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1. Introduction

The International Roughness Index (IRI)–a primary criterion for 

evaluating pavement quality–quantifies pavement smoothness 

by analyzing the longitudinal profile of the pavement surface. 

Longitudinal elevation data is collected at 25 cm intervals using 

an inertial profiler mounted on a test vehicle. This profile data is 

then processed using an IRI filter, which accentuates specific 

wavelengths perceived by a standard passenger-type vehicle 

traveling at 80 km/h (Sayers, 1986). Within the IRI filter’s sensitive 

range, elevations corresponding to the wavelengths ranging from 

approximately 1.5 – 3.0 m/cycle and 8 – 20 m/cycle are amplified, 

while those outside these ranges are attenuated. Consequently, 

the IRI tends to increase with encountering pavement distress 

within these amplified wavelength ranges.

The IRI and pavement distress exhibit two common 

characteristics. First, they manifest physically on the pavement 

surface, making them both valuable pavement performance 

measures. Second, they result from the combined interaction of 

four major pavement design factors: material properties, climatic 

conditions, traffic volume, and structural design features of the 

pavement. For assessing pavement performance, there is no 

mechanical basis for predicting the IRI corresponding to the 

design factors, even though the IRI serves as a concise index, 

reflecting ride quality and pavement serviceability. By contrast, 

pavement distress can be a weighted combination of the design 

factors with explicit grounds, which allows engineers to effectively 

identify the primary cause of pavement distress, thereby improving 

pavement performance. 

Four pavement design factors are often used as predictor 
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variables for IRI prediction. However, interpreting IRI prediction 

results in terms of numerous pavement design input variables 

presents challenges. Despite the widespread use of design input 

data in the mechanistic–empirical pavement design guide (MEPDG)

provided by the American Association of State Highway and 

Transportation Officials (AASHTO), model development for IRI 

prediction has primarily focused on three critical pavement distress

types: transverse crack, rutting, and fatigue cracks (AASHTO, 

2008; AASHTO, 2015; AASHTO, 2020). The underlying principle 

behind this pavement distress-based approach is that these 

physical manifestations on the pavement surface can establish a 

more direct and evident relationship with the IRI. Although an 

empirical statistical linear regression methodology is utilized in 

AASHTO, several other distress types—in addition to the major 

ones—have yet to be accurately captured by this linear relationship, 

despite their significance. Furthermore, their interpretation is 

expected to be complicated during model formulation. A machine 

learning approach could offer a potential solution for developing 

an IRI prediction model that considers the complexities of 

diverse pavement distresses.

This study introduces interpretable machine learning to perform

the influence analysis of pavement distress on IRI. The IRI 

prediction models that employ two machine learning algorithms: 

random forest (RF) and extreme gradient boosting (XGB) was 

developed. The prediction results were interpreted using the 

Shapley additive explanation (SHAP), thereby demonstrating the 

detailed influences of the pavement distresses on the IRI with 

respect to their severities.

2. Related Works

2.1 Statistics Modeling for IRI Prediction
Rougher pavement surfaces exhibit a positive correlation with 

higher IRI values. In particular, when the roughness falls within 

the sensitive wavelengths as previously discussed, it may result 

in a substantial increase in IRI. Given that pavement distress 

directly contributes to the roughness of pavement surfaces, numerous 

studies have concentrated on IRI prediction by utilizing pavement 

distress information. Many of these predictions have been made 

using statistical regression models falling within the category of 

statistical approaches.

Paterson (1989) pioneered the development of an IRI incremental 

model that incorporated various pavement distresses, including 

crack, rutting, patching, and pothole. In addition to these pavement 

distress variables, factors such as pavement structural number, 

pavement age, and traffic volume were also considered. The 

empirical model achieved the coefficient of determination (R2) 

values ranging from 0.55 – 0.59. Bashar and Darter (1995) aimed to 

establish a quantitative relationship between the pavement service 

rate (PSR) and pavement distress, attempting to correlate PSR 

with IRI; specifically, assuming a high severity for the distress. 

Mactutis et al. (2000) associated IRI with two primary distresses 

(fatigue crack and rutting) and incorporated the initial IRI as a 

significant variable for IRI prediction. Taking Indian roads as an 

example, Sandra and Sarkar (2013) utilized four pavement distresses 

(rutting, crack, pothole, and raveling) and a single maintenance 

variable (patching) to derive a linear regression model for IRI 

prediction, categorizing distress severity into three levels. For 

similar variables without severity categorization on different 

Indian highways, Chandra et al. (2013) derived linear and nonlinear 

IRI prediction models. Abdelaziz et al. (2020) developed a linear 

regression model for IRI prediction using the major pavement 

distresses, initial IRI, and pavement age obtained from the long-

term pavement performance (LTPP) program. This model accounted 

for both new pavements and pavements after overlaying, yielding an 

R2 of 0.57. Focusing specifically on pavement distress in urban road 

pavements, Al-Mansour and Shokri (2022) derived linear regression 

models for IRI prediction, achieving R2 ranging from 0.33 to 

0.40. Moreover, comprehensive IRI regression models were 

developed during the establishment of MEPDG in 2004 (ARA, 

2004). These models have been updated multiple times (AASHTO, 

2008; AASHTO, 2015; AASHTO, 2020). The AASHTO models 

primarily focused on three major pavement distresses (fatigue 

cracks, transverse crack, and rutting), while also incorporating 

variables such as the initial IRI, pavement age, and other site-

specific factors in model development. 

The previous studies using the statistical approach effectively 

analyzed IRI concerning pavement distress. Nevertheless, these 

studies primarily focused on a restricted range of distress types 

within the local context. For example, the AASHTO models may 

face challenges in adequately addressing the implications of 

distress severity.

2.2 Machine Learning for IRI Prediction
With the advancement of computer technologies, researchers 

have extensively employed machine learning algorithms, including 

various innovative approaches such as artificial neural networks 

(ANNs), support vector machines (SVMs), and random forest 

(RF), to develop IRI prediction models for flexible pavements. 

Many of these studies have relied on extensive instances extracted 

from the LTPP database.

A first subset of these studies, focusing on the direct relationship 

between pavement distress and the longitudinal profile roughness of 

road surfaces, used pavement distress as the predictor variable. 

Consequently, this approach excluded pavement design factors 

such as pavement structural features, climatic conditions, material 

properties, and traffic volume, as pavement distress was considered 

the combined outcome of these design factors. In a pioneering 

study, Lin et al. (2003) selected 13 types of pavement distresses 

and utilized a three-layer ANN model for IRI prediction. Chandra et 

al. (2013) and Abdelaziz et al. (2020) compared the performance 

of their ANN models with those of conventional regression 

models based on the same database and concluded that the ANN 

models outperformed the conventional regression models in terms 

of IRI prediction accuracy. These preceding studies successfully 

demonstrated the applicability of machine learning techniques in 

IRI prediction based on pavement distress. However, a more 

detailed interpretation of the individual contribution of pavement 
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distresses to IRI is still necessary, focusing on pavement distress 

severity as speculated in this study.

A second subset of studies (Kargah-Ostadi and Stoffels, 2015; 

Ziari et al., 2016; Sollazzo et al., 2017; Zeiada et al., 2019; Marcelino 

et al., 2021) focused on pavement management systems at the 

network level, adopting IRI as a comprehensive measure of overall 

pavement serviceability. In these studies, pavement distress was 

excluded as a predictor variable because each specific pavement 

distress was considered as a component contributing to the overall 

pavement performance. By adopting IRI as the pavement

serviceability measure, the impact of multiple types of pavement 

distress could be captured in an integrated manner. Consequently, 

the focus of these studies was on pavement design factors, including 

traffic volume, climatic conditions, and material properties.

A third set of studies pursued a more comprehensive approach

by incorporating both pavement distresses and the four pavement 

design factors into the model development framework (Gong et 

al., 2018; Zhang et al., 2020; Damirchilo et al., 2021; Kaloop et 

al., 2022). While these studies utilized all the available data to 

build machine-learning models, only a few pavement design 

factors were selected for model development. In other words, a 

limited portion of the available data was utilized to construct 

prediction models rather than comprehensively using the entire 

variables. 

The previous machine learning-based studies concerning 

pavement distress would focus on the overall IRI prediction 

performance, not the impact of each pavement distress with respect 

to their severities despite its importance. This study introduces 

interpretable machine learning to investigate the effect of various 

pavement distresses on IRI further at a detailed level that the 

empirical AASHTO model has performed on three major pavement 

distresses.

3. Database Construction

3.1 LTPP Program

3.1.1 Experiment Sections
The LTPP program was initiated in 1987 as part of the Strategic 

Highway Research Program (SHRP) and has been under the 

administration of the Federal Highway Administration (FHWA) 

since 1992. Over the years, this program has collected a substantial 

volume of pavement-related data, which has been organized into 

four main categories and drawn from 2,509 pavement sections, 

starting in 1989.

The LTPP program comprised two sets of experiments: General 

Pavement Studies (GPSs) and Specific Pavement Studies (SPSs). 

The GPS test sections were established on pre-existing pavements, 

totaling nearly 800 sections in active road service. In contrast, the 

SPS experiments involved the construction and evaluation of 

approximately 1,600 new test sections. The GPSs and SPSs were 

further divided into 20 and 16 subprojects, respectively. Each 

subproject was designed to assess pavement performance based 

on specific factors such as pavement types (e.g., flexible and 

rigid pavements), maintenance types, overlay rehabilitation, and 

other relevant variables. 

3.1.2 Pavement Performance
The LTPP program collected pavement performance data, including 

pavement distresses and IRI. The designated GPS and SPS test 

sections covered a span of 152 m. Data collection commenced 

from the date when traffic was first allowed on these test sections. 

Regular field visits were conducted as part of these data collection 

efforts, enabling continuous monitoring and assessment of pavement 

performance over time, accounting for different traffic loads and 

environmental conditions.

Pavement distresses, including alligator crack, transverse 

crack, longitudinal crack, and pothole, could be evaluated through

two methods. The first method involves engineers conducting 

distress surveys during field visits. The second method entails 

distress evaluation via images with a dimension of 35 mm, which 

captures the condition of pavement surfaces. Regardless of the 

method employed, the criteria for distress evaluation are based 

on the Distress Identification Manual for the LTPP Project 

(Miller and Bellinger, 2003). Rutting is measured using a 1.4 m 

straight edge on the wheel path or by digitizing the transverse 

profile of the road to calculate the maximum depth. IRI values 

are computed and recorded based on a longitudinal profile collected 

at 25 mm intervals. These profiles are obtained by profiling the 

surface of the test section using an inertial profiler mounted on a 

vehicle and then filtering the data with a moving average of 

0.305 m.

3.2. Data Preprocessing

3.2.1 LTPP Experimental Study Selection
The objective of this study is to demonstrate the influence of 

pavement distress on IRI, considering their severities by introducing 

interpretable machine learning. Accordingly, this study developed a 

machine learning model to predict IRI considering pavement 

distresses (Section 4) and analyzed their influences on IRI through a 

model interpretation method (Section 5). 

This study performed data preprocessing on the data obtained 

from the LTPP program to construct the database for model 

development. The data were extracted from specific sections of 

the LTPP experimental study, namely GPS-1, GPS-2, and SPS-1, 

which were specifically associated with flexible pavements. GPS-1

and GPS-2 represent pre-existing pavement sections constructed 

with asphalt on granular and bound bases, respectively. On the 

other hand, SPS-1 represents new pavement sections designed to 

examine the effects of structural factors on flexible pavements. 

However, certain sections corresponding to these studies were 

excluded from the analysis for various reasons, including incomplete 

distress data (e.g., missing rutting data), unrealistic initial IRI 

after extrapolation, as discussed later in Section 3.2.3, and 

insufficient data. Table 1 presents details on the number of pavement 

sections analyzed and the corresponding instances used in each 

experimental study.
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3.2.2 Variable Selection
In the LTPP database, IRI is recorded for both the right and left 

wheel paths during each site visit. The average IRI value for both 

wheel paths is determined as the mean roughness index (MRI). 

In this study, the MRI value was used as the target variable to 

represent each IRI.

Meanwhile, this study considered 11 pavement distress types 

as predictor variables. Alligator crack, transverse crack, longitudinal 

crack in both the wheel and non-wheel paths, and pothole were 

categorized into three severity levels, namely low [L], medium 

[M], and high [H]. These severity levels were incorporated into 

the model development. For instance, a alligator crack with 

medium severity was labelled as GATOR_CRACK_A_M, where 

[A] denoted the area unit and [M] indicated medium severity. 

Two predictor variables unrelated to pavement distress, namely

the initial IRI and pavement age, were included in the modelling 

process. However, these variables were not directly recorded in 

the LTPP database. Therefore, the initial IRI was estimated by 

extrapolating the recorded IRI values over the service period 

(refer to Section 3.2.3), while the pavement age was computed 

using construction date information. A total of 23 predictor 

variables, consisting of 21 pavement distress variables and two 

non-distress variables (i.e., initial IRI, and pavement age), were 

adopted in this study and summarized in Table 2.

3.2.3 Data Interpolation and Extrapolation
The dates of pavement distress and IRI data collection may not 

always coincide or be simultaneously recorded for a specific 

section. To maintain the consistency of the utilized database, 

pavement distress data that were not synchronized with IRI data 

were generated through linear interpolation based on the IRI 

data, which was recorded immediately before and after recoding 

pavement distress. However, no extrapolation of pavement distress 

data was carried out to ensure data reliability. In these cases, the 

final IRI values were removed from the analysis.

The initial IRI is a critical variable that significantly impacts 

long-term pavement performance. Although it is widely recognized 

that pavements with lower initial IRIs tend to have longer service 

periods, only limited initial IRI data were recorded in the LTPP 

database. In GPSs, a substantial time gap of at least five years 

typically exists between the construction date and the initial IRI 

recording. Therefore, the absence of initial IRI data poses challenges 

for model development. Fortunately, GPSs generally encompass 

sufficiently extended service periods, making them suitable and 

reliable for extrapolating the initial IRI. Accordingly, the initial IRI

values for all GPS sections were extrapolated using an exponential

relationship. This study considered pavement sections with an 

initial IRI value greater than 0.6 m/km, representing a realistic 

minimum initial IRI threshold. This threshold was applied to 

filter out unrealistic or erroneous estimates for the initial IRI 

(Perera and Kohn, 2001). For certain sections, the extrapolated 

initial IRI value exceeded the IRI value during the service period. 

In such cases, these sections were excluded from the analysis, 

even though the initial IRI satisfied the minimum requirement of 

Table 1. LTPP Experimental Studies for Analysis

Study Pavement type
Number of sections Number of instances

LTPP program This study LTPP program This study

GPS-1 Asphalt concrete on granular base 216 127 4,425 581

GPS-2 Asphalt concrete on bound base 144 60 2,400 247

SPS-1 Strategic study of the structural factors of flexible pavements 227 190 5,844 1,860

Total 587 377 12,669 2,688

Table 2. Data Collected from LTPP Experimental Studies

Data LTPP source data name Unit Severity Number of variables

Rutting MAX_MEAN_DEPTH_1_8 mm - 1

Alligator crack GATOR_CRACK m2 L, M, H 3

Longitudinal crack in the wheel path LONG_CRACK_WP m L, M, H 3

Longitudinal crack in the non-wheel path LONG_CRACK_NWP m L, M, H 3

Transverse crack TRANS_CRACK m L, M, H 3

Pothole POTHOLES m2 L, M, H 3

Shoving SHOVING m2 - 1

Bleeding BLEEDING m2 - 1

Polished aggregates POLISH_AGG m2 - 1

Raveling RAVELING m2 - 1

Pumping PUMPING m - 1

Initial IRI MRI m/km - 1

Pavement age CONSTRUCTION_DATE day - 1
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0.6 m/km.

In contrast, with regard to SPSs, there was virtually no difference 

between the construction date and the first visit date for IRI 

measurements. Consequently, there was no practical requirement 

to calculate the initial IRI. However, to ensure consistency 

between the GPS and SPS data, the same extrapolation approach 

that was used to determine the initial IRI in the GPSs was also 

applied to the SPSs.

3.2.4 Data Elimination
The LTPP database comprehensively records the history of 

pavement maintenance and rehabilitation, irrespective of whether 

they are major or minor operations, all of which can influence 

pavement smoothness. Throughout the data mining process in 

this study, localized maintenance activities, such as crack sealing 

and pothole patching, demonstrated minimal impact on the IRI. 

While certain sections experienced a slight IRI decrease following 

maintenance procedures like fog seal coating or aggregate seal 

coating, this reduction was not consistently observed across all 

sections. Even when there was a decrease, the IRI typically 

rebounded to its original state within one to two years of service. 

Therefore, data from sections undergoing these specific maintenance 

activities were included in this study. 

In contrast, in the case of maintenance involving overlaying 

after milling, the IRI showed a significant and consistent decrease in 

almost all sections. Accordingly, data collected after overlaying 

maintenance were excluded from this study, aligning with 

established principles in pavement design. Notably, the design 

manual for overlaying pavements differs from that for new pavement 

designs due to the distinct behaviors of new and overlaying 

pavements.

Consequently, Table 3 presents statistical descriptions of the 

24 variables adopted in the constructed database using six indices: 

the minimum and maximum values, the lower and upper quartiles 

(Q1 and Q3), the median, and the coefficient of variation (COV). 

Among these, 21 pavement distress variables, initial IRI, and 

pavement age were used as the predictor variables, while the IRI 

served as the target variable. These 24 variables were derived 

from a comprehensive database, which incorporated 2,688 instances, 

as shown in Table 1. Machine learning models were constructed 

based on this extensive database. 

4. Model Development and Evaluation

4.1 Overview of Machine Learning Techniques

4.1.1 Random Forest (RF)
Random Forest (RF) is an ensemble learning algorithm that 

Table 3. Statistical Description of the Adopted Variables

No Variable Unit Min Q1 Median Q3 Max COV

1 IRI m/km 0.613 0.837 1.050 1.387 4.292 0.409

2 Initial IRI m/km 0.600 0.701 0.818 1.028 1.844 0.276

3 Pavement Age day 31 1,393 2,840 4,886 40,372 0.888

4 GATOR_CRACK_A_L m2 0 0 0.100 9.784 292.149 2.244

5 GATOR_CRACK_A_M m2 0 0 0 0.091 405.600 3.419

6 GATOR_CRACK_A_H m2 0 0 0 0 487.618 7.066

7 LONG_CRACK_WP_L_L m 0 0 0 2.799 179.857 2.977

8 LONG_CRACK_WP_L_M m 0 0 0 0 214.162 4.892

9 LONG_CRACK_WP_L_H m 0 0 0 0 119.957 9.672

10 LONG_CRACK_NWP_L_L m 0 0 1.213 34.702 322.611 1.810

11 LONG_CRACK_NWP_L_M m 0 0 0 0.816 223.811 2.896

12 LONG_CRACK_NWP_L_H m 0 0 0 0 289.700 5.475

13 TRANS_CRACK_L_L m 0 0 0.148 8.848 208.957 2.129

14 TRANS_CRACK_L_M m 0 0 0 0.884 139.303 2.823

15 TRANS_CRACK_L_H m 0 0 0 0 78.699 3.937

16 POTHOLES_A_L m2 0 0 0 0 0.390 19.466

17 POTHOLES_A_M m2 0 0 0 0 0.600 26.312

18 POTHOLES_A_H m2 0 0 0 0 0.418 18.752

19 SHOVING_A m2 0 0 0 0 152.439 22.789

20 BLEEDING m2 0 0 0 0 480.495 3.832

21 POLISH_AGG_A m2 0 0 0 0 325.000 13.368

22 RAVELING m2 0 0 0 0 568.514 3.023

23 PUMPING_L m 0 0 0 0 179.611 6.587

24 MAX_MEAN_DEPTH_1_8a mm 0 3.981 5.440 7.587 27.000 0.579

aRutting depth
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consists of a collection of decision trees. Each decision tree is 

trained using a bootstrap sample randomly selected from the 

training set with replacement, allowing specific data to appear in 

multiple bootstrap samples simultaneously. As a result, n bootstrap

samples and their corresponding n decision trees are constructed. 

Consequently, the final prediction is determined as the mean of 

the predictions from the individual decision trees.

4.1.2 eXtreme Gradient Boosting (XGB)
eXtreme Gradient Boosting (XGB) is a boosting-type ensemble 

learning algorithm designed to create a strong predictor by 

sequentially adding weak predictors. It achieves this by establishing 

multiple weak learners and applying weights to each one to 

reduce the errors introduced by the previous weak learner. This 

process is iteratively performed on all the weak learners to build 

a robust prediction model. XGB employs an objective function 

that integrates both the loss function and regularization terms, 

enabling the algorithm to effectively obtain a balance between 

model accuracy and complexity. This approach helps prevent 

overfitting and enhances the algorithm’s generalization capabilities.

4.1.3 Bayesian Optimization (BO)
Bayesian optimization (BO) aims to find an optimal solution, 

which can be a hyperparameter combination, for minimizing or 

maximizing a given objective function (e.g., performance metric), 

thereby improving model performance. In this study, Gaussian 

Process (GP) was adopted as a surrogate model, which allows to 

estimate a multi-dimensional Gaussian distribution (known as a 

posterior distribution) for the objective function using Bayes’ 

theorem and previous observations. The acquisition function, 

Expected Improvement (EI) in this case, guides the selection of a 

new hyperparameter combination. The corresponding objective 

function value is then obtained, and this new observation updates 

the GP by refining the posterior distribution of the objective 

function. These processes are iterated until the termination condition, 

typically a maximum number of iterations, is satisfied. Compared to 

other hyperparameter tuning methods such as grid search and 

random search, the BO efficiently explores the hyperparameter 

search space.

4.2 Model Implementation
This study aims to perform an in-depth influence analysis of 

pavement distress on IRI with respect to their severities by 

interpreting their relationships captured within a machine learning 

model. To this end, the IRI prediction models with RF and XGB 

algorithms were developed using the Python programming 

language. In this study, the representative ensemble learning 

algorithms (i.e., RF and XGB) was employed owing to their 

robustness to outliers, ability to generate better predictive 

performance, and capacity to prevent overfitting. The database 

was divided into training and test sets, with 70 % allocated for 

training and the remaining 30 % for test. The BO and five-fold 

cross-validation were employed on the training set to explore the 

optimal hyperparameter combination from each search space, as 

listed in Table 4.

This study evaluated the predictive performance using two 

standard metrics: root mean square error (RMSE) and coefficient 

of determination (R2). RMSE is the square root of the average of 

the squared differences between predicted and actual values, and 

R2 measures the proportion of variation in the target variable 

explained by the independent input variables. These metrics are 

expressed in Eqs. (1) and (2), where Nrepresents the number of 

data points, y stands for the actual value,  means the predicted 

value, and  denotes the mean of the data.

(1)

(2)

Figure 1 illustrates the test results of the developed RF and 

XGB models, indicating a correlation between the actual and 

predicted IRI values. Both the RF and XGB models exhibited 

excellent predictive performances, with the former yielding an 

RMSE of 0.2191 and an R2 of 0.7874, and the latter resulting in 

an RMSE of 0.2268 and an R2 of 0.7722. Upon comparing the 

derived performance of the two models, the RF model was 

proposed as the optimal IRI prediction model, utilizing the following 
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Table 4. Search Space of Hyperparameters

Algorithm Hyperparameter Description Search space

RF n_estimators Number of tree models 10 – 500

max_depth Maximum depth for tree models 1 – 20

min_samples_split Minimum number of samples required to split a node 2 – 10

min_samples_leaf Minimum number of samples required in a leaf 1 – 10

XGB n_estimators Number of tree models 10 – 500

max_depth Maximum depth for tree models 1 – 20

min_child_weight Minimum sum of instance weight required in each leaf node 0 – 10

gamma Minimum loss reduction to make a further partition on a leaf node 0 – 1

subsample Ratio of the training data 0 – 1

learning_rate Step size at which the algorithm makes updates to the model weights 0.01 – 1
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hyperparameter combination: n_estimators = 484, max_depth = 

16, min_samples_leaf = 1, min_samples_split = 2.

These results demonstrated that the developed RF model 

outperformed the previous statistics-based models (as discussed 

in Section 2.1). Notably, the significance of these findings was 

attributed to the model’s exclusive focus on pavement distress 

without considering pavement design factors, confirming the 

viability of the adopting pavement distresses as predictor variables. 

Moreover, it can be inferred that the relationship between 

pavement distresses and IRI were appropriately captured within 

the developed RF model.

5. Influence Analysis by Model Interpretation

5.1 Variable Importance Ranking
With the proposed RF model, the variable’s influence on the IRI 

predictions was assessed based on the SHapley Additive 

exPlanations (SHAP) method using the Python programming 

language in Section 5.1 and 5.2. This method, initially developed 

by Lundberg and Lee (2017), is rooted in cooperative game 

theory and adapted for interpreting machine learning models. It 

enables a fair allocation of contributions to a prediction among 

the model’s input variables. 

Figure 2(a) illustrates the resulting SHAP values corresponding 

to each predictor variable, where positive and negative values 

signify whether the variable increases or decreases IRI values, 

respectively. Data values of each predictor variable are represented 

in red or blue, indicating high or low values, respectively. Notably,

the high-severity alligator crack (i.e., GATOR_CRACK_A_H) 

yielded positive SHAP values, depicted in red, suggesting that 

higher values of this variable correspond to higher IRI values. 

Fig. 2(a) also shows that most pavement distresses, initial IRI, 

and pavement age tend to increase IRI, indicating a positive 

correlation with these variables.

In some instances, as shown in Fig. 2(a), the data represented 

in red with a negative SHAP value indicate that high values of 

the variable contributed to decreasing IRI, while data in blue with 

Fig. 1. Predictive Performance of RF and XGB Models: (a) RF Model, (b) XGB Model

Fig. 2. Variable Importance Obtained by SHAP Method: (a) SHAP 
Summary Plot – Dot Graph, (b) SHAP Summary Plot – Bar 
Graph
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positive SHAP values indicate that low values of the variable 

contributed to increasing IRI. Accordingly, both red and blue 

colors can be obtained in the negative and positive SHAP value 

ranges.

Figure 2(b) shows the mean SHAP value, representing the 

overall contribution of each predictor variable to IRI prediction. 

This mean SHAP value is an average of the absolute SHAP 

values of the individual distress variables. A longer bar in the 

graph signifies a greater contribution to the prediction, allowing for 

a ranking of each variable’s importance. However, it is important to 

note that the mean SHAP value does not convey the direction 

the prediction, i.e., whether it leads to an increase or decrease 

in IRI. 

In addition, to confirm the feasibility of the variable importance 

derived from the SHAP method, the maximal information 

coefficient (MIC) was calculated using the constructed database, 

assessing the mutual correlations among the IRI and predictor 

variables. MIC quantifies the maximum shared information between 

two variables, considering all potential relationships without 

restriction to specific types (e.g., linear or exponential). The MIC 

values range from 0 to 1, where 0 indicates no relationship between 

the paired variables, and 1 indicates a perfect relationship. It is 

determined as the highest maximum mutual information and 

further details about MIC can be found in Reshef et al. (2011).

Figure 3 displays the MIC values of the 23 predictor variables. 

Notably, initial IRI showed the strongest relationship with IRI, 

consistent with the conventional understanding that smoother 

pavements tend to have better long-term performance. Rutting 

and transverse crack ranked prominently, highlighting their 

significant influence on IRI. These two pavement distresses were 

distinctively incorporated into the MEDPG IRI prediction regression

model. Transverse crack with high severity ranked lower compared 

to those with low or medium severity. Interestingly, according to 

Figs. 2 and 3, the longitudinal crack with low severity showed a 

similar ranking to alligator crack, despite the less common 

consideration of longitudinal crack in traditional IRI prediction 

models. In the AASHTO MEPDG, longitudinal crack was initially 

part of predictor variables in the 2004 version (ARA, 2004), but 

was excluded in the revised 2008 version. In contrast, pothole, 

despite its well-known status as a pavement distress of engineering 

concern, had minimal impact on IRI, as shown in Fig. 3. This 

finding may be attributed to their infrequent occurrence, often not 

consistently observed in road surface profile measurements 

conducted for IRI assessments, particularly in the right and left 

wheel paths.

It can be noted that the order of contribution inferred from the 

SHAP values (Fig. 2(b)) was consistent with that obtained from 

the MIC values. Table 5 compares the contribution orders derived 

from the MIC and SHAP values for the proposed model. Initial 

IRI, major pavement distresses (i.e., transverse crack, rutting, and 

alligator crack), and pavement age were consistently identified 

as the most influential variables for IRI prediction. Initial IRI 

was found to have the most significant influence based on the 

results from both the MIC and SHAP value analyses, emphasizing 

the importance of ensuring the quality and accurate recording of 

initial pavement conditions. 

As indicated in Table 5, the six variables with the highest 

and lowest contributions consistently maintain their rankings in 

both the MIC- and SHAP-based contribution orders. Here, the 

six variables with the lowest contributions (POLISH_AGG_A, 

LONG_ CRACK_WP_L_H, SHOVING_A, POTHOLES_A_L, 

Fig. 3. MIC Values between the Adopted Predictor Variables and IRI

Table 5. Contribution Order of Predictor Variables by MIC and SHAP 
Value Analyses

Contribution 
order

Criteria

MIC value SHAP value

1 Initial IRI Initial IRI

2 MAX_MEAN_DEPTH_1_8 TRANS_CRACK_L_M

3 TRANS_CRACK_L_M TRANS_CRACK_L_H

4 TRANS_CRACK_L_L TRANS_CRACK_L_L

5 Age Age

6 TRANS_CRACK_L_H MAX_MEAN_DEPTH_1_8

7 GATOR_CRACK_A_M GATOR_CRACK_A_H

8 LONG_CRACK_WP_L_L LONG_CRACK_WP_L_L

9 LONG_CRACK_NWP_L_L GATOR_CRACK_A_M

10 LONG_CRACK_NWP_L_M LONG_CRACK_NWP_L_L

11 GATOR_CRACK_A_H GATOR_CRACK_A_L

12 RAVELING PUMPING_L

13 BLEEDING LONG_CRACK_NWP_L_M

14 LONG_CRACK_WP_L_M LONG_CRACK_NWP_L_H

15 GATOR_CRACK_A_L BLEEDING

16 PUMPING_L RAVELING

17 LONG_CRACK_NWP_L_H LONG_CRACK_WP_L_M

18 POLISH_AGG_A POLISH_AGG_A

19 LONG_CRACK_WP_L_H LONG_CRACK_WP_L_H

20 SHOVING_A POTHOLES_A_L

21 POTHOLES_A_L POTHOLES_A_H

22 POTHOLES_A_M POTHOLES_A_M

23 POTHOLES_A_H SHOVING_A
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POTHOLES_A_M, and POTHOLES_A_H) exhibited a COV 

of more than 10 (as noted in Table 2), indicating their minimal 

influence on IRI due to their uniform distribution over a wide 

range, regardless of IRI.

5.2 Influence of Major Pavement Distress on IRI

5.2.1 Transverse Crack
As presented in Table 5, transverse crack is a significantly 

influential variable on IRI. The ranking of its contribution based 

on severity levels was in the order of medium, high, and low. 

This ranking order is consistent, as shown in Fig. 4. The existence of 

low-severity transverse crack was found to have an impact on 

IRI increment in model prediction since most of their SHAP 

values were positive (Fig. 4(a)); but these SHAP values did not 

appear to increase with longer length of the low-severity transverse 

crack. In contrast, for the medium- and high-severity transverse 

crack, an increase in total crack length led to higher SHAP 

values. Furthermore, the SHAP values for the medium- and high-

severity transverse crack were significantly greater than those for the 

low-severity transverse crack (Figs. 4(b) and 4(c)). Considering the 

relatively low occurrence frequency of the medium- and high-

severity transverse crack, their impact on IRI increment can be 

considered more significant. This implies that proactive maintenance 

for the low-severity transverse crack is important to prevent them 

from further propagating and to maintain pavement smoothness.

5.2.2 Rutting
Figure 5 illustrates the influence of rutting depth on the IRI 

predictions. A rutting depth above approximately 7 mm had a 

significant influence on the IRI values. Significantly, the degree 

of influence notably increased for rutting depths, which exceeded 

20 mm. Conversely, for rutting depths lower than 7 mm, most of 

the SHAP values were close to zero, indicating that the influence 

of these low rutting depths was marginal. Consequently, a 

threshold (Rutting depth = 7 mm) was determined, which showed a 

significant influence on IRI increase.

The rutting depth measured in the transverse direction may 

not significantly influence IRI if the variations in rutting depth 

are small along the vehicle’s driving distance in the longitudinal 

direction. It can be inferred that at greater rutting depths, the 

variation is sufficiently large to affect IRI. Accordingly, many 

studies have attempted to determine the standard deviation of the 

Fig. 4. Interaction between Data and SHAP values of Transverse Crack: (a) Low Severity, (b) Medium Severity, (c) High Severity

Fig. 5. Interaction between Data and SHAP values of the Rutting

Fig. 6. Interaction between Data and SHAP values of the Alligator Crack: (a) Low Severity, (b) Medium Severity, (c) High Severity
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rutting depth rather than the mean of the rutting depth (Paterson, 

1989; Bashar and Darter, 1995). 

5.2.3 Alligator Crack
Figure 6 presents the contribution of alligator crack to the IRI, 

considering both their quantity and severity. Similar to the transverse

crack, the alligator crack with medium and high severity had a 

greater influence on IRI than those with low severity. Particularly, at 

high severity, even minor alligator crack produced noticeably 

elevated SHAP values. These observations highlight the importance 

of proactive maintenance to prevent the progression of alligator 

crack.

5.2.4 Longitudinal Crack in the Wheel and Non-Wheel 
Paths

As shown in Fig. 7, longitudinal cracks in the wheel path, 

regardless of their severity, produced positive SHAP values. 

Interestingly, the low-severity longitudinal crack in the wheel 

path resulted in relatively higher SHAP values than the medium- 

and high-severity longitudinal cracks, which exhibited minimal 

influence on IRI. The low-severity one was determined to be the 

eighth most significant contributor to IRI prediction based on the 

contribution order derived from both the MIC and SHAP values 

(see Table 5).

Regarding the longitudinal crack in the non-wheel path, it 

would be intricate to analyze the influence on IRI. Fig. 2 indicates 

that a low-severity crack was associated with a decrease in IRI. 

In contrast, the medium- and high-severity cracks tended to increase 

IRI, although the degrees of their influences were relatively marginal. 

This observation may be attributed to the fact that longitudinal 

profiles for IRI computation are typically obtained on both wheel 

paths.

In the first version of the AASHTO MEPDG, longitudinal 

crack in both the wheel and non-wheel paths were incorporated 

as predictor variables in the IRI prediction model (ARA, 2004). 

However, these cracks were excluded in the subsequent version 

of the MEPDG (AASHTO, 2008). The analysis based on the 

interpretable machine learning approach suggested that the 

longitudinal crack in the wheel path could serve to advance the 

IRI prediction and management.

5.2.5 Minor Pavement Distress
Pothole of any severity, polished aggregates, and shoving were 

identified as pavement distresses with a minimal influence (i.e., 

minor pavement distresses) on IRI, as presented in Fig. 2(b). In 

addition to employing a machine learning model that incorporated 

all the variables (i.e., the full model), an additional model was 

developed utilizing only a subset of variables, excluding the 

minor pavement distresses (i.e., the partial model). However, it is 

important to note that the high-severity longitudinal crack in the 

wheel path (i.e., LONG_CRACK_WP_L_H) was not excluded. 

This decision was made to consider the significant impact of the 

low- and medium-severity longitudinal crack in the wheel path 

and to maintain simplicity in variable selection, despite its 

classification as a minor pavement distress.

Table 6 presents a comprehensive comparison of the predictive 

performances of the partial and full models, indicating minimal 

disparities between the two results. Upon examining the results 

in Fig. 2(a), the SHAP values for the pothole, polished aggregates, 

and shoving do not exhibit distinctive positive or negative 

contributions, suggesting a limited effect on the model predictions. 

Therefore, the exclusion of these variables did not significantly 

affect model accuracy, as previously mentioned.

5.2.6 Comparative Analysis with AASHTO MEPDG 
Smoothness Model

Based on the same database used to establish the machine learning

models, IRI was predicted using the AASHTO MEPDG smoothness 

model, as presented in Eq. (3). The MEPDG smoothness model is an 

empirical statistical model that focuses on major distress factors such 

as rutting, fatigue crack, and transverse crack (AASHTO, 2020). In 

Fig. 7. Interaction between Data and SHAP values of Longitudinal Crack in the Wheel Path: (a) Low Severity, (b) Medium Severity, (c) High 
Severity

Table 6. Predictive Performance Comparison between Partial and Full 
Models

Model Algorithm
Training Test

RMSE R2 RMSE R2

Partial Model RF 0.0875 0.9683 0.2217 0.7824

XGB 0.0006 1.0000 0.2351 0.7553

Full Model RF 0.0893 0.9669 0.2191 0.7874 

XGB 0.0006 1.0000 0.2268 0.7722 
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addition, the model incorporates environmental factors and 

subgrade material properties as site-specific factors. It can be 

noted that the model was developed based on the US standard 

unit system.

, (3)

where

FCtotal = % area of alligator, longitudinal, and reflective cracks 

in wheel path

IRI0 = Initial IRI after construction [in/mi]

RD = Average rutting depth [in]

SF = Site factor considering precipitation, freezing index, 

and subgrade properties

TC = Length of transverse crack [ft/mi]

Table 7 summarizes the comparison of prediction performance

between the developed RF model and the AASHTO MEPDG 

smoothness model. The AASHTO model achieved an R2 of 

0.5184, indicating lower predictive performance compared to 

the RF model (R2 = 0.7874). Some sections used in establishing the 

RF model lacked site-specific factor data, resulting in reduced 

dataset utilization for the application of the AASHTO model. 

Despite this limitation, the predictive performance of the RF 

model was significantly superior to that of the latest AASHTO 

model. The enhanced prediction potential of machine learning, 

facilitated by the comprehensive utilization of pavement distress

data considering severity, suggests that it could outperform 

statistical predictions that incorporate site-specific factors where 

pavement is constructed.

5.3 Use of Developed RF Model
The machine learning model developed in this study is applicable to 

flexible pavement roads without overlaying. Additionally, it is 

not limited by specific climatic zones or subgrades, allowing for 

application across various environmental conditions and soil 

types.

However, it should be noted that the RF model is built using 

pavement distress data collected from highway pavement roads, 

where vehicles travel at a constant speed. In urban areas, frequent 

stopping situations and lower speeds of vehicles increase the 

likelihood of minor distress preceding major issues, such as 

potholes and shoving, leading to irregular maintenance activities. 

Therefore, the application of the RF model and the corresponding 

influence analysis results are not recommended for urban pavement 

roads. Future studies could focus on developing an IRI prediction 

model and conducting influence analysis using extensive urban 

pavement road data.

6. Conclusions

This study demonstrated the influence of pavement distress on 

IRI through the utilization of a meticulously preprocessed LTPP 

database. The developed IRI prediction model, incorporating 

interpretable machine learning, facilitated a deeper comprehension 

of the influences, with particular emphasis on the severities of 

pavement distress. The key findings and contributions of this 

study are as follows:

1. The developed RF model achieved superior predictive 

performance with an RMSE of 0.2191 and an R2 of 0.7874, 

representing the validity of the relationship between pavement

distresses and IRI captured within the developed model.

2. The model interpretation results indicated that the major 

pavement distresses, including transverse crack, rutting, and

alligator crack, were the most influential factors. Additionally, 

the low-severity longitudinal crack in the wheel path 

exhibited a similar impact on IRI as alligator crack. In contrast, 

pothole, polished aggregates, and shoving were found to have 

minimal influences.

3. Both transverse and alligator cracks at medium and high 

severities significantly contributed to IRI increment, 

demonstrating the requirement for proactive maintenance 

of these distresses at the low severity level. Moreover, the 

existence of a threshold in rutting depth inducing significant 

IRI increment was observed.

4. A comparative analysis demonstrated that the RF model 

outperformed the AASHTO MEPDG smoothness model. 

The enhanced predictive performance of machine learning, 

achieved through the comprehensive incorporation of 

pavement distress data that accounts for severity, indicates 

its potential to surpass statistical predictions that consider 

the site conditions of pavement.
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