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1. Introduction

The performance of engineering structures inevitably deteriorates in 

long-term service periods under environmental erosion, material 

aging, working load, and other factors. As a result, their ability to 

resist natural disasters and even typical environmental effects is 

reduced, which leads to catastrophic emergencies in extreme 

cases (Altunışık et al., 2019; Chi et al., 2021; Ananthi et al., 2022).

Consequently, ensuring the health of engineering structures in 

real-time has become a crucial research topic (Zhu et al., 2011; 

Flouri et al., 2012; Ding et al., 2018). The health monitoring of 

structures chiefly detects structural damage or degradation by 

analyzing structural system characteristics, including the structural 

response (Hüsem et al., 2018; Ananthi et al., 2021). The accuracy of 

the evaluation results strongly depends on the sensors and the 

interpretation algorithm (Kahya et al., 2021). It is worth noting 

that sensors have an average lifespan of approximately 10 years, 

but the lifespan of bridge structures can be more than 100 years. 

Therefore, during the service period of bridges, sensors may 

degrade or even fail (Li et al., 2008). Unfortunately, sensor fault, 

noise, and external disturbances can also cause abnormal variations 

masking signals from the actual structural damage (Kullaa, 2010; 
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Li et al., 2020). 

According to different data processing methods, Frank (1996) 

divided the algorithms for sensor fault diagnosis into three categories:

the algorithms based on analytical models, signal processing, 

and knowledge. The approach based on analytical models is 

suitable for sensor systems that can establish an accurate linear 

model, which can realize rapid diagnosis with a sound effect. 

However, it is challenging to establish an accurate model for 

complex civil engineering structures (Mohamed and Ibrahim, 

2002), which limits the application and development of such 

methods in structure health monitoring system. The method 

based on signal processing can directly analyze signals without 

distinguishing fault types and causes of the faults, but its detection 

results depends on the signal analysis method (Li et al., 2019). 

Alternatively, as a novel type of machine learning, deep learning 

has attracted extensive attention from academic, which aims to 

extract abstract and valuable information from data via stacking 

multiple non-linear processing layers in hierarchical architectures, 

and therefore, is more powerful than those traditional intelligent 

methods (Zhao et al., 2019). Fu et al. (2019) presented a three-

stage strategy to autonomously detect, identify, and recover sensor 

faults, the benefits and limitations of this strategy are discussed. 

Liu et al. (2020) proposes a deep learning-based method, namely, 

the Tsfresh Long Short-Term Memory networks, to address 

the sensor fault classification. Jana et al. (2022) introduced 

Convolutional Neural Network (CNN) and Convolutional 

Autoencoder to identifies the presence and type of fault in 

sensor data, location of the faulty sensor. 

In the field of structural damage identification, deep learning 

has also received extensive attention (Azimi et al., 2020; Zhang et 

al., 2020). Li et al. (2020) proposed a fully connected stateful long 

short time memory (FS-LSTM) Neural Networks for differentiating 

the sensor fault and structural damage without information on 

details of the fault. Compared with LSTM, a convolutional 

neural network can independently learn the real-time monitoring 

data on a structure at a low computing cost. Zhan et al. (2021) 

discussed the performance of structural damage detection based on 

CNN under the influence of the randomness of structural 

parameters. Lin et al. (2017) also presented a method that used the 

wavelet packet component energy as the feature vector to be 

substituted into the one-dimensional CNN model to identify 

structural damage. Their experimental results showed that the 

proposed method had good performance due to its noise resistance 

and ability to locate damage.

As mentioned earlier, deep learning has gradually been applied to 

sensor fault diagnosis and damage identification and has achieved 

good results. However, there is still no good solution to effectively 

distinguishing the response changes caused by the sensor faults 

from those caused by structural damage. Therefore, this study 

devised a novel method of structural damage identification based 

on a one-dimensional convolutional neural network group 

considering sensor fault. First, some sub-models for shallow 

sensor fault diagnosis and deep structural damage identification 

were established to automatically extract features from sensor 

data. According to the functions of each sub-model, the sensor fault 

diagnosis group (SD-CNN group) and the damage identification 

group (DI-CNN group) were designed to perform layer-by-layer 

sensor fault diagnosis and damage identification using data sets. 

Finally, the specific performance and robustness of the developed 

method were analyzed and discussed through the numerical 

simulation of the IASC–ASCE benchmark structure and the 

laboratory experiment.

2. Theory of Structural Damage Identification 

Considering Sensor Fault

2.1 Sensor Faults
According to the existing works (Kullaa, 2011; Kullaa, 2013),

the deviation of the signal in faulty instruments may be described 

mathematically in terms of bias, drifting, precision degradation, 

gain, and constant. The mathematical expression is shown in 

Table 1. In Table 1,  is the time series including the fault of 

the sensor calculated by the sensor fault model; t represents the 

number of sampling points;  indicates the dynamic response 

of the healthy sensor;  stands for the Gaussian white noise 

sequence used to simulate the environmental noise interference. 

In the actual use of the sensor, due to the change of the 

position of the sensor, its own output value and the real value 

appear quantitative deviation, resulting in the bias phenomenon. 

At the same time, when the sensor is completely faulty, the 

output value is often fixed or composed of white noise. Therefore, 

the unknown constant A is set to simulate the constant value 

when the sensor is bias and completely faulty. However, in 

drifting and precision degradation, drift and precision degradation

may be random variables, so a random number η in the range of 

[0,1] are set together with unknown constants B and C to define 

drifting and presision degradation. In addition, the sensor gain 

fault may occur due to the unstable voltage supply of the sensor. 

The unknown constant G in Table 1 is the gain coefficient. When 

the gain coefficient G increases, the sensor accuracy decreases as 

well.

2.2 Architecture of Convolution Neural Network
This section interprets the architecture of the designed convolution 

neural network and introduces the function and background of 

each layer. The fundamental structure of the CNN chiefly comprises

an input layer, convolutional layers, pooling layers, and an output 

layer (Long et al., 2015). The following is a brief introduction to 
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the theory of convolution neural network.

2.2.1 Convolutional Layer
As the core layer of the one-dimensional CNN, the convolutional 

layer is primarily used for feature extraction in the input array 

through sliding scanning and inner product operation, as shown 

in Fig. 1. In this network layer, n convolutional kernels are given 

an initialization and a corresponding random array based on an 

artificially specified time-domain window size of l. The input 

array in the time-domain window is subsequently multiplied and 

summed with the elements of the convolution kernel to obtain 

the output value.

As simple multiplication and summation are linear calculations, 

they do not effectively improve the representation of the network 

model. Therefore, a nonlinear mapping using an activation function 

during the contact between the convolution kernel and the data is 

used, which alleviates the problem of gradient disappearance 

caused by slow parameter updating during the model training. 

Hence, given the higher performance of the rectified linear unit 

(ReLU) function, this study chooses it as the activation function 

for this model in the classification problem (Krizhevsky et al., 

2012); the ReLU activation function is expressed by:

, (1)

where x is the input data after the inner product, and the output 

data, fReLU(x): are recombined in the order of the data before the 

calculations.

Furthermore, the n convolution kernels often transform the 

array at a specific sliding interval (k) throughout the traversal 

process and then transform the matrix with the dimensions m × 1 

into an output matrix with the dimensions [(m – l) / k + 1] × n in 

the next convolutional layer for convolutional computation or in 

other types of network layers for data processing.

2.2.2 Max Pooling Layer
As the convolution calculation proceeds, the input array is 

transformed gradually into a large-scale data feature matrix. To 

improve the computational efficiency of the model, we set up a 

one-dimensional max-pooling layer between adjacent convolutional 

layers to perform data selection in the input array. As depicted in 

Fig. 2, the input matrix entering the pooling layer is divided into 

several matrices along the time axis, and the maximum value of 

the elements in the resulting matrix is used as the elements in the 

output matrix. The pooling layer reduces the amount of data by 

decreasing the dimension of the data and thus controls the 

occurrence of overfitting. Despite the reduction in the amount of 

data, the feature information of the matrix is not lost due to the 

computational impact of the pooling layer, ensuring that the final 

generated model is still relevant.

2.2.3 Dropout Layer
On the basis of the complexity of the network layers in the 

convolutional neural network model, Srivastava et al. (2014) 

proposed the dropout technique to better prevent overfitting of 

the model. As depicted in Fig. 3, the dropout method randomly 

and temporarily zeroes some elements of the feature map during 

the training, indicating that some matrix elements are invalidated. It 

ensures that the network model is not overly dependent on 

particular local features during the training and enhances the 

generalization ability of the model. At the same time, the failed 

elements are reactivated in the subsequent intersection validation 

phase, improving the convergence performance of the model. In 

general, dropout reduces overfitting during the training phase by 

reducing the complexity of the model.

2.2.4 Output Layer
With the calculation of the convolution, pooling, and dropout 

layers, the CNN model determines the output matrix with local 

features, that is, Aa×b×c. In order to facilitate the output of the 

classification results of the subsequent model, we set up two 

network layers, namely a fully connected (FC) layer and a 

softmax layer, in the output layer of the CNN for processing 

and analysis. First, the input matrix (A) is tiled and expanded in 

the FC layer and transformed into a one-dimensional array of 

size (a × b × c) × 1. The element u in the array is reorganized 

twice by Eq. (2) to obtain one-dimensional array V with the 
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Fig. 1. The Sliding Scan and Convolution Calculation

Fig. 2. The Process of the Max Pooling

Fig. 3. The Process of the Dropout Layer
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dimensions m × 1.

, (2)

where m is the manually specified output dimension, w denotes 

the (a × b × c) × m weight parameters corresponding to the node, 

and b represents the m bias parameters.

Finally, array V enters the softmax layer and reverts to the 

one-dimensional array S = [S1 S2 … Sm] through Eq. (3):

, (3)

where  is the index of an element, and  indicates the 

sum of the indices of all the elements. The softmax layer pools 

the output value of Si in Eq. (3) for each element value in array V

(Vi). Each element of S (Si) represents the probability of each 

condition, so the condition with the maximum probability is 

obtained. After evaluating and comparing predicted probabilities, 

the element with the highest probability is used as the final 

model classification result and output in the test phase. When the 

model is in the training stage, the model uses cross entropy (Boudiaf 

et al., 2020) as the loss function to calculate the deviation between 

the CNN output result and the label result, which is used for 

model cycle iteration. At the same time, in this paper, combining 

adaptive moment estimation (adam) (Kingma and Ba, 2015) is 

used to participate in the continuous optimization and training of the 

model to minimize the loss function and obtain the optimal model.

2.3 Sensor Fault Diagnosis and Structural Damage 

Identification 
The proposed method identifies the sensor state and structural 

damage by the SD-CNN group and the DI-CNN group, as shown in 

Fig. 4. Before the model training, the original data collected by 

the sensor will be cut according to the preset input size of the 

submodel to complete the data set establishment. Andthen the 

SD-CNN group determines the anomalous signal and truncates it 

into the DI-CNN group before identifying the damage, enhancing 

the accuracy of structural damage identification in sensor-based 

networks. The method employs multiple parallel one-dimensional 

CNN submodels to achieve a global view of the sensor network, 

effectively clarifying the characteristics of the raw data collected 

by each sensor and training a reliable model for subsequent 

diagnosis and identification.

2.3.1 Architecture of Submodels of SD-CNN Group and 
DI-CNN Group

The SD-CNN group and the DI-CNN group consist of n one-

dimensional CNN submodels corresponding to n acceleration 

sensors. The CNN models can have different classification 

performances depending on the combination of the network 

layers and the activation functions. In general, as the depth of 

the convolutional layer model increases, the feature extraction 

capability of the CNN improves, but too many convolutional 

layers can lead to overfitting and reduce the actual performance 

of the model. Therefore, each submodel of the SD-CNN group 

is equipped with six convolutional layers and three pooling 

layers after the preliminary trial calculations. A varying number of 

one-dimensional convolutional kernels with time-domain window

sizes of 16, 4, and 2 are utilized to extract features from the 

input signal in turn. The feature matrix is then recursively 

moved to the deeper layers while the 2-D feature matrix is 

converted to a one-dimensional matrix before entering the output 

layer; finally, the calculation of the softmax function determines the 

prediction result of the input signal. Fig. 5 illustrates the 

network structure.

Convolutional kernels with similar time-domain window 

sizes are set for processing the data in the DI-CNN group 

since the signal, at its input, has the same size as the SD-CNN 

group submodels. Furthermore, considering the distribution 

of the different features of the feature matrix data used for 

sensor fault diagnosis and structural damage identification, 

we construct the DI-CNN group submodel with eight layers 

of convolutional kernels and four layers of pooling layers, as 

illustrated in Fig. 6.
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Fig. 4. The Flow Chart for the Proposed Method
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2.3.2 Process of Structural Damage Identification 

Considering Sensor Fault
First, the SD-CNN group and the DI-CNN group are constructed 

according to the above submodels. After the input data are passed

through the shallow SD-CNN group, array C = [C1 C2 … Ck … 

Cn] containing information about both the channel and the 

performance state of the sensor is output. If the information 

stored in element Ck indicates that the faulty sensor is abnormal, 

the signal is truncated into the deep DI-CNN group, enabling the 

faulty sensor to be found and the fault class to be detected. On 

the basis of the output information of the shallow group (C): 

the DI-CNN group continues to recognize the input data and 

generates the array D = [D1 D2 … Dk … Dn], where Dk is the 

output of each one-dimensional CNN submodel for structural 

damage identification after the diagnosis and recognition of the 

two layers of one-dimensional CNN group. To eliminate the 

effects of the misjudgments of individual submodels as much 

as possible, we set up the decision module to generate array K

composed of the predictions of each category by counting the 

results and determining the maximum value of Ki as the final 

assessment result of the target structural damage category. The 

details are as follows:

Ki = max{K1, K2,…, Kk, … , Kl}, (4)

where Kk indicates the specific number of submodels, the 

discriminant result of which is condition k; l denotes the number 

of conditions available in the sample library of the structural 

damage.

3. Experimental Phase I of SHM Benchmark Data 

The records of experimental phase I of the IASC–ASCE structural

health monitoring (SHM) benchmark problem (Johnson et al., 

2004) are utilized in the present study. The benchmark frame is a 

four-story steel structure built at the University of British 

Columbia. The footprint dimensions are 2.5 m × 2.5 m, and the 

height of the frame is 3.6 m. Two parallel steel rods are installed 

diagonally at each bay to provide bracing. 

Fig. 5. The Architecture of the Submodel of the SD-CNN Group

Fig. 6. The Architecture of the Submodel of the DI-CNN Group
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As presented in Table 2 and Fig. 7, six structural damage 

patterns were simulated on the benchmark frame. For each 

case, the acceleration output was recorded by 16 accelerometers

under ambient excitation, and the acceleration measurements 

for all damage patterns were sampled at 500 Hz; the recording 

time was 10 s. Fig. 8 shows the location of the accelerometers. 

The noise was also added to the original signals at different 

signal-to-noise ratios to simulate the interference of environmental

noise and other factors. Five types of data sets with noise levels 

of 10%, 20%, 30%, 40%, and 50% were generated by noise 

addition and expansion for the training. Further, a data set of 

size 1400 × 5000 was generated for each of the 16 measurement 

points, where 5000 was the length of the 10-second signal 

fragment generated by adding noise simulation and 1400 was 

the total number of signal fragments under the 7 damage 

patterns. The obtained data sets were further divided to obtain 

the train set, validation set and test set for the subsequent 

experiment, among which the proportions of three types of data 

sets were 60%, 20% and 20% respectively.

3.1 Studying Sensor Fault Diagnosis Based on Submodel 
in SD-CNN Group

The five different types of sensor faults discussed in Section 2.1 

were studied, and the benchmark structure was assumed to be in 

a healthy state. A total of six scenarios were studied, including 

five scenarios with a single fault in the sensor and one scenario 

without any fault, as presented in Table 3. To study the influence 

of the degree of sensor fault on diagnosis results, two fault levels 

was employed to describe the degree of sensor fault based on the 

mean, standard deviation of the input sample (δ). Magnitude S

represents the lower level of the sensor fault, and N indicates the 

duration of the fault signal.

Figure 9 delineates the training process of sensors 1# and 2# 

at a magnitude of S. The trend of the loss value obtained during 

Table 2. The Description of the Damage Patterns in the IASC–ASCE 
Benchmark Problem

Labels Damage pattern

1 Undamaged

2 Remove all braces in the first story

3 Remove all braces in the first and third stories

4 Remove one brace in the first story

5 Remove one brace in each of the first story and the third story

6 Remove one brace in each of the first story and the third story 

and loosen the floor beam at the first level

7 2/3 stiffness in one brace in the first story

Fig. 7. Damage Patterns 2 to 7

Fig. 8. The Locations of the Sensors 



KSCE Journal of Civil Engineering 3409
the convergence of the model determines whether the model 

continues to learn or has finished converging. As seen in the 

figure, the SD-CNN submodels of both sensors show a sharp 

decline in the loss value at the beginning of the training; as the 

number of iteration cycles gradually increases, the loss value 

gradually approaches zero, implying that the model has converged 

and can be used for the subsequent test.

Figure 10 depicts the accuracy of the SD-CNN submodels at 

magnitudes of S and M at a noise level of 10%. The SD-CNN 

models have solid diagnosis performance in the range of the 

proposed magnitudes. The 16 SD-CNN submodels achieve an 

average degree of accuracy of 100% for identifying 6 categories 

of the sensor fault models using the testing datasets with magnitudes 

of S and M. Fig. 11 depicts the results of the fault diagnosis for 

each sensor at different noise levels and a magnitude of S. The 

recognition ability of the SD-CNN submodels decreases as the 

degree of noise interference rises. The diagnostic model for 

sensor 5# identified the gain data with an accuracy of 45.28% at 

a noise level of 40%, and the diagnostic model for sensor 13# 

identified the health data with an accuracy of 40% at a noise 

level of 50%; however, they are still robust to a certain extent. 

Table 3. The Mathematical Expressions of Five Types of Sensor Faults

Fault type Label Mathematical expressions Parameter (δ = 1.4330)
k

S M

Healthy 1 / / / /

Bias 2 A = kδ 0.25 0.50

Constant 3 A = kδ 0.01 0.1

Drifting 4 A + BN = kδ 0.25 0.50

Precision degradation 5 C = kδ 0.25 0.50

Gain 6 G = k 1.20 0.70

u t[ ] A û t[ ] w t[ ]+ +=

0 A⁄ w t( )⁄

u t[ ] A B t û t[ ] w t[ ]+ +×+=

u t[ ] C η û t[ ] w t[ ]+ +×=

u t[ ] G û t[ ] w t[ ]+( )=

Fig. 9. The Variation in the Loss Value of the SD-CNN Submodels: (a) Sensor 1#, (b) Sensor 2#

Fig. 10. The Accuracy of the SD-CNN Submodels at Magnitudes of S
and M at a 10% Noise Level

Fig. 11. The Detection Accuracy of the SD-CNN Submodels at Various Noise Levels



3410 Y. Luo et al.
The average degree of the accuracy of the SD-CNN submodels 

remains in the range of 98.54% – 99.77%.

The random forest (RF) algorithm is used to fault diagnosis 

for each sensor at different noise levels and a magnitude of S, 

and the diagnosis results are shown in Table 4. Fig. 12 shows a 

comparison between the results of the RF and the proposed 

algorithm. It can be seen from Table 4 and Fig. 12, the diagnosis 

accuracy of the proposed algorithm is higher than that of the RF 

algorithm at five noise levels. With the increase of noise level, 

the average accuracy of sensors in the proposed algorithm is 

greater than 0.99, while the average accuracy of RF algorithm is 

0.94. In conclusion, the diagnosis accuracy of the proposed 

algorithm is better than that of the RF algorithm.

3.2 Studying Damage Identification Based on 

Submodel in DI-CNN Group
The seven different types of damage patterns listed in Table 2 

were studied, and the sensor was assumed to be in a healthy 

state. The construction of the DI-CNN group also consisted of 16 

submodels corresponding to the number of measurement points 

of the target structure. According to the supervised learning 

characteristics of the CNN, each submodel of the DI-CNN group 

was determined based on the data samples of size 1120 × 5000 

obtained from the measurement points and was continuously 

cross-trained by the training and validating sets. Fig. 13 displays 

the damage identification ability of each one-dimensional CNN 

submodel in the testing set at various noise levels. Each one-

dimensional CNN submodel in the DI-CNN group presents good 

recognition results for the data samples at all noise levels, and the 

average recognition accuracy of the submodels is 91.74%, 91.68%, 

89.88%, 88.54%, and 87.21% at a noise level of 10%, 20%, 

30%, 40%, and 50% respectively, which confirms the excellent 

resistance of the DI-CNN group submodels to noise.

The RF algorithm is also used to re-identify the structural damage, 

and the identification results are shown in Table 5. Fig. 14 shows 

a comparison between the results of the RF and the proposed 

algorithm. It can be seen from Table 5 and Fig. 14, the identification 

accuracy of the proposed algorithm is higher than that of the RF 

algorithm at five noise levels. With the increase of noise level, 

Table 4. The Detection Accuracy of the RF Algorithm at Various Noise 
Levels

Sensor

location

10% noise

level 

20% noise

level 

30% noise

level 

40% noise

level 

50% noise

level 

Sensor1 1.00 0.96 0.94 0.91 0.91

Sensor2 1.00 0.99 0.96 0.97 0.94

Sensor3 1.00 0.99 0.99 0.97 0.98

Sensor4 1.00 0.98 0.96 0.97 0.96

Sensor5 0.99 0.99 0.95 0.95 0.95

Sensor6 1.00 0.99 0.98 0.96 0.96

Sensor7 1.00 0.98 0.98 0.97 0.96

Sensor8 0.99 0.99 0.98 0.97 0.95

Sensor9 1.00 1.00 0.96 0.96 0.95

Sensor10 0.99 0.99 0.97 0.96 0.96

Sensor11 1.00 0.99 0.97 0.97 0.96

Sensor12 0.99 0.99 0.97 0.95 0.94

Sensor13 0.98 0.96 0.95 0.94 0.90

Sensor14 1.00 0.99 0.98 0.95 0.91

Sensor15 0.99 0.98 0.97 0.93 0.94

Sensor16 1.00 0.97 0.94 0.93 0.91

Fig. 12. Comparison of Diagnosis Accuracy between CNN and RF at 
Various Noise Levels

Fig. 13. The Structural Damage Identification Accuracy of Each Submodel at Various Noise Levels
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the average accuracy of sensors in the proposed algorithm is 

greater than 0.87, while the average accuracy of RF algorithm is 

0.69. In conclusion, the identification accuracy of the proposed 

algorithm is better than that of the RF algorithm.

3.3 Multisensor Fault Diagnosis and Damage 

Identification Results 
Three mixed scenarios with simultaneous damage and sensor 

failure were set, as shown in Fig. 15. In mixed scenario-1, the 

structural damage was described as “remove all braces in the first 

story”; Sensors 1#, 6#, 8#, 11#, and 16# were set as bias, constancy, 

drift, loss of accuracy, and gain respectively. The noise level was 

set at 20%, and the degree of the sensor fault was S-level. Fig. 16

presents the time curves under mixed scenarios.

Figure 17 shows the sensor fault diagnosis results of the three 

mixed scenarios, where red indicates that the sensor fault diagnosis 

result is wrong. Compared to the actual fault types depicted in

Fig. 15, the accuracy of the sensor fault judgment results is high, 

and only some sensor fault classification is wrong. On the basis of 

the detection results of the sensor fault in the three simulation 

Table 5. The Structural Damage Identification Accuracy of the RF 
Algorithm at Various Noise Levels

Sensor

location

10% noise

level 

20% noise

level 

30% noise

level 

40% noise

level 

50% noise

level 

Sensor1 0.80 0.77 0.67 0.64 0.60 

Sensor2 0.86 0.89 0.85 0.83 0.70 

Sensor3 0.84 0.84 0.86 0.81 0.74 

Sensor4 0.93 0.86 0.85 0.83 0.85 

Sensor5 0.85 0.85 0.78 0.75 0.72 

Sensor6 0.94 0.91 0.84 0.87 0.85 

Sensor7 0.74 0.66 0.61 0.59 0.56 

Sensor8 0.90 0.85 0.75 0.68 0.58 

Sensor9 0.80 0.66 0.60 0.55 0.62 

Sensor10 0.97 0.90 0.84 0.79 0.74 

Sensor11 0.78 0.75 0.70 0.64 0.56 

Sensor12 0.96 0.89 0.84 0.83 0.77 

Sensor13 0.85 0.80 0.72 0.68 0.58 

Sensor14 0.96 0.91 0.84 0.79 0.74 

Sensor15 0.74 0.73 0.63 0.61 0.61 

Sensor16 0.94 0.91 0.89 0.75 0.79 

Fig. 14. Comparison of Structural Damage Identification Accuracy 
between CNN and RF at Various Noise Levels 

Fig. 15. A Schematic of the Settings of the Mixed Scenarios 



3412 Y. Luo et al.
scenarios in Section 3.2, the proposed algorithm can reduce 

graphics processing unit (GPU) usage by switching off the input 

channels of the faulty signals. The number of the input channels 

of the DI-CNN group is reduced from 16 to 11, 10, and 12. The 

remaining fault-free sensor signals are fed into the DI-CNN 

group and combined with the final damage identification results 

by the decision module, as shown in Fig. 17, in which the decision 

module and the final results obtained from the SD-CNN group 

and the DI-CNN group are on the left, and the DI-CNN submodel

alone is on the right. The comparative analysis of the recognition 

results reveals that the sensor fault can lead to the misclassification 

of the structural damage, as displayed in Fig. 17(b) for sensors 7# 

and 8# after incorporating the sensor fault model. In addition, the 

recognition accuracy of each submodel varies with different noises, 

which may give rise to misclassification during the detection 

process, as shown in Fig. 17(a) for sensors 9# and 13#. The 

decision module statistically calculates the final results of the DI-

CNN group to provide an accurate assessment of the state of the 

structure, reducing the impact of misclassification caused by a 

single model. 

For the testing data sets, the average computation time based 

on the GTX 950 graphics card is 53.09 s due to the low requirement 

of computational resources and better adaptability of the one-

dimensional CNN submodel. The average computation times of 

the SD-CNN group and the DI-CNN group are 23.50 and 30.59 s 

respectively, and the average computation times of the two types 

of submodels are 278 and 294 ms.

4. Laboratory Experiments on Simply Supported 

Girder Bridge 

A single-span simply supported girder bridge was conducted in 

the laboratory, as illustrated in Fig. 18. This test structure is 

composed of two longitudinal beams with a 3.6-m length, four 

crossbeams with a 1.2-m length and four columns with a 1.0-m 

length. The cross-section of beam and columns are the Universal 

Beams (UB) 100 × 100 × 8 × 8 section. Each crossbeam is connected 

to the longitudinal beams by two plates, using a total of 32 10-mm 

bolts for each typical connection. And each crossbeam is made 

of 2 UB beams joined together by two plates and 12 10-mm 

bolts. Each longitudinal beam is made of 6 UB beams joined 

together by two plates and 12 10-mm bolts. The supports of the 

structure were designed as semi-rigid support using neoprene 

pads.

The modal test was carried out using environmental excitation 

and Eight piezoelectric accelerometers. The location of the 

Fig. 16. The Acceleration Time History Curve (mixed scenario-1)

Table 6. The Design of the Mixed Scenarios

Mixed scenario Damage pattern Sensor fault model

1 Healthy Sensor 1# (drifting) and sensor 2# (precision degradation)

2 Relaxing the connecting plate between nodes 6 and 7 Sensor 1# (drifting) and sensor 3# (drifting)

3 Component damage between nodes 6 and 7 Sensor 1# (precision degradation) and sensor 7# (precision degradation)

Table 7. The Design of the Sensor Fault Model

Sensor fault type Damage pattern Mathematical expressions Parameter

Healthy 1/Healthy - -

Drifting 2 A = 0, B = 0.002

Precision degradation 3 C = 0.05

u n[ ] A B η û n[ ] w n[ ]+ +×+=

u n[ ] C η û n[ ] w n[ ]+ +×=
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Fig. 17. The Results of the Structural Damage Identification: (a) Mixed Scenario-1, (b) Mixed Scenario-2, (c) Mixed Scenario-3
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accelerometers can be shown at Fig. 18. Eight data samples from 

Eight accelerometers can be obtained per damage pattern . Based 

on our preliminary study on this structure, the sampling rate is set 

as 500 Hz, which is more than enough to cover the first three 

natural frequencies of the test structure. The Sampling duration is 

set as 600 s.

In this work, Three mixed scenarios with simultaneous damage 

and sensor failure were set, as listed in Table 6. The sensor fault 

was introduced by artificially simulating the two common types 

of faults at different sensors simultaneously, as described in 

Section 2.1. The specific parameters of the sensor faults is listed 

in Table 7. Two Structural damage pattern plus the intact pattern 

are considered, also as listed in Table 6 and Fig. 18. For damage 

pattern 2, we fully loosened 6 bolts at mid-span joints of one 

longitudinal beam and tightened all the other bolts. For damage 

pattern 3, in order to simulate section loss, a 10 mm × 10 mm 

notch was made in the upper and lower flanges at the mid-span 

position of the specified UB beam, as shown in Fig. 18. Fig. 19 

depicts some of the acceleration response time curves measured 

by sensor 1# under damage patterns 2 and 3. 

Figure 20 demonstrates that the submodels of the SD-CNN 

group and the DI-CNN group are 100% and 82.71% accurate on 

average respectively. Furthermore, the individual submodels may 

achieve a structural damage identification performance of 99.12% 

or as low as 59.17% primarily because either the quality of the 

actual sensor data collected or the location of the deployment 

points affects the submodels of the DI-CNN group, and the 

obtained models offer different recognition performances at each 

measurement point. In addition, one-dimensional CNN submodels 

are influenced by the actual environment and may result in a certain 

degree of performance loss, possibly leading to false positives if 

relying on a single sensor to identify structural damage. 

According to Table 6, three types of mixed scenarios were 

designed to validate the efficiency of the developed algorithm 

under the crossover conditions of sensor fault and structural 

damage. Fig. 21 presents the identification results. In mixed 

scenario-1 and mixed scenario-2, if the data obtained from the 

sensor network are directly fed into the DI-CNN group, the 

Fig. 18. The Description of the Experimental Platform

Fig. 19. The Acceleration Time Course Curves: (a) Damage Patterns 2, (b) Damage Patterns 3

Fig. 20. The Diagnosis and Recognition Accuracy of Each Submodel
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discrimination results of sensors 1#, 2#, and 7# of the submodels 

may be misjudged due to the negative impact of the sensor fault 

models. However, the anomalous sensors are effectively identified

and fed back when the SD-CNN group is added. Additionally, 

the results of the DI-CNN group are tallied by integrated voting, 

and the plural is assigned as the final result to avoid the variability of 

the performance of the submodels corresponding to sensor 4# 

and to further improve the reliability of the results of the structural 

damage identification. The computation time of the developed 

algorithm for the testing data set is 22.93 s. The computation 

times of the SD-CNN group and the DI-CNN group are also 

11.41 and 11.52 s respectively, with average computation times 

of 94 and 105 ms for the two types of submodels, confirming 

that they have a high feedback rate.

5. Conclusions

This paper proposed a new method for structural damage 

identification based on a one-dimensional convolutional neural 

network group considering the sensor fault to reduce the 

misjudgment of the damage caused by the sensor fault. SHM 

benchmark data and laboratory experiments verified the validity 

of the proposed method. The main conclusions that follow from 

the findings of the current work are as follows:

1. The proposed algorithm has high computational efficiency and 

can satisfy the requirements of online damage identification for 

structural health monitoring. For SHM benchmark and 

Laboratory experiment cases, the identification time of all 

samples in the test set is 53.09 s and 22.93 s, respectively. 

For a single test sample, the average judgment time of each 

submodel in the SD-CNN group was 278 and 94 ms, and 

that of each submodel in the DI-CNN group was 294 and 

105 ms, respectively.

2. By comparing the identification results of the two-layer 

groups, the developed SD-CNN group can diagnose the 

status of the sensor performance and truncate the faulty 

Fig. 21. The Results of the Identification of the Mixed Scenarios
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signals participating in the damage identification by the DI-

CNN group, which can enhance the efficiency of damage 

identification. In addition, the decision module is employed 

to analyze the identification results of the submodels of the 

DI-CNN group, which can reduce the influence of the 

misjudgment of the submodels on structural damage 

identification, thereby improving the accuracy of structural 

damage recognition.
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