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1. Introduction

Traffic speed is one of the fundamental variables that characterize 

traffic flow. It is not only a traffic performance measurement 

of roadway systems, but also an input for estimating other 

measurements such as travel time, vehicle emission, traffic noise, 

and so on (May, 1990). Hence, traffic speed prediction is a core 

function required in modern traffic management and operation 

systems. In the last few decades, various short-term traffic speed 

prediction models and algorithms have been developed for real-

time intelligent transportation systems (ITS) applications. 

Although there is no absolute definition of how long the 

‘short-term’ is, the prediction time step varies from 30 seconds to 

5 minutes in the literature (Alecsandru and Ishak, 2004; Ishak 

and Alecsandru, 2004; Vanajakshi and Rilett, 2004; Yang et al., 

2004; Chandra and Al-Deek, 2008; Chandra and Al-Deek, 2009; 

Guo and Williams, 2010; Min and Wynter, 2011;Ye et al., 2012). 

And the prediction horizon has been set as the range from one 

minute to two hours in advance through multi-step runs (Vlahogianni 

et al., 2014). According to a recent comprehensive review on 

short-term traffic forecasting by Vlahogianni et al. (2014), the 

majority of the previous studies used univariate models with 

traffic detector data at a single location on a highway. Although a 

few studies utilize a multi-source traffic speed data, they do not 

focus on forecasting but on prediction for unobserved links or 

locations (Bae et al., 2018; Lin et al., 2018). Statistical time-

series models and neural network (NN) type models present a 

noticeable frequency of use. The time-series models include vector 

autoregressive (VAR) models for multivariate prediction (Chandra 

and Al-Deek, 2008; Chandra and Al-Deek, 2009), spatial temporal 

autoregressive moving average (STARMA) for considering 

spatiotemporal correlation (Min and Wynter, 2011), generalized 

autoregressive conditional heteroscedasticity (GARCH) for 

capturing unexpected speed dynamic shifts (Guo and Williams, 

2010), and adaptive Lasso regression for improving prediction 

performance by minimizing error variance (Kamarianakis et al., 
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2012), and so on. On the other hand, a variety of NN based models 

has also been proposed for speed prediction. These models are 

known to provide a more accurate prediction for nonlinear traffic 

flow compared to the classical statistics models (Amin et al., 

1998; Dia, 2001; Quek et al., 2006; Chan et al., 2013). These 

models have also been tested with Kalman filters or wavelet 

transformation technique primarily for denoising traffic data 

(Yang et al., 2004; Heilmann et al., 2011; Wang and Shi, 2013). 

Recent studies test deep learning models for traffic flow prediction 

and show that such models provide satisfactory results for non-

recurring congestion with certain data input conditions (Chan et 

al., 2013; Lv et al., 2015; Polson and Sokolov, 2017; Liu et al., 

2020). Another type of speed prediction is using macroscopic 

traffic flow models, such as FREFLOW (Payne, 1971), KRONOS 

(Michalopoulos et al., 1993), and METANET (Papageorgiou et 

al., 1990), focusing on the aggregated traffic flow characteristics

represented by speed, flow and density (Fang and Jin, 2014). 

Although their underlying model captures spatiotemporal 

information, it utilizes traffic flow characteristics of a few adjacent 

road links and time interval. A recent comparable study, Fang and 

Jin (2014) shows that the prediction error levels of METANET-

based models were relatively higher than those of statistical and 

NN models.

In the literature, the mean absolute prediction error (MAPE) 

of existing studies ranges from 2.5% to 15.0% for five-minute 

predictions (Alecsandru and Ishak, 2004; Ishak and Alecsandru, 

2004; Yang et al., 2004; Chandra and Al-Deek, 2008; Min and 

Wynter, 2011;  Kamarianakis et al., 2012; Chan et al., 2013; Wang 

and Shi, 2013). Although the effects of variability in the time step 

on prediction performance has not been addressed sufficiently, the 

prediction error shows generally a linear association with the length 

of a prediction time step or the number of time steps increase 

(Alecsandru and Ishak, 2004; Ishak and Alecsandru, 2004; 

Djuric, et al., 2011; Min and Wynter, 2011; Kamarianakis et al., 

2012). A few studies compared the prediction performances 

of congested and non-congested traffic flow conditions. They 

showed that the prediction errors of congested conditions are 

approximately three times higher than those of non-congested 

conditions (Chandra and Al-Deek, 2008; Guo and Williams, 

2010). The speed threshold to define congestion varies over the 

studies, ranging from 30 miles per hour (mph) to 40 mph.

Despite the extensive studies on short-term traffic speed 

prediction, few have attempted to address the following limitations. 

The existing studies applied five minutes as a prediction time 

step without considering its effects. This is mainly because five 

minutes had been used most frequently in literature and the 

available data resolution was five minutes. Furthermore, there 

was insufficient information in the literature on computation 

time evaluation as real-time applications, which is helpful for 

other researchers and practitioners. In addition, many of the 

previous studies have been done on the short-term prediction for 

a single or several locations, in which a spatiotemporal dependency 

of traffic data was not sufficiently considered. 

This paper tests a new short-term traffic speed prediction 

algorithm for multiple road segments. To support real-time and 

proactive traffic operations, the tested algorithm aims to predict 

the future traffic flow conditions accurately and quickly without 

training a model. It is a data-adaptive algorithm that can handle a 

large-scale spatiotemporal speed data within a short amount of 

time.

The remainder of this chapter is in this manner. The next 

section details the methodologies used in the tested algorithm. 

Then, the data sources and different aspects of testing performance 

are described. Next, the prediction performance of the algorithm 

is compared with that of vector autoregressive (VAR) model that 

has been successful in the past 10 years (Chandra and Al-Deek, 

2008; Chandra and Al-Deek, 2009; Vlahogianni et al., 2014). 

Finally, a discussion on the results and conclusion are drawn.

2. Methodology

The proposed algorithm consists of principal component analysis 

(PCA) and multichannel singular spectrum analysis (MSSA) 

(see Fig. 1). First, PCA is used to extract features and reduce 

dimensions of the data. Then, MSSA is used for multivariate 

time-series prediction using the principal components from PCA. 

This approach has achieved satisfactory performance in medical 

image processing studies (Mizuguchi et al., 2010; Chhatkuli et 

al., 2015).

Unlike the statistical prediction models such as autoregressive 

integrated moving average (ARIMA), MSSA, a multivariate 

extension of singular spectrum analysis (SSA) is a data-adaptive 

time-series analysis method that does not require any assumptions, 

such as stationarity of the data, linearity of the model, or normality 

of the residuals (Hassani et al., 2013; Hassani et al., 2015). These 

features make MSSA useful (Elsner and Tsonis, 1996; Patterson 

et al., 2011; Hassani et al., 2013; Alessio, 2016). Hence, SSA and 

MSSA have been widely applied recently in many disciplines such 

as economics, medical image processing, climatology research, 

etc. (Vitanov et al., 2008; Mizuguchi et al., 2010; Cressie and 

Wikle, 2011). More theoretical and mathematical details of SSA 

can be found in (Elsner and Tsonis, 1996) and (Hassani and 

Thomakos, 2010). Furthermore, using the principal components 

(PC) as an input of MSSA allows the prediction to be made 

based on spatiotemporal dependencies in the data. According to 

Fig. 1. Proposed Speed Prediction Algorithm



3076 B. Bae and L. D. Han
Asif et al. (2013), PCA consistently provides high reconstruction 

accuracy over different compression rates for spatiotemporal 

traffic data.

To simultaneously predict the traffic speeds of multiple road

segments, the proposed algorithm requires multivariate time-

series traffic speed data as an input. Through the first part of the 

algorithm, the PCA module, the input data matrix is orthogonally 

transformed to reduce its size, keeping the essential features. 

Then, the transformed matrix is used as an intermediate input for 

the second part, MSSA. During the MSSA module process, the 

multivariate feature data matrix is first decomposed to extract 

important features except for noise or outliers. Then, the predicted 

data for the future time interval is derived through the optimization 

problem. Finally, the predicted data is reconstructed to the original 

multivariate time-series format. More details of the algorithm are 

explained as follows.

2.1 Principal Component Analysis
Principal component analysis (PCA) is a widely used multivariate 

statistical procedure used for data dimension reduction and feature 

extraction (Chen et al., 2009). It is an orthogonal transformation 

method that projects the original data onto the spaces of linearly 

uncorrelated variables where the variance is maximized based on 

eigenvalues and eigenvectors. Therefore, the principal components 

(PC), the transformed data can be used as an input for a variety 

of post analyses.

The speed observation xit, 1 ≤ i ≤ n, 1 ≤ t ≤ p, with i representing 

location and t representing time, gives the multivariate time-

series data as 

, (1)

The covariance matrix is calculated as

, (2)

where, Ψt = Xt−μ, which is the vector difference between the 

observations at time t and the mean of X, μ. Since Φ =  

, the dimension of the covariance matrix C is (n × n).

As the road network size to be analyzed is increased, 

especially when n>>p, calculating ΦΦ T and its eigenvectors 

becomes more intractable. In order to near-real-time analysis, 

Turk and Pentland (1991) proposed to use ΦTΦ  instead of ΦΦ T, 

which reduces the dimension from (n × n) to (p × p). This 

approach is very common in image processing analysis where 

the input data at each time step is usually a 2-dimentional image. 

For example, if the input data size is (n × n), the size of time-

series data, X is (n2 × p), so ΦΦ T gives (n2 × n2) covariance matrix. 

More details about the relationship of Φ TΦ with ΦΦ T is 

provided in (3) through (6).

The eigenvector vi is defined as 

, (3)

where, λi is the eigenvalue of ΦTΦ  denoted by . If Φ

is multiplied in both sides of (3),

, (4)

and using (2) and (4), 

. (5)

Then, (5) can be expressed as 

. (6)

Therefore, ΦΦ T and ΦTΦ  have the same eigenvalues and 

their eigenvectors have the relationship as ui = Φ vi.

Finally, the orthogonally transformed data, Y is computed by 

using the (p × p) eigenvectors, u as follows.

(7)

The resultant (p × p) matrix, Y from (7) is used as an input 

data for the following MSSA procedure.

2.2 Multichannel Singular Spectrum Analysis
The first step of MSSA is called embedding, which means 

mapping each univariate time series into multivariate series using 

subsets of the univariate time series. This procedure is similar to 

a time series analysis based on moving average calculation 

(Patterson et al., 2011). For example, using the kth column of Y, 

, the resultant matrix of embedding, called 

trajectory matrix, is defined as 

, (8)

where, M is the embedding dimension (also called window 

length) which is an arbitrary integer that 2 ≤ M ≤ p. Alessio 

(2016) provides a “reasonable” range of M that is greater than the 

number of data points in which one oscillatory pattern to be 

detected and less than p/5. However, it is better to choose the 

value of M based on the comparison of the results from different 

values of M. Therefore, a sensitivity analysis was conducted in 

the case study to investigate the effects of choosing the values of 

p and M in the next chapter.

ycr
(k) is the centered matrix of y(k) based on each row mean, 

calculated as.

. (9)
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, (10)

where K is the number of selected PCs corresponding to the Kth 

largest eigenvalues in (6) (1 ≤ k ≤ K). Ycr is a (KM × p') matrix 

and p' = p − M + 1. What to be estimated is the next column (i.e., 

p − M + 2 th column) of Ycr. This is defined as

. (11)

In this study the number of PCs from (7) is selected to make 

losing information of the original data, X by less than 1%. 

Resultantly, the selected PCs explain over 99.7% of the total variance 

of the data in the case study. The percentage can be calculated as the 

proportion of the sum of the K largest eigenvalues over the sum of all 

eigenvalues of X. In MSSA, the row length of matrix Z gets longer as 

the road network size increases, compare to SSA. Then, the 

dimension becomes much larger after being squared in the following 

step. Fig. 2 shows the percentage of data dimension reduction by 

using PCA for MSSA. Compare to the case of using MSSA without 

PCA, for example, the data dimension in MSSA is reduced by 

approximately 90% by PCA if the original data dimension of (n × p) 

is (300 × 100). A different number of PCs can be selected by 

employing information criteria, such as AIC, ICOMP, etc.

The next step of MSSA is a singular value decomposition 

(SVD) of the squared trajectory matrix, CY = YcrYcr
T .The elements 

of the lagged-covariance matrix CY reflect the linear correlation 

between the all pair of patterns in the embedding window. Thus, 

the recurring patterns in the time series result in a relatively high 

covariance in CY (Elsner and Tsonis, 1996). Through SVD, CY is 

decomposed into orthogonal eigenvectors as follows. 

, (12)

where, E is the eigenvectors of CY which are the singular vectors 

of Ycr, and Λ is a diagonal matrix that consists of ordered values, 

equal or greater than zero, whose square roots are the singular 

values of Ycr. Then, the L largest eigenvalues from Λ and 

corresponding eigenvectors from E are selected for prediction as 

(13). In this study L = p is applied which is large enough to 

contain the most significant eigenvectors. Through this step, the 

recurring patterns in the time series can be separate and the noise 

in the data can be removed (Patterson et al., 2011). 

. (13)

Using the selected (KM × L) eigenvector matrix W, the 

estimation of Z is given as the least-squares problem as follows 

(Hassani and Thomakos, 2010; Mizuguchi et al., 2010; Chhatkuli 

et al., 2015).

minimize (Z−WWTZ)2 (14)

This implies that the evolution of the next vector in the 

trajectory matrix follows the same law of the other adjacent 

vectors (Loskutov et al., 2001).

Then, Z can be decomposed as,

(15)

where . The (KM × K) and 

(KM × 1) restriction matrices, R and Q are defined as follows.

(16)

,

By decomposing (14) with (15), the future component of the 

time series data can be obtained as (17) (Mizuguchi et al., 2010; 

Chhatkuli et al., 2015).

, (17)

where, I is a (K × K) identity matrix. 

Finally, the predicted speed is calculated by re-centering the 

values of P and multiplying them with the eigenvectors from (6). 

The final step is necessary because the predicted values of P are 

orthogonally transformed and centered during prior steps.

3. Case Study

3.1 Data Description
The proposed prediction algorithm was applied to speed data for 

Interstate 40 (I-40) in Tennessee from two data sources: (a) 

traffic detector data, named Remote Traffic Microwave Sensors 

(RTMS), which is collected every 30 seconds from over 1,000 
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Fig. 2. Data Dimension Reduction Rate of MSSA by Using PCA
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traffic detector stations on interstate highways in Tennessee, and 

(b) probe-based link speed data, named National Performance 

Management Research Data Set (NPMRDS). For RTMS, the 

detector stations are located only in major urban areas of the 

state. Therefore, 41 stations in the 21.3 mile-long westbound I-40 

segment were selected, which is a major corridor in Knoxville, 

Tennessee. The stations are on average 0.5 miles from each other. 

Traffic speeds for the intermediate locations in 0.1-mile increments 

between two consecutive stations were interpolated using the 

adaptive smoothing method (Treiber et al., 2011) in order to 

augment the spatial resolution of the data by 213. 

The speed data from September 23 and September 30 in 2016, 

both of which were Fridays, were collected from the detectors 

and averaged in five minutes, i.e., the data dimension is (213 × 288) 

for each day. Both days were selected based on the fact that there 

was no incident in the first day whereas there was a severe 

incident on the second day. The incident was verified by the traffic 

incident data log from the local transportation management 

center (TMC). Since prediction of unexpected events, such as 

crashes, adverse weather conditions, etc., in the spatiotemporal 

domain is highly intractable, it is worth testing how quickly the 

speed prediction algorithm can adapt or how sensitive it is to 

sudden changes in traffic conditions.

In order to evaluate the proposed algorithm performance for a 

longer road segment, i.e., larger data dimension, the NPMRDS 

data were used. For NPMRDS, the spatial coverage is the entire 

interstate highway systems in the state. In this study, the five-minute 

average speeds of NPMRDS for the 298 road links of a 451-mile-

long I-40 westbound segment on February 3rd, 2017 were collected. 

Please note that five minutes are the highest resolution for the 

available NPMRDS dataset, i.e., the data dimension is (298 × 288). 

Fig. 3 shows examples of the data visualizations.

3.2 Performance Measures
To evaluate the prediction performance of the proposed algorithm, 

two error measures were used, which are the mean absolute error 

(MAE) and mean absolute percentage error (MAPE). They are 

defined as follows.

, (17)

, (18)

where, xi is the observed traffic speed and  it the predicted 

traffic speed.

3.3 Data Resolution Selection
To choose an optimal prediction interval is an important issue 

which depends on the type of ITS applications, algorithms and 

data sources (Vlahogianni et al., 2014). In order to investigate the 

effect of the data resolution on the short-term traffic speed 

prediction for the proposed algorithm, as a similar approach in 

Guo et al. (2007), a sensitivity analysis framework was applied. 

The need for a sensitivity analysis is mainly due to the 

nonparametric characteristic of PCA-MSSA, i.e., it does not allow 

to test statistical significance of parameter estimates. Four 

datasets of the 24-hour traffic speeds from RTMS were generated 

by different aggregation levels: 0.5-, 1-, 2.5-, and 5-minute and 

used in a preliminary analysis. To make predictions for the target 

time in the future, the iterative predictions are made, i.e., the 

predicted values are added to the initial data for the next 

prediction. For selecting the temporal aggregation scale, the target 

time to predict was set as 5 minutes, observed most frequently in 

the literature. Guo et al. (2007) also recommended 5 minutes as 

the shortest interval, although the investigations and findings 

were for an online prediction algorithm based on a SARIMA + 

GARCH structure. Table 1 shows the average prediction 

performance for 5-minute prediction. Each prediction was made 

using the past thirty data points. To predict the next five-minute 

traffic speed, for example, the prediction process is implemented 

ten times iteratively using the 30-second dataset. As the number 

of prediction steps increases, the prediction error increases. This 

is because the error in the current prediction is transferred to the 

next prediction step. Therefore, five minutes gave the lowest 

errors for the five-minute prediction. This was expected because 

the increase in the data resolution reduces the inherent noise in 

the data making the series more stable. And the result is 

consistent with the findings in the literature (Guo et al., 2007). 
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Fig. 3. Speed Data Visualization: (a) RTMS – September 23, 2016, (b) RTMS – September 30, 2016, (c) NPMRDS – February 3, 2017

Table 1. Temporal Scale Effects on 5-minute Prediction Performance 
Using RTMS

MOEs
Data resolution (Number of prediction steps)

0.5 min (10) 1 min (5) 2.5 min (2) 5 min (1)

MAE (mph) 3.40 3.31 3.12 3.03

MAPE (%) 9.67 9.16 8.23 7.94
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The following analyses were made using the data aggregated in 

five minutes. 

3.4 Input Data Dimension and Window Length Selection
The effects of choosing different data length p and window length M

were investigated in a sensitivity analysis. Here the range of 0.5-6 

hours for both p and M was considered using the 5-minute RTMS 

data of September 23 and September 30 in 2016 and NPMRDS data 

on February 3, 2017. In order to choose proper values of p and M, 

MAPE and computation time for one-step prediction were

compared as shown in Fig. 4. Please note that the vertical axis of the 

figures of MAPE in Fig. 4 represents 1/MAPE for better recognition 

of the best result. Fig. 4(a) shows that there is a gradual increase in 

MAPE with increase of both of p and M in the range of 1-5.5 hours. 

The computation time of Fig. 4(a) also shows the same pattern of the 

MAPE figure; however, it increases much more rapidly as p and M

get closer to six hours. Similar patterns were observed in Fig. 4(b). 

Based on these sensitivity results, p = 18 (1.5 hours) and M = 12 

(1 hours) for RTMS – September 23, 2016, p = 24 (2 hours) and 

M = 18 (1.5 hours) for RTMS – September 30, 2016, and p = 36 

(3 hours) and M = 18 (1.5 hours) for NPMRDS were applied.

3.5 Prediction Performance

3.5.1 Comparison with a Benchmark Model
As Tan et al. (2016) mentioned, it is difficult to comparing 

prediction performance of different models because their objectives, 

spatiotemporal scope, and input data conditions can differ each 

other. Since this paper targets at higher prediction accuracy and 

shorter process time for multiple roadway links, a VAR model 

was selected as a benchmark to evaluate the performance of the 

proposed algorithm.

The speed prediction results for the next five minutes were 

compared to those of VAR(k). In this study, the order of the 

model k was determined to be within the range of 1-8 (i.e., k = 1, 

..., 8) based on the goodness of fit of the model using Akaike’s 

information criterion (AIC) (Akaike, 1973). The 24-hour historical 

speed data were used for each prediction target time point to train 

the VAR(k) model. The RTMS dataset was used to make 288 

predictions for September 23 and 30, 2016. In order to compare 

the computation time, both methods were implemented on the 

same platform with Intel® CoreTM i7 processor (3.60 GHz) with 

8GB memory.

In this study, restricted VAR models were used. Unrestricted 

VAR models using a full covariance matrix for parameter 

estimation is not suitable for real- time data analysis on a large-

scale network for these reasons: First, the model estimation time 

is too long because a large number of parameters will be 

estimated. For example, an unrestricted VAR(1) model with n = 

213 has 68,373 (= n + nAR·n2 + n(n + 1)/2, where the number of 

the autoregressive matrix, nAR = 1) parameters to be estimated, 

whereas a restricted model has only 639 (=3n). Therefore, 

Fig. 4. MAPE (figures in the left column) and Computation Time (in the right column) for Different Temporal Dimension and Window Length: 
(a) RTMS – September 30, 2016; (b) NPMRDS – February 3, 2017
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estimating an unrestricted VAR model takes too long when either 

the network n or the autoregressive lag k is large. Second, the 

residual process of the unrestricted model is likely to have a non-

positive definite covariance matrix which makes parameter 

estimation impossible.

In order to investigate the effect of applying PCA in the 

proposed algorithm, MSSA without PCA, referred to hereafter 

as MSSA, was also tested. In addition, based on the fact that it is 

more likely to use a pre-trained model in practice, the VAR(k) 

model was separated into two types: (a) a model whose parameter 

estimates are updated for each prediction, denoted as On-VAR(k); 

and (b) a model whose parameter values are fixed once the 

model is trained priorly, denoted as Off-VAR(k). Please note that 

the model order k of On-VAR(k) is not updated for each prediction 

step; otherwise, training a model takes an excessive amount of 

time, making short-term prediction harder to achieve. Therefore, 

the same order k of Off-VAR(k) was applied to On-VAR(k). For 

the same reason, the On-VAR(k) model was trained using five-

hour historical data for each prediction target time. 

Table 2 summarizes the 5-minute prediction performances of 

these four methods. For Scenario 1 non-incident condition, Off-

VAR(7) outperforms the others. In this scenario, traffic flow is 

very stable in terms of speed except for the congestion around 

milepost 386 during afternoon peak hours. For such cases, the 

speed data hold high stationarity and the VAR models fit the data 

well. The error level of PCA-MSSA is slightly higher than both 

VAR models and MSSA. In comparison with Off-VAR(7), as 

depicted in Fig. 5(a), the level of error of PCA-MSSA is slightly 

higher than that of Off-VAR(7) across the overall error range. 

This may result from the information loss of data in the dimension 

reduction procedure or the misspecified length of the input data 

and embedding window.

Despite the different prediction performance in Scenario 1, 

traffic prediction for a free-flow condition is not challenging. In 

other words, prediction of traffic conditions during the transitions 

to and from congested flow over time and space should be paid 

attention more. The traffic condition in Scenario 2 shows such 

instability in the speed data caused by a severe incident. As shown 

in Table 2, MSSA and PCA-MSSA outperform both VAR 

models. The MAPE of 6.40% from MSSA is slightly better than 

6.56% from PCA-MSSA. Since the same dimension of input 

data was employed, it is probable that the different performance 

was caused by PCA. Contrary to the result in Scenario 1, On-

VAR outperformed Off-VAR in Scenario 2 in terms of MAPE. 

On-VAR model predicts the congested flow better than Off-VAR 

by updating parameter estimates for each prediction. In order to 

evaluate the performance of PCA-MSSA for congested traffic 

flow, its prediction error range is compared with that of On-VAR 

in Fig. 5(b). Although the cumulative probability error curves of 

both methods are very similar, they intersect at around 25%. This 

indicates that the average error level of PCA-MSSA is relatively 

lower for low speed conditions, compared to On-VAR. 

Figure 6 shows the predicted speed profiles of four methods at 

selected locations. The Fig. 6(a) location is in a weaving section 

where two major interstate highways are merged. Recurrent 

afternoon congestion was intensified due to an incident that 

Table 2. Comparison of 5-minute Prediction Performance for RTMS

PCA-MSSA MSSA On-VAR(k) Off-VAR(k)

Scenario 1 Model p=18, M=12 p=18, M=12 k=7 k=7

MAE (mph) 2.31 2.26 2.19 1.96

MAPE (%) 4.98 4.90 4.76 4.26

Scenario 2 Model p=24, M=18 p=24, M=18 k=8 k=8

MAE (mph) 2.46 2.39 2.52 2.41

MAPE (%) 6.56 6.40 7.02 7.26

Average computation time (s) 0.05 6.78 114.20 0.22

Fig. 5. Prediction Performance of PCA-MSSA and VAR: (a) Scenario 1, (b) Scenario 2
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occurred downstream around 3:00 to 4:00 PM. All the predicted 

profiles, except for Off-VAR, show similar patterns and follow 

the observed speed fluctuation. However, On-VAR tends to produce 

overfitted results when the traffic state changes from free-flow to 

congestion in the morning peak hours. The same pattern of On-

VAR is also present in Fig. 6(b). Such overfitting patterns of 

VAR under a sudden change in traffic flow can also be observed in 

Polson and Sokolov (2017). The average performance measurement 

in space is shown in Fig. 7. Both PCA-MSSA and MSSA 

outperform the VAR models during the congested time period. 

With the emergence of congested traffic flow, all the error 

measures are increased. However, both MSSA algorithms quickly 

adapt to the changes of flow states so that their error measures 

are decreased. This is consistent with literature that showed SSA 

is suitable for time series with various structures, e.g., stationarity or 

non-stationarity, cyclical patterns or sharp edges, without losing 

information about important features of time-series data (Shang

et al., 2016; Suksiri et al., 2016). As mentioned in Section 2, this 

is mainly because, unlike parametric models SSA does not 

require any assumptions of data but utilizes elementary signals 

separated from noise. Although the error of On-VAR also decreases 

as the model adapts to the congested state, the error level is high 

when the traffic state transition begins. 

Numerical accuracy of the prediction is obviously important 

in the model comparison. However, comparing different models 

based solely on the accuracy may be not fair, since other factors 

such as computation time, required data size, the level of expertise, 

etc., are important as well (Kirby et a., 1997; Vlahogianni et al., 

2014). This is true because the purpose of the proposed method 

focuses on the near-real-time traffic speed prediction for multiple 

road segments. Therefore, the computation time to make a one-

step prediction with the four methods was compared. The 

computation time of PCA-MSSA was considerably shorter than 

those of MSSA and On-VAR model. PCA-MSSA took only 0.05 

seconds to predict traffic speed 5 minutes ahead for the 213 

different locations; the MSSA algorithm without PCA took 6.78 

seconds on average. Although Off-VAR also processed the data 

Fig. 6. Predicted Speed Profiles: (a) Location Index 108, (b) Location Index 195

Fig. 7. Prediction Errors During an Incident Event
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quickly, i.e., 0.22 seconds on average, the 0.5-hour training time 

is not accounted for. In practice, however, the model training time 

should be considered because periodical updates of parameter 

values may be needed to retain or enhance the current performance. 

Combined with the comparison result of prediction accuracy in 

Scenario 2, the computation efficiency of PCA- MSSA shows 

that the proposed algorithm is more suitable than the others to 

predict traffic speed for a large number of road segments in real 

time. Because of the data dimensionality reduction feature, the 

proposed method is scalable for a larger road network analysis.

3.5.2 Multi-Step Speed Prediction
The prediction error is accumulated as the number of prediction 

steps increases. In order to test the prediction performance of 

PCA-MSSA for the future in longer than five minutes, predictions 

were made for up to 30 minutes ahead and compared with Off-

VAR. Table 3 summarizes the multi-step speed prediction results. 

Over the multiple prediction steps, the average error of PCA-

MSSA showed a moderate increase from 4.98% to 6.88% in 

Scenario 1. In contrast, the more rapid increase of error from 

6.56% to 11.04% was observed in Scenario 2. As a reference, the 

prediction performance measures of Off-VAR are provided 

together. As the comparison result for the single-step prediction, 

the errors of Off-VAR are slightly lower than those of PCA-

MSSA in multi-step prediction, whereas the opposite comparison 

results present in Scenario 2. 

It is difficult to directly compare the prediction performance 

of the proposed algorithm with the results reported in the 

literature due to different data sources, times, and locations with 

different study designs. Despite this reason, such comparison 

may help researchers gain a general sense of the current state in 

speed prediction studies. The error level of the proposed algorithm 

is slightly lower or comparable to that of NN-based and time-

series models in the literature (Alecsandru and Ishak, 2004; Yang 

et al., 2004; Guo and Williams, 2010; Djuric et al., 2011; 

Kamarianakis et al., 2012). 

3.5.3 Algorithm Scalability Investigation
To test the scalability of the PCA-MSSA algorithm for speed 

prediction, NPMRDS data were used in this study. The obtained 

data cover the entire westbound I-40 segment in Tennessee. The 

data dimension is (298 × 288) i.e., one day of 5-minute speeds 

from 298 road links. The majority of the speeds in the dataset 

represent the free-flow condition except for those of major urban 

areas during peak hours. Therefore, the computation time is the 

major interest in this comparison, although the error measures 

are also presented in Table 4. The comparison result of the 

computation time is very similar to that in the RTMS case, 

despite the NPMRDS data dimension being almost 40% larger 

than the RTMS dataset. PCA-MSSA took 0.36 seconds for one-

step prediction, whereas MSSA took 7.24 seconds. The computation 

time of Off-VAR is also comparably small in the comparison. 

However, the model estimation time of 2.5 hours is not reflected 

in the result. 

4. Conclusions

Previous short-term traffic prediction studies have investigated a 

vast number of models and algorithms in the last two decades. 

Nevertheless, there is still room to progress prediction performance 

by employing data-driven multivariate models and corresponding 

large datasets for real-time traffic controls and operations. This 

paper proposed a short-term traffic speed prediction algorithm to 

cope efficiently with the complexity and immensity of the 

prediction process derived from the network size and amount of 

data. The proposed algorithm, named PCA-MSSA, consists of 

Table 3. Prediction Performances for Multi-Step Predictions

5 min ahead 10 min ahead 15 min ahead 20 min ahead 25 min ahead 30 min ahead

Prediction steps 1 2 3 4 5 6

Scenario 1

(No incident)

PCA-MSSA MAE (mph) 2.31 2.57 2.75 2.89 3.01 3.11

MAPE (%) 4.98 5.57 6.01 6.35 6.64 6.88

Off-VAR (7) MAE (mph) 1.96 2.22 2.41 2.55 2.67 2.78

MAPE (%) 4.26 4.81 5.22 5.55 5.85 6.11

Scenario 2

(No incident)

PCA-MSSA MAE (mph) 2.46 2.86 3.14 3.37 3.57 3.75

MAPE (%) 6.56 7.86 8.85 9.66 10.38 11.04

Off-VAR (7) MAE (mph) 2.41 2.87 3.24 3.55 3.84 4.10

MAPE (%) 7.26 9.13 10.76 12.24 13.58 14.81

Table 4. Comparison of 5-minute Prediction Performance for NPMRDS

PCA-MSSA MSSA On-VAR(k) Off-VAR(k)

Model p = 36, M = 18 p = 36, M = 18 k=3 k = 3

MAE (mph) 2.29 2.39 2.24 2.26

MAPE (%) 4.32 4.53 4.16 4.54

Average computation time (s) 0.36 7.24 80.34 0.49
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two techniques: (a) principal component analysis (PCA) for data 

dimensionality reduction and (b) multichannel singular spectral 

analysis (MSSA) for multivariate time-series data prediction. 

The prediction performance of PCA-MSSA was compared to 

the statistical time-series model, vector autoregressive (VAR). 

For the incident scenario, PCA-MSSA outperformed VAR and it 

provided speed predictions in near-real-time. Although the pre-

trained VAR model showed slightly lower prediction errors on 

average for the non-incident scenario, PCA-MSSA still predicted 

the speed with comparable accuracy levels. This is mainly 

because PCA-MSSA uses the compressed spatiotemporal traffic 

data as an input and it has much less parameters to estimate 

based on input data. In contrast, VAR is a more complex model 

that requires more data, and it estimates a tremendous number of 

parameters for multiple road segments analysis. This result 

shows that PCA-MSSA is suitable for real-time traffic speed 

prediction and scalable for a large network analysis. To identify 

the effect of PCA in the proposed algorithm, the results were 

compared to the case of MSSA without PCA. Interestingly, a 

trade-off between the accuracy and computation time was 

reported. Using PCA can reduce computation time significantly 

with a relatively small compromise in prediction accuracy.

Further research should be directed at the following challenges: 

(a) improving the prediction accuracy of the proposed algorithm 

during non-recurring events through cooperation with automatic 

incident detection algorithms and more advanced PCA methods; 

(b) adding a self-learning process after the predicted values are 

validated; (c) developing a dynamic optimization process to 

select the length of historical data and embedding window length 

of the algorithm over time; and (d) predicting travel time based 

on the predicted speed and conducting comparative evaluations. 

Furthermore, the tested algorithm should be compared at a large 

road network level with state-of-the-art deep-learning-based 

methods which are also known as suitable for fitting a nonlinear 

characteristic of traffic flow in terms of prediction performance, 

model training cost, and spatial scalability.
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