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1. Introduction

Earthquakes are highly impactful natural disasters that can cause 

significant damage to transportation infrastructure. As critical 

transportation network components, bridges in earthquake-prone 

areas are particularly vulnerable to earthquake damage. While 

direct casualties resulting from earthquake damage to bridges are 

generally limited, the ensuing traffic disruption will significantly 

impede subsequent earthquake relief efforts, and the resulting 

indirect losses are challenging to quantify accurately. Thus, it is 

of utmost importance to determine the seismic damage status of 

bridges promptly and accurately, providing a crucial foundation for

emergency management decisions and post-earthquake rehabilitation 

(Ni et al., 2015).

Seismic waves carry substantial energy, resulting in a complex

state of bridge damage during seismic excitation. The response 

exhibits non-stationary and nonlinear characteristics (Cao and 

Friswell, 2009). Furthermore, a coupling relationship exists between 

changes in the bridge's damage state and the characteristics of the 

seismic excitation, which jointly influence the bridge's response. 

Additionally, the bridge's low-order modes are densely distributed, 

contributing to a low signal-to-noise ratio in the response. These 

challenging factors pose difficulties in accurately identifying 

seismic damage in bridges. Therefore, the key to accurately 

identifying bridge seismic damage lies in decoupling the damage 

state and seismic excitation characteristics from the non-stationary 

and nonlinear response while effectively extracting the features 

that reflect the bridge's damage state. Scholars have conducted 

extensive research to develop suitable damage features for bridge 

seismic damage identification. Li et al. (2019) established a finite 

element model of a curved beam bridge for seismic damage 

identification. They used wavelet packet transformation on 

displacement responses and wavelet packet singular entropy to 

construct damage features, enabling precise identification of 

damage locations. Deng et al. (2021) developed a finite element 

model of a curved beam bridge under seismic excitation and 

obtained its displacement response. They used wavelet packet 

transformation to decompose the displacement response and 
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constructed damage features based on wavelet packet norm 

entropy. By analyzing the mutation position of the damage index 

curve, they identified the damage location and evaluated its 

severity based on the mutation peak. Liu et al. (2023) established 

a finite element model of a cable-stayed bridge and simulated 

seismic excitation to obtain the structural strain response. They 

used the transmissibility function to address different excitations 

and identified damage locations by analyzing the energy change 

in the structural strain response before and after damage. To 

validate their approach, they also developed a cable-stayed bridge 

test model.

In the studies mentioned earlier, seismic damage identifications

of bridges were performed by artificially constructing damage 

indicators. However, the manual extraction method entails laborious 

efforts, and its applicability has yet to be extensively validated. In 

recent years, the Deep Neural Network (DNN) has experienced 

rapid advancement owing to its remarkable feature extraction 

capabilities, enabling end-to-end learning for practical problem-

solving without reliance on prior human knowledge. This makes 

it well-suited for addressing intricate and nonlinear problems. 

Consequently, civil engineering has witnessed extensive utilization 

of DNN for structural damage identification purposes. Zhang et 

al. (2019) used experimental simulations to obtain bridge acceleration 

responses, which served as input for a 1-dimensional convolutional 

neural network(1D-CNN) to detect subtle changes in structural 

mass and stiffness. Teng et al. (2020) constructed an experimental 

model of a steel truss bridge and stimulated it using a force 

hammer, and the acceleration responses are used as inputs for a 

1D-CNN to identify the damage location of the bridge. Zou et al. 

(2021) developed a scale model of a three-span continuous rigid 

bridge. They used a hand-pulled trolley to simulate vehicle loads 

and obtained acceleration responses as input for the neural network. 

By combining a CNN with a gated recurrent neural network (RNN), 

they effectively assessed the damage degree of the bridge model. 

Zhang et al. (2022) developed a steel truss bridge test model and 

subjected it to impact from a hammer. They recorded the 

acceleration and strain responses, which were fused and input 

into a CNN to accurately identify the location and extent of 

damage in the bridge.

However, previous studies have indicated that the accuracy of 

structural damage identification using deep learning is not 

significantly high when the collected response signal is directly 

employed as the input for the network. Recognizing this concern, 

numerous researchers have endeavored to conduct further 

investigations on this matter. He et al. (2021a) established a finite 

element model of a three-span continuous reinforced concrete 

girder bridge. They employed wavelet packets to filter and 

reconstruct the structural response obtained from the vehicle-

bridge coupling vibration. Recursive analysis was utilized to 

generate damage features from the obtained recursive graphs. A 

convolutional neural network was then employed to identify the 

location and degree of structural damage. He et al. (2021b) 

developed a three-layer frame structure experimental model. The 

structure was stimulated to obtain the acceleration response, and 

a fast Fourier transform was employed to extract frequency 

information. The damage degree of the frame structure was identified 

using a deep convolutional neural network. Furthermore, a 

comparison with traditional machine learning algorithms 

demonstrated the higher identification accuracy achieved by the 

proposed method. Wu et al. (2022) developed a finite element model 

of a simply supported steel beam and used a force hammer to 

obtain the acceleration response. They performed wavelet packet 

decomposition on the response to construct damage features 

based on changes in energy ratios across frequency bands, and a 

CNN was used to identify the damage location. The method was 

validated with a test model, showing that frequency domain and 

time-frequency domain transformations of the response signal 

led to improved identification accuracy when used as neural 

network input. However, it is important to note that this approach 

necessitates significant computational and time investments, thus 

hindering the timely identification of seismic damage.

Bridge seismic damage identification is a subset of structural 

damage identification but is more complex due to pronounced 

nonlinearity and non-stationarity in its response. DNN holds 

significant theoretical potential for this task, yet the literature 

remains limited. This study aims to discover features that accurately

reflect bridge damage under seismic conditions, minimizing the 

need for complex manual intervention. The ultimate goal is to 

rapidly identify earthquake-induced bridge damage.

This paper presents a comparative analysis of various damage 

features utilizing deep CNNs. The underlying framework is 

visually depicted in Fig. 1. The subsequent sections of this article 

are structured as follows: Section 2 outlines the seismic damage 

simulation methodology for the continuous rigid bridge. Section 

3 describes the extraction process for acceleration, statistical, 

Fig. 1. Framework of Bridge Seismic Damage Identification
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frequency domain, and time-frequency domain features. Section 

4 provides detailed information regarding the construction of 

CNN. Finally, Section 5 delves into a comprehensive discussion 

of the results obtained from damage identification using different 

features. 

2. Seismic Damage Simulation

2.1 Bridge Model
The bridge has a total length of 650 m, with a span arrangement 

consisting of segments measuring 80 m, 130 m, 2 × 170 m, and 

100 m. The heights of the piers numbered 1, 2, 3, and 4 are 26.9 m, 

123.54 m, 91.63 m, and 80.14 m, respectively. The main girder 

features a single box and single chamber variable section 

constructed with C50 concrete. The piers are hollow rectangular 

sections composed of C40 concrete and HRB 335 reinforcement. 

The overall arrangement of the continuous rigid bridge is shown 

in Fig. 2.

2.2 Finite Element Model Establishing
The finite element model of the continuous rigid bridge is 

developed utilizing the Open System for Earthquake Engineering

Simulation (OpenSees) software. In seismic events, the bridge 

pier is prone to greater vulnerability than the main girder structure, 

typically exhibiting plastic deformation prior to the main girder 

structure. Consequently, this study employs an elastic beam-

column element to represent the main girder, a nonlinear beam-

column element to emulate the bridge pier, and a zero-length 

element to simulate the bidirectional movable bearing.

Previous research on bridge disasters following earthquakes 

has identified key components vulnerable to seismic damage, 

including foundations, supports, and piers (Chiou et al., 2019; 

Jiao et al., 2019; Lu et al., 2019). Among these components, piers 

are particularly susceptible to seismic damage. Consequently, the 

condition of the piers can serve as an indirect indicator of the 

overall damage state of a continuous rigid bridge (Shinozuka et 

al., 2000). Therefore, it is imperative to effectively simulate the 

nonlinear motion mechanism of bridge piers when subjected to 

seismic forces, as this will enable the accurate assessment of 

seismic response to identify and evaluate bridge seismic damage.

This paper utilizes nonlinear beam-column elements and fiber 

sections to simulate the behavior of the piers accurately. For the 

fiber section definition, three distinct materials represent the 

piers: protective layer concrete, core area concrete, and steel bars. 

The concrete and confined concrete are simulated with the 

modified Kent-Park model (Scott et al., 1982), and the steel bars 

are simulated with the Johnson-Cook model (Johnson and Cook, 

1983). 

2.3 Incremental Dynamic Analysis
The characteristics of seismic excitation significantly influence 

the seismic damage state of the bridge (Zhou et al., 2013). To 

enrich the seismic damage state of the continuous rigid bridge, it 

is essential to consider the inherent randomness and discreteness 

of seismic waves. For this purpose, 155 different ground motion 

records were selected from the PEER ground motion database. 

Fig. 3 depicts the characteristic distribution of these selected 

records. Peak ground acceleration (PGA) is used as the ground 

motion intensity index. Then, Incremental Dynamic Analysis (IDA) 

was used to conduct the seismic damage analysis. Considering 

that weak ground motion may not cause seismic damage to the 

bridge, the selected records were adjusted from 0.1 g to 0.5 g 

with an incremental step of 0.1 g. Consequently, 775 seismic 

waves were generated for the subsequent IDA.

Before employing a deep CNN for damage identification, it is 

imperative to ascertain that the inputs possess consistent feature 

dimensions. As a result, it becomes essential to standardize the 

durations of all ground motions before executing an incremental 

dynamic analysis on the continuous rigid bridge. The established 

continuous rigid bridge exhibits a base period of 4.13s. In order 

to fulfill the requirement that ground motion durations range 

from 5 to 10 times the basic period of the structure, the durations 

of all ground motions are adjusted to 40s.

2.4 Damage Definition
The moment-curvature analysis is conducted on both the upper 

and lower sections of each pier. The resulting curvature serves as 

an indicator for assessing the extent of pier damage, which is Fig. 2. Overall Arrangement of the Bridge 

Fig. 3. Characteristic Distribution of Ground Motions
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categorized into five distinct states: no damage (ND), slight 

damage (SD), moderate damage (MD), grave damage (GD), and 

complete damage (CD). 

This paper uses the record of LOMAP as an example to 

demonstrate the definition of seismic damage state of the bridge. 

The acceleration waveform of the LOMAP is presented in Fig. 4(a),

while Fig. 4(b) displays the acceleration response at the top of 

Pier #1 for an excitation with PGA = 0.1 g. the corresponding 

damage states of piers are summarized in Table 1.

3. Feature Engineering

The pivotal aspect of bridge seismic damage identification lies in 

extracting features that accurately depict the seismic damage 

condition of the bridge. Accordingly, this section provides a 

comprehensive account of establishing statistical, frequency, and 

time-frequency features. The acceleration response in Fig. 4(b) is 

employed to illustrate the feature Engineering. It should be pointed

out that the samples used for subsequent damage identification 

are identical, including the training, validation, and testing of 

different networks. Four types of damage features are extracted 

from these samples to study their ability to characterize the 

damage state of bridges under seismic excitation. 

3.1 Acceleration Response
The acceleration responses of the eight measuring points are 

interconnected in parallel, corresponding to the top and bottom 

sections of Piers #1 to #4. Since the adjusted seismic wave data 

length is 4000, the sample with a data dimension of 4000 rows 

and eight columns is obtained, as depicted in Fig. 4(b).

3.2 Statistical Features
Statistical features belong to a category of time-domain features 

that describe the distribution and change trend of the signal. In 

practical applications, the selection of specific statistical features 

for analysis depends on the data characteristics and task requirements.

These features commonly serve as inputs for machine learning 

models employed in damage identification tasks. Common statistical

features encompass the mean, variance, standard deviation, median, 

skewness and kurtosis.

In mathematics and statistics, moments serve as measures for 

evaluating a variable's distribution and morphological characteristics. 

Specifically, the nth-order moment is computed by integrating 

the product of the nth power of the variable and its corresponding 

probability density function (Spokoiny and Dickhaus, 2015). The 

1st to 4th moments of a data series are defined as mean, variance, 

skewness, and kurtosis, respectively.

The mean, a fundamental statistical measure, represents the 

central tendency of a dataset, calculated as the average of all data 

points. Variance quantifies the extent of dispersion among data 

points. The greater the variance, the greater the degree of dispersion

of the data. Skewness is a statistical measure that describes the 

asymmetry of a data distribution, while kurtosis measures the 

degree of spikes in the data distribution. Thus, the mean, variance, 

skewness, and kurtosis of the acceleration responses are employed 

as fundamental statistical indices to construct the statistical damage 

feature. The construction process encompasses the following 

steps:

1. The acceleration response is partitioned into 20 distinct 

intervals, each corresponding to a specific percentage of the 

total acceleration response time, ranging from 5% to 95%. The 

mean, variance, skewness, and kurtosis are computed

independently for each basic interval.

2. Subsequently, the mean, variance, skewness, and kurtosis 

values obtained from the 20 basic intervals are concatenated 

sequentially to form a feature vector for each measurement 

point. Since there are 8 test channels, a resulting sample 

possesses a data dimension of 80 rows and eight columns.

As an illustrative example, the mean value, variance, skewness 

and kurtosis of the acceleration response at the top of Pier 1# are 

presented in Figs. 5(a) to 5(d), respectively. 

3.3 Frequency Features
Frequency analysis converts time-domain signals into the frequency 

domain, with the Fast Fourier Transform (FFT) commonly used 

for discrete frequency analysis. The FFT can reduce the number 

of calculations from N2 to N·log2 N through a divide-and-conquer 

strategy and butterfly operation, where N is the number of data 

Fig. 4. Excitation and Response: (a) Seismic Waveform, (b) Acceleration 
Response

Table 1. Seismic Damage State of Piers

Location
PGA/g

0.1 0.2 0.3 0.4 0.5

#1 Top SD GD CD CD CD

#1 Bottom ND GD CD CD CD

#2 Top ND ND ND ND MD

#2 Bottom ND ND ND ND MD

#3 Top ND ND ND SD GD

#3 Bottom ND ND ND ND MD

#4 Top ND ND SD MD GD

#4 Bottom ND ND MD GD GD
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points. Consequently, this significantly reduces the computational

complexity, thereby enabling efficient spectrum analysis. 

As the frequency range associated with the initial ten modes 

of the continuous rigid bridge remains below 10 Hz, this study 

selectively focuses on the amplitude values corresponding to the 

frequency range up to 10 Hz to construct the frequency damage 

feature. Consequently, eliminating redundant and irrelevant data 

is theoretically expected to increase identification accuracy. The 

corresponding Fourier spectrum is shown in Fig. 6. Therefore, 

the sample data dimension is 400 rows and eight columns.

3.4 Time-Frequency Features
The time-frequency analysis investigates signal characteristics in 

both time-domain and frequency-domain. Thus, rich structural 

state information is revealed in its decomposition results. In this 

study, the Variational Mode Decomposition (VMD) algorithm 

has been chosen to decompose the acceleration responses.

The performance of VMD mainly depends on the number of 

modal components (k), and the penalty factor (α). Selecting 

appropriate values for these parameters is crucial for optimal 

decomposition. If k is too small, the decomposition will be Fig. 5. Statistical Features of Acceleration Response: (a) Mean, (b) Variance, 
(c) Skewness, (d) Kurtosis

Fig. 6. Fourier Spectrum of Acceleration

Fig. 7. VMD Results of the Acceleration Response
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insufficient, causing mode aliasing. Conversely, if k is too large, 

over-decomposition occurs. Similarly, α influences decomposition 

quality: a small α may lead to mode aliasing by mixing signals 

from other components, while a large α may result in the loss of 

useful information. In this study, we set k = 8 and α = 10000. 

Figure 7 shows the VMD decomposition results of the 

acceleration in Fig. 4(b). The first five Intrinsic Mode Functions 

(IMFs) are used to construct the time-frequency features, resulting 

in a sample data dimension of 4000 rows and 40 columns. 

4. Establishment of CNN

4.1 Network Architecture
A CNN consists of essential components such as the input layer, 

convolutional layer, max pooling layer, flattening layer, fully 

connected layer, and output layer. The optimal network architecture 

is typically determined by the complexity of the specific target 

task. After comparing different layer combinations, a comprehensive 

network architecture is established to accommodate variations in 

diverse datasets. The fundamental CNN architecture is depicted 

in Fig. 8.

4.2 Sample Augmentation
In practical engineering scenarios, acquiring adequate samples is 

often constrained. Data augmentation is an effective solution to 

address this limitation and enhance model performance while 

mitigating the risk of network overfitting. In this study, we employed 

data augmentation techniques to augment the available seismic 

damage samples of the continuous rigid bridge. Specifically, we 

added random Gaussian white noise with a signal-to-noise ratio 

of 10 to the original acceleration samples, resulting in 1550 

augmented sample sets. These sets were then partitioned into a 

training set and a test set, with a ratio of 0.8:0.2. Furthermore, to 

ensure optimal model generalization, 20% of the samples from 

the training set were further allocated to a validation set.

4.3 Optimal Network Selection
During the learning process, the performance of the network 

does not always improve continuously. Excessive training can 

lead to decreased performance on the validation set, indicating 

overfitting. To address this issue, the network's performance is 

monitored throughout training, and its parameters are saved at 

each epoch. Once training is completed, the parameters from the 

epoch with the highest validation accuracy are selected as the 

optimal network. This strategy ensures the best generalization on 

unknown samples while avoiding the impact of manually setting 

the epoch number, as demonstrated in Fig. 9.

4.4 Hyperparameter Settings
In this paper, Leaky ReLU (Maas et al., 2013) is chosen as the 

activation function, and its functional form is f (x) = max (ax, x). 

Leaky ReLU addresses the vanishing gradient problem associated

with the left side of ReLU, thereby reducing model complexity 

and improving computational efficiency. Since bridge seismic 

damage identification is a multi-classification problem, the Softmax 

function (Grave et al., 2017) is used as the network's classification 

function. Mean Squared Error (MSE) is selected as the loss function 

to evaluate the discrepancy between the actual labels and the 

predicted labels (Chicco et al., 2021).

The Adam algorithm is used for adaptive learning rate 

optimization. It dynamically adjusts the learning rate through 

gradient first-order and second-order moment estimation, making it 

particularly suitable for scenarios with numerous parameters. 

The parameters of the Adam algorithm are set as follows: lr = 

0.001, β1 = 0.9, β2 = 0.999, ε = 1E-08. The batch size is set to 64 

while the number of epochs is 1000.

5. Seismic Damage Identification

In this section, four networks are trained on acceleration, statistical

features, frequency features, and time-frequency features. 

The networks share the same architecture, as shown in Fig. 8, 

with varying widths based on feature lengths. During training, 

losses and accuracies are tracked to select the optimal parameter 

combination. After training, the best-performing parameters are 

retained, and the test samples are used to obtain prediction results,

completing the seismic damage identification. The effectiveness 

of the damage features is comprehensively assessed using four 

evaluation metrics: accuracy, precision, recall, and F1 score 

Fig. 8. Basic Architecture of CNN

Fig. 9. Optimal Network Selection
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(Sokolova and Lapalme, 2009). 

5.1 Results of Raw Acceleration
The loss and accuracy of the network trained on raw acceleration 

data are demonstrated in Fig. 10. 

Confusion matrices are used to display the detailed damage 

identification results for each location, as shown in Fig. 11, with 

precisions and recall rates calculated at the bottom right corner. 

In subsequent identification results, the comprehensive accuracies

will be presented instead of confusion matrices.

Fig. 10. Tracking of Training and Validation on Acceleration: (a) Loss, 
(b) Accuracy

Fig. 11. Confusion Matrix Based on Acceleration: (a) Pier #1 Top, (b) Pier #1 Bottom, (c) Pier #2 Top, (d) Pier #2 Bottom, (e) Pier #3 Top, (f) Pier 
#3 Bottom, (g) Pier #4 Top, (h) Pier #4 Bottom

Table 2. Accuracy on Acceleration

Location Accuracy Location Accuracy

#1 Top 95.45% #3 Top 96.75%

#1 Bottom 96.43% #3 Bottom 95.78%

#2 Top 97.08% #4 Top 96.10%

#2 Bottom 94.16% #4 Bottom 95.13%
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According to Fig. 11, the identification accuracies for each 

location are calculated, as shown in Table 2.

5.2 Results of Statistical Features
The loss and accuracy of the network trained on statistical features 

are demonstrated in Fig. 12. 

The corresponding identification accuracies for each location 

are calculated, as shown in Table 3.

5.3 Results of Frequency Features
The loss and accuracy of the network trained on frequency 

features are demonstrated in Fig. 13. 

The corresponding identification accuracies for each location 

are calculated, as shown in Table 4.

5.4 Results of Time-Frequency Features
The loss and accuracy of the network trained on time-frequency 

features are demonstrated in Fig. 14. 

The corresponding identification accuracies for each location 

are calculated, as shown in Table 5.

To compare the effectiveness of different damage features, the 

F1 score is employed as a comprehensive metric. This metric 

considers both the precision and recall rate of the identification 

results, providing a holistic evaluation of network performances. 

The corresponding F1 scores for the damage identification results of 

Fig. 12. Tracking of Training and Validation on Statistical Features: 
(a) Loss, (b) Accuracy

Table 3. Accuracy on Statistical Features

Location Accuracy % Location Accuracy %

#1 Top 88.31 #3 Top 93.18

#1 Bottom 92.86 #3 Bottom 93.51

#2 Top 94.48 #4 Top 92.53

#2 Bottom 92.86 #4 Bottom 93.51

Fig. 13. Tracking of Training and Validation on Frequency Features: 
(a) Loss, (b) Accuracy

Table 4. Accuracy on Frequency Features

Location Accuracy % Location Accuracy %

#1 Top 95.78 #3 Top 95.13

#1 Bottom 96.43 #3 Bottom 97.40

#2 Top 98.38 #4 Top 95.78

#2 Bottom 94.81 #4 Bottom 98.70

Fig. 14. Tracking of Training and Validation on Time-frequency Features: 
(a) Loss, (b) Accuracy
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four types of damage features are presented in Table 6. 

Table 6 reveals that the damage identification results from the 

time-frequency features outperform the other three features. Notably,

the F1 score of 91.3% for the bottom of Pier #1 is slightly lower 

than the F1 score of 92.1% obtained from the frequency features. 

Similarly, the F1 score of 90.0% for the bottom of Pier #4 is 

lower than the F1 score of 95.9% achieved through the frequency 

features. However, substantial improvements are observed in the 

F1 scores at the remaining positions. For instance, the F1 scores 

for the top of Pier #2 based on acceleration, statistical feature, and 

frequency features are 84.9%, 66.2%, and 94.0%, respectively, 

whereas the F1 score using the time-frequency features reaches 

97.6%. Similarly, the F1 scores for the bottom of Pier #2 based on 

acceleration, statistical feature, and frequency features are 78.0%, 

71.7%, and 82.7%, respectively, whereas the F1 score using the 

time-frequency features reaches 97.2%.

5.5 Discussions
Based on the results presented in Tables 2 to 5, the comprehensive 

identification accuracies for the eight piers using acceleration, 

statistical features, frequency features, and time-frequency features 

are 95.86%, 92.66%, 96.55%, and 97.40%, respectively. A detailed 

comparison of the identification accuracies for each section of 

the eight piers reveals that:

1. All four types of features generally achieved high seismic 

damage identification accuracies. However, the accuracies 

for identifying slight damage are relatively low, particularly 

for the damage at the bottom of Pier #3 and the top of Pier 

#4. The main reasons for this issue are the small number of 

samples with slight damage and their tendency to be confused 

with the no damaged state, as demonstrated in Fig. 11.

2. Seismic excitation causes a distinctive damage pattern in 

the four piers of the continuous rigid bridge, with damage 

severity following the sequence: Pier #1 > Pier #4> Pier #3 

> Pier #2. Taller piers are less likely to experience seismic 

damage, leading to an imbalance in the distribution of seismic

damage samples. Pier #2 is usually in an undamaged state, 

making it easier to identify, thus achieving the highest 

identification accuracy.

3. Time-frequency features generally yield higher identification 

accuracies compared to other features. However, the 

identification results for time-frequency features show some 

undetected damage samples at certain locations, reflected in 

F1 scores that do not always achieve the highest values. 

Another drawback of time-frequency features is their complex 

construction. 

6. Conclusions

Based on the seismic damage identification results of the continuous 

rigid bridge model, the following conclusions are drawn: 

1. Bridge seismic damage identification based on vibration 

tests and CNN is feasible, but the form of input significantly

affects the identification accuracy.

2. Among the four types of damage features, the time-frequency 

features yield the highest accuracy, followed by the frequency

features and acceleration, with the statistical feature being 

the least accurate.

3. It is worth noting that the acquisition of time-frequency 

features can be a complex process and may give rise to 

mode aliasing issues. Alternatively, the frequency features, 

which is readily obtainable and provides a certain level of 

accuracy assurance, can be selected as the preferred input 

for bridge seismic damage identification.
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