, which may overlook the abnormal changes in bearing 

displacements (Hoult et al., 2010; Xia and Chen, 2013). Therefore, 

in order to improve modeling accuracy and lay the foundation 

for achieving accurate assessment of bearing damage, it is 

necessary to conduct a deep research on displacement modeling 

considering the influence of gradient temperatures and the 

nonlinear characteristics of temperature-induced displacements.

Hence, this study analyzed a single-tower cable-stayed bridge 

using the monitoring data of temperatures and bearing displacements,

which undertakes a thorough research of modeling the correlation

between girder temperatures and bearing displacements at different 

time scales of daily change and monthly change. In this research, 

a time-varying multiple linear regression model is built, which 

considers not only the influence of uniform temperature and 

gradient temperature but also the monthly-linear and daily-

nonlinear characteristics, and Kalman filtering method is used to 

accurately calculate the time-varying coefficients of the model. 

Finally, the modeling accuracy is verified and compared with the 

traditional multiple linear model, and the results show that the 

time-varying multiple linear regression model considering not 

only the influence of uniform temperature and gradient temperature 

but also the linear and nonlinear correlations demonstrates better 

modeling accuracy.
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2. Project Overview

A cable-stayed bridge is located at the estuary of the Yongjiang 

River in Ningbo, Zhejiang Province, China, as shown in Fig. 1. 

There are five spans of main girder, and the length of each span is 

(74.5 + 258 + 102 + 83 + 49.5) m. The entire bridge is designed with 

six lanes in both directions with a speed of 60 km/h. The main 

girder is a pre-stressed concrete structure with a width of 29.5 meters 

and a height of 2.4 meters. The standard cross-section of the main 

girder is a double-box single-chamber section in an inverted 

trapezoidal shape. The bridge tower is a reinforced concrete 

structure with a thin-walled hollow box-shaped section, standing 

at a height of 148.4 meters with 25 pairs of diagonal stay cables 

distributed on each side. 

This cable-stayed bridge, characterized by a large span, high-

load design value, and complex structural type, requires the 

installation of a health monitoring system to continuously monitor 

the operation status of bridge structures, as shown in Fig. 1. The 

monitoring points on the main girder are primarily situated at 

sections A to J. The left and right structural forms of the main beam 

are the same, so temperature sensors have been strategically 

positioned on the right side, with a total of 5 temperature-monitoring 

sections and 53 temperature sensors. Displacement sensors are 

strategically placed on the top of the bridge piers (namely P20, P22, 

and P25), symmetrically distributed on both sides.

It should be pointed out that WD-G-01 or WY-G-01 denotes the 

1st temperature or displacement sensor located in section G, and the 

numbering method for the other temperature and displacement 

sensors is the same. The distribution of measurement points for the 

main bridge temperature and bearing displacement is shown in Fig. 1.

3. Analysis of the Relationship between Main 
Girder Temperature Field and Bearing 
Displacement

3.1 Analysis of Main Girder Temperature and Bearing 
Displacement Monitoring Data

Cable-stayed bridges are flexible structures with small axial 

curvature and uniform cross-sectional changes, and the gradient 

temperatures along the longitudinal direction of main girders can 

be ignored (Yarnold et al., 2015; Gao et al., 2021). In this study, 

temperature data is collected over six months (182 days) at 

Fig. 1. Layout Diagram of Temperature Sensors and Displacement Sensors (Unit:cm): (a) Vertical Arrangement Diagram, (b) Planar Arrangement 
Diagram

Fig. 2. Sensor Layout of Section I (Unit: cm)
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Section I for analysis, with the sensor layout illustrated in Fig. 2. 

The temperature data from the monitoring location WD-I-i is 

denoted by Mi, where i = 01, 02, ..., 10. The sampling frequency 

is set to 1 Hz. 

The time histories of temperature data at different monitoring 

locations are shown in Fig. 3(a). It can be seen that the temperature 

ranges are different at different monitoring locations. For example, 

the temperature range of WD-I-01 is 21.9 − 37.9℃, and the 

temperature range of WD-I-10 is 25.2 − 32.1℃. In addition, the 

temperatures of different monitoring locations in the same day 

are also different, as shown in Fig. 3(b). For example, the temperature 

of WD-I-01 is 34.4℃ at 14:30, and the temperature of WD-I-10 

is 31.0℃ at 14:30.

Furthermore, the values of temperature differences in section 

I of the main beam are calculated as shown in Table 1, where Ti,j

denotes the temperature differences between WD-I-i and WD-I-

j. It can be seen that there is a significant gradient temperature in the 

vertical and transversal directions of the main beam section, with a 

maximum value of 18.7℃. This indicates that the temperature-

induced displacements are not only affected by uniform temperature 

but also affected by gradient temperature, which should be carefully 

considered during time-varying multiple linear regression modeling.

The longitudinal displacements of the bearings on P20, P22 and 

P25 are measured using LVDT sensors. Consider that the bearings 

on P22 are constrained in the both longitudinal and transversal 

directions which results in very small displacement values, so this 

study primarily focuses on the analysis of bearing displacements on 

P20 and P25. The layout of displacement sensors on P20 is depicted 

in Fig. 4. The sampling frequency is set to 1 Hz. 

Fig. 3. Monthly anD Daily Temperature Variations for Measurement Points in Section I: (a) Monthly Variation, (b) Daily Variation

Table 1. Statistical Values of Temperature Differences of Main Girder 
Section I

Lateral Temperature Differential 

Categories

Sensor 

Number

Max

/℃

Min

/℃

Horizontal Temperature Differential I-T1,4 13.2 -7.6

I-T6,10 4.7 -2.9

I-T5,9 4.2 -2.2

Vertical Temperature Differential I-T1,5 18.7 -7.6

I-T5,4 4.3 -2.5

I-T8,10 2.6 -2.2 Fig. 4. Layout Diagram of Bearing Displacement Sensors

Fig. 5. Monthly and Daily Variations of Bearing Displacements: (a) Monthly Variation, (b) Daily Variation
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The monthly and daily monitoring results of longitudinal 

displacements of the bearings on P20 (corresponding to WY-G-

01/02) and P25 (corresponding to WY-J-01/02) are shown in Fig. 5.

It can be seen that the whole trends of longitudinal displacements 

are similar, and especially the whole trends of longitudinal 

displacements of the same pier are very close such as WY-G-01 

and WY-G-02, so the average values of the displacements are 

utilized to represent the bearing displacement of the same pier in 

the following study. In addition, the daily variation of bearing 

displacements follows a sinusoidal pattern. By comparison of the 

monitoring results from P20 and P25, the displacements of WY-

G-01/02 are bigger than the displacements of WY-J-01/02, and 

the reason is that the girder span on the east side (corresponding 

to WY-G-01/02) of bridge tower is longer than the west side 

(corresponding to WY-J-01/02) of bridge tower, and the maximum 

displacement value is 89.93 mm from WY-G-02.

3.2 The Correlation Analysis between Main Girder 
Temperature Measurement Points and Bearing 
Displacement

By comparison of the trends of bearing displacements and 

temperatures, it can be found that they are similar, so it can be 

inferred that bearing displacements have correlation with 

temperatures, which is depicted in Fig. 6. It can be seen that there is 

a distinct positive linear correlation between bearing displacement 

and main girder temperature, indicating that bearing displacement

will increase as temperature increases. This relationship can be 

expressed by a linear function D = kT + b (where D represents 

Fig. 6. Correlation between Temperatures and Displacements: (a) WD-I-03 and WY-G, (b) WD-I-05 and WY-G, (c) WD-I-07 and WY-J, (d) WD-I-
10 and WY-J

Table 2. Correlation Parameters between Temperatures and Displacements

Number
Temperature Sensor

Number

Fitting Coefficients
R

k b

1 WD-I-01 0.25 11.95 0.865

2 WD-I-02 0.24 11.97 0.867

3 WD-I-03 0.24 13.54 0.967

4 WD-I-04 0.23 14.31 0.855

5 WD-I-05 0.24 13.92 0.979

6 WD-I-06 0.22 13.79 0.964

7 WD-I-07 0.24 15.43 0.925

8 WD-I-08 0.21 13.79 0.963

9 WD-I-09 0.21 15.48 0.878

10 WD-I-10 0.20 14.95 0.943
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bearing displacement, T represents main girder temperature, and 

k, b are fitting parameters). Taking the bearing displacement 

WY-G-01 as an example, the values of fitting parameters are 

calculated using the least squares method, as shown in Table 2. 

The results indicate that the correlation coefficients between 

bearing displacement and main girder temperature are all greater 

than 0.85, verifying a robust linear correlation.

Furthermore, the daily correlation between bearing displacement

and main girder temperature is analyzed. Fig. 7 presents the scatter 

plot depicting the daily correlation. It can be seen that the daily 

correlation shows an elliptical nonlinear characteristic, and the 

primary reason is that the change in bearing displacement typically 

lags behind the change in main girder temperature, indicating a 

lag effect (Guo et al., 2015; Han et al., 2017). It can be concluded 

that the correlation in different time scales is different, showing 

obvious linear relationship as well as nonlinear relationship. 

3.3 Correlation Analysis between Gradient Temperature 
of Main Beam and Bearing Displacement

The influence of uniform temperature on bearing displacement is 

significant, which can mask the influence of gradient temperature 

on bearing displacement (Xia et al., 2017). Hence, the residual 

displacement after eliminating the uniform temperature impact 

on bearing displacement is calculated, denoted as Ds-G-i or Ds-J-

i for the ith sensor. The values of correlation coefficients between 

residual displacements and gradient temperatures is depicted in 

Fig. 8. It is evident that for some gradient temperatures such as 

T6,10, a robust correlation exists between some gradient temperatures

and residual displacements, with a maximum correlation coefficient 

of 0.754; for some gradient temperatures such as T5,9, the influence of 

gradient temperatures on bearing displacements is relatively 

weak and can be disregarded. Therefore, during considering the 

effect of gradient temperatures on longitudinal displacements, 

this study only selects gradient temperatures with a correlation 

coefficient greater than 0.55. What should be mentioned is that, 

with regard to our study case, the correlation coefficients less than

0.55 have weak influence on the simulation accuracy of bearing 

displacements after many times of simulation tests, so 0.55 is 

used as a criterion for the selection of correlation coefficients.

Based on the monitoring data of residual displacements DS as 

well as gradient temperatures T1,4, T6,10, T1,5, two days of data 

(day 45 and day 46) were selected to build the multivariate linear 

correlation models, as shown in Fig. 9. A noticeable observation 

is that the values of correlation coefficients are different in two 

Fig. 7. Daily Correlation between Temperatures and Displacements: (a) WD-I-03 and WY-G, (b) WD-I-05 and WY-J

Fig. 8. Correlation between Temperature Gradients and Displacements: (a) Ds-G, (b) Ds-J
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days, indicating that the correlation coefficients are time-varying.

4. Time-Varying Model of Temperature and 
Bearing Displacement

4.1 Time-Varying Model Construction
Based on the above analysis, a robust linear relationship is 

identified between bearing displacement and both measurement 

point temperature and certain gradient temperatures. Furthermore, it 

is observed that the temperature coefficients show time-varying 

characteristics. Therefore, the correlation model between temperature 

variables and bearing displacement can be expressed as

. (1)

Dj(t) denotes the longitudinal displacement of the jth bearing, 

i,j(t) denotes the jth time-varying coefficient, and Ti(t) denotes 

the temperature variables including point temperatures and 

temperature gradients, and each point temperature and temperature 

gradient can be treated as a temperature variable, where i = 1, 2, 

�, N, and Cj is a constant. 

What should be mentioned is that the point temperatures Ti(t) 

from different measurement points have similar trends and is 

not mutually independent, which is inappropriately treated as 

variables for modeling. Therefore, it is necessary to eliminate 

the correlation information from the original temperature variables. 

Hence, principal component analysis (PCA) is introduced 

(Wang et al., 2016). This method transforms multiple variables 

into principal components that retain the majority of the original 

information, and these components are mutually orthogonal. By 

extracting the principal components of the temperature variables 

, denoted by , the 

expression of the multivariate linear regression model is 

improved as follows:

, (2)

where Pi(t) denotes the ith temperature principal component, Q

denotes the number of temperature principal components, and Cj

is a constant.

According to the contribution rates of the principal component, 

this paper extracts the top three principal components with 

contribution rates represented by PC1, PC2, and PC3. Their 

contribution rates are 92.49%, 4.59%, and 2.24%, respectively. 

The temperature principal component variation curves are illustrated 

in Fig. 10.

4.2 Temperature Time-Varying Coefficient Solution
Kalman filtering is a time-domain recursive algorithm used for 

the solution of a state-space model (Chang et al., 2019). This 

method establishes a priori estimate  based on the state at the 

previous moment, and subsequently determines the optimal 

estimate  by combining it with the observation value Zk at the 

current moment. Through continuous “prediction-correction”, the

optimal estimation result is determined by incorporating observed 

data. The filter value can be updated in real-time as new observations 

become available. Many studies have proven that Kalman filtering 

has good performance in predicting the linear and nonlinear 

structural effects (Wang et al., 2013; Lyu et al., 2024; Song and 

Zheng, 2024), and Kalman filtering is widely used in bridge health 

monitoring. For example, Xiao et al. uses Kalman filtering to 

identify and quantify onboard data of track irregularities in vehicle 

vibration response (Xiao et al., 2022); Lee and Yun, proposed a 

sequential modified extended Kalman filtering algorithm that 

identifies unknown parameters and state vectors in two separate 

steps (Lee and Yun, 2008); Wu et al. proposed an Unscented 

Kalman Filter (UKF) method for identifying linear or nonlinear 

flutter derivatives of bridge decks from free vibration or vibrate 

Dj t( ) 1 j, t( )T1 t( ) 2 j, t( )T2 t( ) � N j, t( )TN t( ) Cj+ + + +=

T1 t( ) T2 t( ) � TN t( ), , , P1 t( ) P2 t( ) � PQ t( ), , ,

Dj t( ) 1 j, t( )P1 t( ) 2 j, t( )P2 t( ) � Q j, t( )PQ t( ) Cj+ + + +=

X̂k

X̂k

Fig. 9. Variation of Gradient Temperatures and Residual Displacements: (a) On the 45th Day, (b) On the 46th Day

Fig. 10. Temperature Principal Components
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response time history (Wu et al., 2021). 

The Kalman filtering method can accurately and effectively 

calculate the time-varying coefficients related to different 

temperature variables. Due to the fact that the time-varying 

coefficient is also a variable that constantly changes over time, 

the time-varying coefficient of linear or nonlinear correlation 

between temperature and displacement can be obtained ensuring the 

accuracy of the data. The principle of determining the optimal 

estimate in the Kalman filter is depicted in Fig. 11.

In light of the time-varying model for temperature-induced 

displacements, coupled with the Kalman filtering algorithm, the 

state equations proposed in this paper are as follows:

, (3)

, (4)

where Dj(t) denotes the longitudinal displacement matrix, 

encompassing the monitoring data for longitudinal displacement; 

P(t) denotes the temperature principal component matrix; j(t) 

denotes the time-varying coefficient matrix, j(t) = [1,j(t), 2,j(t), 

�, Q,j(t)]
T; Ωj denotes the iteration matrix, and Vj(t) denotes the 

noise matrix.

The bearing damage can be identified by analyzing the abnormal

correlation changes between temperature and bearing displacement

(Webb and Middleton, 2013; Nord et al., 2015). Consequently, 

the time-varying coefficients are utilized for the preliminary 

identification of bearing damage. If the time-varying coefficients 

show a abnormal change, it indicates the occurrence of bearing 

damage; otherwise, the bearing is considered to be in a healthy 

state.For example, the time-varying coefficients between WY-G 

and PC1, PC2, and PC3 of the cable-stayed bridge are plotted in Fig. 

12. It is shown that the time-varying coefficients 1(t), 2(t), and 3(t) 

initially change with wide fluctuation, and then gradually tend to 

flatten out. Specifically, the time-varying coefficient 1(t) varies 

from a minimum value of 30.49 to a maximum value of 31.52, the 

time-varying coefficient 2(t) varies from a minimum value of 31.84 

to a maximum value of 32.50, and the time-varying coefficient 3(t) 

varies from a minimum value of 32.40 to a maximum value of 

34.16, respectively. Based on the trend of the time-varying 

coefficients, it can be determined that the bearing of the cable-

stayed bridge are in a healthy state.

4.3 Modeling Validation
The traditional multiple linear regression model is a widely-used 

method for simulating bearing displacements, and its structural 

form is presented in Eq. (5) as follows:

. (5)

Where Dj(t) denotes the bearing displacement;  denotes 

the temperature variables;  denotes the regression 

coefficients, which can be determined using the least squares 

method; and cj is a constant term.

In this modeling validation, the simulation accuracy of the 

traditional model and the proposed time-varying model is compared. 

Daily, monthly, and quarterly monitoring data of displacements 

and temperatures are used for a comparative analysis of modeling 

accuracy. The modeling errors for the two models are calculated 

as follows:

, (6)

, (7)

where Ere and Ekf denote the modeling errors of traditional and 

time-varying methods, respectively; Dre, j denotes the simulated 

values of bearing displacement obtained by traditional model; 

Dkf, j denotes the simulated values of bearing displacement obtained

by time-varying model.

 The modeling errors for the two models, considering bearing 

displacements WY-G and WY-J, are shown in Fig. 13. It can be 

seen that for both WY-G and WY-J, the daily modeling error is 

maximally 2.51% for the multiple linear regression model and 

0.77% for the time-varying model; the monthly modeling error is 

maximally 3.88% for the multiple linear regression model and 

2.35% for the time-varying model; the quarterly modeling error 

is maximally 5.21% for the multiple linear regression model and 

2.58% for the time-varying model. Hence, the time-varying model 

has higher modelling accuracy than multiple linear regression 

model.

Furthermore, the one-day time histories of the measured and 

Dj t( ) j t( )P t( ) Cj+=

j t 1+( ) Ωjj t( ) Vj t( )+=

Dj t( ) 1 j, T1 t( ) 2 j, T2 t( ) 3 j, T3 t( ) � N j, tN t( ) cj+ + + + +=

T1 TN∼

1 j, N j,∼

Ere

Dre j, t( ) Dj t( )–

Dj t( )
--------------------------------- 100%×=

Ekf

Dkf j, t( ) Dj t( )–

Dj t( )
-------------------------------- 100%×=

Fig. 11. Schematic Diagram of Kalman Filtering to Determine the Optimal 
Estimate X̂k

Fig. 12. Temperature Time-Varying Coefficients
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Fig. 13. Comparison of Modeling Simulation of Multiple Linear Regression Model and Time-Varying Model: (a) WY-G Daily Data, (b) WY-J Daily Data, 
(c) WY-G Monthly Data, (d) WY-J Monthly Data, (e) WY-G Quarterly Data, (f) WY-J Quarterly Data

Fig. 14. Comparison of Measured and Predicted Bearing Displacements: (a) WY-G, (b) WY-J
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simulated bearing displacements are shown in Fig. 14, where 

the simulated bearing displacements are obtained by two 

methods which are the traditional method (Eq. (5)) and the 

proposed time-varying method (Eq. (2)). It is evident that the 

simulated values calculated by the proposed time-varying 

method are closer to the measured values than the traditional 

method, with the root mean square errors of 0.8479 and 0.7149, 

respectively, verifying that the proposed time-varying multiple 

linear regression model has a good simulation accuracy of 

bearing displacements.

5. Conclusions

In order to improve the simulation accuracy of temperature-

induced bearing displacements, this research puts forward a time-

varying multiple linear regression modeling, which obtains better

simulation accuracy by comparison with traditional simulation 

methods. The main conclusions are drawn as follows:

1. The monitoring temperature results show that there is a 

significant gradient temperature in the vertical and transversal 

directions of the main beam section, with a maximum value 

of 18.67℃. This indicates that the temperature-induced 

displacements are not only affected by uniform temperature 

but also affected by gradient temperature, which should be 

fully considered during time-varying multiple linear regression

modeling;

2. The monthly correlation between displacement and uniform

temperature or gradient temperature shows distinct positive 

linear characteristics; and the daily correlation shows an 

elliptical nonlinear characteristic, and the primary reason is 

that the change in bearing displacement typically lags 

behind the change in main girder temperature, indicating a 

lag effect. It can be concluded that the correlation in different

time scales is different, showing obvious linear relationship 

in long-term period as well as nonlinear relationship in 

short-term period;

3. A time-varying multiple linear regression model is proposed

which considers not only the influence of uniform temperature 

and gradient temperature but also the linear and nonlinear 

correlations; Kalman filtering method is used to accurately 

calculate the time-varying coefficients of the model; 

furthermore, the values of time-varying coefficients are 

feasible to evaluate the longitudinal expansion performance of 

bridge bearings;

4. Compared with traditional multivariate linear regression 

model, the time-varying multiple linear regression model 

considering long-term and short-term nonlinear relationship

demonstrates better modeling accuracy, with errors of 

only 0.77%, 2.35%, and 2.58% for daily, monthly, and 

quarterly data, respectively; the simulated values of bearing 

displacements are close to the monitoring values, with the 

root mean square errors of only 0.8479 and 0.7149, suggesting 

that the time-varying multiple linear regression model has a 

good simulation accuracy of bearing displacements.

What should be mentioned is that, although this research 

object is a cable-stayed bridge with concrete box girder in this 

research, the proposed model can be applied to the other bridge 

types for high-accuracy displacement simulation, especially if 

the bridge girder contains obvious gradient temperature and the 

monthly correlation between displacement and temperature is 

nonlinear.
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