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1. Introduction

At present, reinforced concrete (RC) bridges are widely used in 

transportation. Due to the reciprocating effect of transportation, 

bridges are prone to fatigue (Nie et al., 2011; Shah et al., 2014; 

Liu et al., 2020). In addition, in coastal areas, chloride-induced 

erosion causes the deterioration of RC structures (Liu et al., 

2018), such as steel corrosion, peeling of concrete covers and 

reduction in structural capacities (Vu and Steward, 2000). Corrosion-

induced cracking is the major cause of durability deterioration in 

RC structures (Hartt, 2012). As steel corrosion develops, the 

corrosion product, which is approximately two to six times the 

volume of the original steel (Marcotte and Hansson, 2007), 

produces an expansive pressure on the surrounding concrete that 

leads to concrete-cover cracking. The cracks provide paths for the 

rapid ingress of aggressive agents into the reinforcement and 

accelerate the corrosion process (Asami and Kikuchi, 2003; 

Duffo et al., 2004), which reduces the load-bearing capacity and 

ductility of the structure (Yu et al., 2015) and results in progressive 

deterioration and even spalling of the concrete cover (Williamson 

and Clark, 2000). Therefore, investigation of corrosion-induced 

cracking is important for the prediction of the durability of 

reinforced concrete structures.

For RC structures in coastal regions, the service conditions 

consist of fatigue loading and chloride corrosion (Wu et al., 2018). 

According to the studies of Ahn and Reddy (2001) and Ren et al. 

(2015), steel corrosion in RC structures is usually more aggressive 

under cyclic loading (fatigue loading) than static loading.

A large number of studies have investigated the load-carrying 

capacity (Rodriguez et al., 1997), residual flexural capacity (Torres-

Acosta et al., 2007), flexural stiffness (Dekoster et al., 2003) and 

load–deflection curves (Zhu and François, 2014) of corroded RC 

beams, taking into account the effects of stirrup corrosion (Vu et 

al., 2014), different types of reinforcing bars (Wang et al., 2015), 

size of tensile reinforcement (Azad et al., 2010) and bond 

strength degradation (Adelaide et al., 2012). The flexural behaviour 

of RC beams corroded under constant sustained service loads has 

been analysed (Malumbela et al., 2009). In addition to static 
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behaviour, the fatigue performance of RC beams has caused wide 

concern. The fatigue life (Pimentel et al., 2008), flexural stiffness 

(Higgins et al., 2013), crack width (Oh and Kim, 2007) and crack 

growth (Ray and Kishen, 2014) of RC beams under repeated 

loading have been investigated by various researchers. The 

nonlinear behaviour of cracked RC beams under variable stress 

amplitudes has been numerically simulated (Sousa et al., 2014). 

All of the investigations mentioned above examine the behaviour 

of RC beams under the influence of pure corrosion or pure 

fatigue. There has historically been little concern about the 

combined effects of corrosion and fatigue (Coca et al., 2011). 

Fang et al. (2013) experimentally investigated the flexural behaviour 

of corroded RC beams under repeated loading regarding the 

corrosion influence on bond strength as the most important 

factor and indicated that a low corrosion level increased the bond 

strength between concrete and reinforcing bar. Dong et al. (2017) 

investigated the cracking behaviour and flexural capacity of 

beams under simultaneous sus-tained loading and steel corrosion, 

and the results show that simultaneous loading and corrosion lead 

to more severe and faster cracking damage on the beams. Xu et 

al. (2018) described the coupled effects of chloride ingress and 

static loading on the evolution of corrosion of steel reinforcement in 

concrete, and found that the coupled action of chloride ingress 

and static loading, increased the non-uniform distribution of 

corrosion activity on the steel reinforcement significantly. Oyado 

et al. (2003) conducted fatigue loading tests of corroded RC 

beams and found that the reduction in fatigue strength was 

proportional to the weight loss of the reinforcing bar. Bastidas-

Arteaga (2018) proposed a deterioration model for the application of 

fatigue loading to steel bars corroded by chloride ions and found 

that the total lifetime of RC structures was reduced by approximately 

7%. Yi et al. (2010) investigated the performance of RC beams with 

corroded steel bars under fatigue loading and found that the 

fatigue life of RC beams decreased with increasing the degree of 

corrosion of the steel bar. Wu et al. (2020) investigated the effects of 

reinforcement ratio, and combined actions of initial fatigue 

damage and chloride corrosion on the fatigue behavior of beams, 

and found that the experimental method led to the pitting 

corrosion of tensile steels and hence considerably reduced the 

total fatigue life of RC beams. Mao et al. (2018) investigated 

the fatigue flexural performance of RC beams attacked by salt 

spray, and found that the experimental method can couple 

corrosion deterioration and fatigue loading reasonably. Lu et al. 

(2018) investigated experimentally the behavior of RC beams 

under simultaneous fatigue loading and steel corrosion, the 

results indicated that general and local corrosion occurred 

simultaneously under the joint effects of fatigue loading and 

corrosion, and it was also found that the flexural stiffness of RC 

beams increased in early loading cycles.

Wang et al. (2018a) investigated RC beams subjected to 

fatigue loading before 388 d of NaCl solution wet-dry cycles. The 

results confirmed the significant effect of initial loading damage 

on the lifetime assessment, especially in a corrosive environment. 

Sheng et al. (2017) investigated RC beams subjected to initial 

fatigue loading, followed by chloride corrosion and then fatigue 

ife testls. The results showed that after 6 months of NaCl solution

wet-dry cycles, the crack width in initial fatigue-damaged RC 

beams increased. During the fatigue life tests that followed, the 

degradation of RC beams was accelerated with increasing deflection 

and decreasing stiffness. Sun et al. (2015) subjected RC beams to 

repeated fatigue loading after accelerated corrosion and studied 

the failure mode and flexural stiffness of corroded RC beams 

under repeated loading as well as the mechanical behaviour of 

reinforcing bars after corrosion fatigue. The results indicate that 

the flexural stiffness change in corroded RC beams under 

repeated loading has two obvious stages: a slowly decreasing stage 

and a stable stage.

Recently, the influence of fatigue loading on specimens has 

been gradually considered in research on the corrosion cracking 

of reinforced concrete, but most studies have separated the 

fatigue loading from the corrosion environment. In engineering 

practice, most of the specimens are in an environment where 

fatigue and corrosion are coupled. At present, concrete fatigue 

research mainly focuses on the concrete fatigue loading capacity, 

stiffness of concrete and concrete damage research. However, 

there are few studies on the micro-characteristics of reinforcement/

concrete corrosion products, especially on the microanalysis of 

the transition layer and corrosion products of reinforced concrete 

under the coupled action of chloride and fatigue loading.

In this paper, reinforced concrete specimens were studied 

under the coupled effects of chloride and fatigue loading. Reinforced 

concrete specimens were subjected to the coupled effects of 

chloride and fatigue loading by using a fatigue loading device 

and constant-current dry-wet cycle accelerated corrosion device. 

After corrosion for a predetermined time, the corrosion of the 

reinforcement was studied with regards to the macroscopic, fine and 

microscopic scales, and the corrosion products were studied at 

the microscopic level. The corrosion cracking process of reinforced 

concrete under chloride-fatigue loading was studied.

2. Experiment

2.1 Materials
The dimensions of the reinforced concrete specimen used in the 

test were 150 mm × 150 mm × 550 mm, and the concrete cover    

thickness was 20 mm. Two HPB300 (hot-rolled plain steel bar, 

the grade of 300 MPa) reinforcement bars were used for 

longitudinal reinforcement (the measured mass was accurate to 

0.001 g); the diameter was 10 mm, and the length was 500 mm. 

The mixing proportion of C35 concrete was cement:water:sand: 

coarse aggregate = 1:0.53:2:3. The cement was PO42.5 ordinary 

Portland cement. The water used was tap water; the fine aggregate 

was medium coarse sand, and the coarse aggregate was gravel 

with a particle size of 5 − 15 mm. The 28 d standard cube 

compressive strength of the concrete was measured, and the 

standard value of the average compressive strength of the concrete

cube was 40.5 MPa. The reinforcement bars were placed into the 

concrete test block mould and placed on the 20 mm high concrete 
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pad block. The position of the reinforcement bars was adjusted 

so that the distance between the two bars and the mould wall on 

both sides was 25 mm. A schematic of the specimen is shown in 

Fig. 1.

2.2 Specimen Preparation
The specimen was made with reference to the“Standard for 

methods of long-term performance and durability of ordinary 

concrete” (GB/T 50082-2009, 2009). The reinforcement was 

cut off according to the design length. The reinforcement bars 

were pickled with 12% hydrochloric acid solution, and the rust 

was washed from the surface of the reinforcement bars. Then, 

the reinforcement bars were rinsed with water, and the washed 

reinforcement bars were put into lime water for neutralisation. 

Then, the reinforcement bars were rinsed with water, dried and 

placed into a drying oven to dry for 4 h. After the surface was 

wiped clean, each reinforcement bar was weighed by an 

electronic balance (accurate to 0.001 g) and labelled (1, 2, and 3). 

The two reinforcement bars in the specimen were connected with 

red and blue wires and sealed by insulating tape to facilitate the 

subsequent electrification and accelerate the corrosion (as shown 

in Fig. 2). The wires were drawn out of the mould, and the 

concrete was poured into the mould (as shown in Fig. 3).

2.3 Test Method

2.3.1 Accelerated Corrosion Method
Due to the advantages of the electric-accelerated corrosion method, 

such as its simplicity, high controllability, short time and low 

cost, this method has become the most commonly used method 

for corroding reinforced concrete specimens. Artificially accelerated 

corrosion is slightly different from that under natural conditions. 

Currently, scholars have proposed many accelerated corrosion 

methods that have non-uniform corrosion characteristics similar to 

those under natural conditions, among which the constant-

current dry-wet cycle accelerated corrosion method proposed by 

Professor Jin Weiliang is a typical representative (Jin and Zhao, 

2014). Based on the constant-current dry-wet cycle accelerated 

corrosion method by Jin, We made some changes in the 

experimental (as shown in Fig. 4), this method can not only 

accelerate the corrosion, but also better simulate the non-uniform 

corrosion of reinforcement (Xia et al., 2011; Dong et al., 2017; 

Mao et al., 2018; Xu et al., 2018; Zhang et al., 2020). Using this 

method, the corrosion morphology of reinforcement obtained by 

Xu and Dong is shown in Fig. 5.

1) A water-retaining plastic cloth, 2) water absorbing sponge 

and 3) stainless steel mesh were placed on the bottom of the 

specimen in sequence. The concrete specimen was wrapped with 

3 layers of water-retaining plastic to prevent leakage during 

fatigue loading. The absorbent sponge was used to absorb sodium

chloride solution to immerse the specimen in the solution. The 

concrete internal reinforcement and stainless steel mesh were 

connected with the positive and negative poles of the DC power 

supply to form a closed loop, making it an “electrolytic cell” to 

simulate the real non-uniform corrosion expansion of the 

reinforcement. A current density of 1.5 mA/cm2 was applied during 

the accelerated corrosion process by using a DC power source.

Fig. 1. Schematic Diagram of the RC Specimen (mm)

Fig. 2. Reinforcement Fabrication

Fig. 3. Concrete Pouring

Fig. 4. Constant-Current Dry-Wet Cycle Accelerated Corrosion Device
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2.3.2 Fatigue Loading Method
The wrapped specimen was placed on a 25 t fatigue test machine; a 

rolling bearing and a fixed bearing were placed 25 mm away 

from the two edges of the specimen; and fatigue loading was 

applied with the concentrated stress method, as shown in Fig. 6. 

Sinusoidal fatigue loading was applied with a loading frequency 

of 2.0 Hz, a stress ratio of 0.2, and stress levels of 0.3, 0.4 and 

0.5. During the loading process, The corre-sponding upper limit 

value of fatigue stress for the tensile reinforcement was 78.8 

MPa, 105.1 MPa and 131.3 MPa, respectively, and the lower 

limit value of fatigue stress was 15.7 MPa, 21.0 MPa, 26.2 MPa. 

At each stress level, the loading was applied for 36h, 72 h, 144 h 

and 216 h.

After the loading device was installed, the prepared 5% NaCl 

solution (Lu et al., 2016; Lu et al., 2018; Wang et al., 2018b) was 

poured into the water-retaining plastic cloth, and the sponge fully 

absorbed the solution and contacted the specimen for 24 h. After 

the start time, the magnitude of the current was used as the 

control condition for constant-current accelerated corrosion. To 

ensure that the absorbent sponge was always in a moist state, 

when the solution height in the water-retaining plastic cloth was 

less than half of the height of the specimen, the configured NaCl 

solution was added until the solution height was more than 3/4 of 

the height of the specimen. The liquid level was kept higher than 

the corroded reinforcement to keep the corrosion environment 

stable. When the corrosion time was reached, the constant current

instrument was shut down, and the fatigue test machine was 

stopped. When all of the specimens were loaded, the chloride-

fatigue loading coupling test was performed. The corrosion 

conditions of each test piece are shown in Table 1.

2.3.3 Sample Cutting Method
The cutting method of this test is shown in Fig. 7. The specimen 

was cut along the marked position, and the test blocks connected 

with the red wire were evenly divided into 4 small blocks. The 

test blocks were marked from left to right as 1, 2, 3, and 4. The 

numbers on the sides of the test blockswere 1y1, 1z1, 2y1, 2z1, 

etc. (the first test block section on the left of test block 1 was 

marked 1z1, and the first block section on the right was marked 

1y1, etc.). A 1:1 ratio of epoxy resin was applied evenly on the 

surface of the test block, and the test block coated with epoxy 

resin was cut at 15 mm to obtain a concrete slice. A cut mark was 

made at 5 mm around the reinforcement of the slice to obtain a 

Fig. 5. Non-uniform Corrosion of Reinforcement: (a) Dong et al., 
2017, (b) Xu et al., 2018

Fig. 6. Specimen Loading Device: (a) Specimen Loading Device, (b) Specimen Loading Device Diagram

Table 1. The Number of Samples under Different Corrosion Conditions

Sample

Loading condition (fatigue)
Corrosion 

condition

Sample 

numbersStress 

level

Loading 

time(h)

Reinforce 

concrete

0.3 36 5%NaCl 2

72 2

144 2

216 2

0.4 36 2

72 2

144 2

216 2

0.5 36 2

72 2

144 2

216 2
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small square sample, and then the sample was polished to the 

sample requirements of scanning electron microscopy (SEM).

2.3.4 SEM Observations
Microscopic morphology observations were made using an S-

4,800 field-emission scanning electron microscope produced by 

Hitachi, Japan (Tokyo, Japan). The surface of the sample was 

subjected to a gold spray treatment before the analysis. The SEM 

specifications were as follows: secondary electron resolution, 

1.0 nm (15 kV) and 2.0 nm (1 kV); backscattered electron 

resolution, 3.0 nm (15 kV); acceleration voltage, 0.5 – 30 kV; 

cold field-emission electron source; and magnification range, 30 to 

800,000 times.

2.3.5 Polycrystalline XRD Tests
The prepared powder samples were subjected to XRD (Davinci, 

Bruker, Germany) and analysed using JADE6.5 software. The 

X-ray diffractometer technical specifications are as follows: Cu 

target X-ray tube, voltage ≤ 50 kV, current ≤ 40 mA, nine automatic 

samplers, and dual optical system.

3. Quality Loss Analysis of the Corroded 
Reinforcement

When the corrosion time was reached, the remaining half of the 

specimen was disassembled, and the reinforcement connected 

with the blue wire was removed for derusting treatment. After 

the derusting was completed, the reinforcement was wiped clean, 

and the quality was determined (accurate to 0.001 g). Due to the 

influence of the stress concentration at the bearing, 40 mm test 

blocks at both ends of the specimen were removed during 

specimen cutting. Therefore, after measuring the length of the 

corroded reinforcement, the mass of the corroded reinforcement 

after cutting was proportionally converted to the corroded mass 

of the original length of the reinforcement, and then, the corrosion

ratio of the reinforcement could be compared. The corrosion

ratio of the reinforcement mass was calculated as follows:

, (1)

where LW is the corrosion ratio of the reinforcement mass, W0 is 

the initial mass of the reinforcement before corrosion, and W is 

the quality of the reinforcement after derusting.

Through calculation, the corrosion ratio of the reinforcement 

at each corrosion time (36 h, 72 h, 144 h, and 216 h) at each 

stress level (0.3, 0.4, and 0.5) was obtained, as shown in Fig. 8. 

And at each stress level (0.3, 0.4, and 0.5), there are 0.82%, 

1.12%, 1.38% weight loss in 9 days, respectively.

The stress level has a significant impact on the corrosion ratio 

of the reinforcement. When the corrosion time is 36 h, the 

corrosion ratio of the reinforcement is similar at the stress levels 

of 0.3, 0.4 and 0.5. However, when the corrosion time is72 h, the 

corrosion ratio of the specimen is the highest atthe stress level of 

0.5, the corrosion ratio of the specimen is the second highest at 

the stress level of 0.4, and the corrosion ratio of the specimen is 

the lowest at the stress level of 0.3, which indicates that the 

corrosion ratio of the reinforcement in the specimen at the stress 

level of 0.5 is more serious than those at the stress levels of 0.3 

and 0.4. At the same stress level, the corrosion ratio of the 

reinforcement increases at an accelerated rate as the corrosion 

time increases. Different stress levels also have different effects 

on the corrosion ratio of the reinforcement. For the same corrosion

time, the higher the stress level is, the higher the corrosion ratio 

of the reinforcement. Moreover, the growth rate of the corrosion 

ratio of the specimen at the stress level of 0.5 is significantly 

higher than those of the specimens at the stress levels 0.3 and 0.4, 

which shows that the greater the stress level is, the greater the 

influence on the reinforcement corrosion.

4. Fine Microanalysis of the Reinforcement/ 
Concrete Corrosion Layer

4.1 Spatial Distribution of the Reinforcement/Concrete 
Interfacial Corrosion Layer

The corrosion of the reinforcement is one of the main reasons for 

the decline in the durability of concrete. Harmful substances 

enter concrete and corrode the surface of the reinforcement, 

leading to the deactivation of the passive film on the surface of 

the reinforcement and causing corrosion of the reinforcement. 

The volume expansion of the corrosion products produces a 

corrosion expansion force on the concrete around the reinforcement, 

resulting in concrete cracking.

According to this theory, concrete cover cracking caused by 

reinforcement corrosion is a process of slow development from 

the inside to the outside. Generally, the corrosion cracks start on 

LW

W0 W–

W0

---------------- 100%×=

Fig. 7. Concrete Cutting Process

Fig. 8. Corrosion Ratio of the Reinforcement
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the reinforcement surface (reinforcement corrosion products are 

loose, with expansive force) along with the gradually increasing 

development of reinforcement corrosion products, and the corrosion 

cracks develop from the inside to the surface of the specimen.

To study the corrosion cracking process of reinforced concrete

under the action of chlorine-fatigue loading coupling and to 

understand the corrosion conditions of the reinforcement as well 

as the distribution of the corrosion layer, a test block (2y1) at the 

Fig. 9. Spatial Distribution of the Reinforcement/Concrete Corrosion Layer: (a) 0.3, (b) 0.4, (c) 0.5, (d) 0.3, (e) 0.4, (f) 0.5, (g) 0.3, (h) 0.4, (i) 0.5,
(j) 0.3, (k) 0.4, (l) 0.5
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mid-span of the specimens with different corrosion times at 

different stress levels was analysed using an optical microscope 

by mesoscale photography to obtain the corrosion conditions of 

the reinforcement/concrete interface.

Figures 9(j) − 9(l) show that the reinforcement corrosion 

mainly occurs on the side far from the concrete cover, and when 

the reinforcement begins to corrode, corrosion products are 

generated on the side far from the concrete cover. This occurs 

because concrete is a porous material, and the specimen is subjected

to fatigue loading. The capillarity caused by the periodic opening 

and contraction of pores adsorbs chloride ions at the side far 

from the concrete cover, and thus, the chloride ions penetrate into 

the side far from the concrete cover. As a result, the corrosion of 

the reinforcement on the side far from the concrete cover is more 

serious than that on the other side. With increasing corrosion 

time, the corrosion of the reinforcement gradually becomes 

serious, and the corrosion layer covers half of the circumference 

of the reinforcement. This is different from the corrosion of 

reinforcement under a static load. Under static loading, cracks 

first appear in the tensile zone of reinforced concrete, which 

accelerates the penetration rate of chloride ions. Therefore, the 

corrosion of reinforcement is mainly concentrated on the side of 

the cover of the reinforcement (Zheng, 2016).

The specimen at the stress level of 0.3 do not undergo 

corrosion at 36 h and 72 h; the specimen at the stress level of 0.5 

starts to corrode when the corrosion time is 72 h. When the 

corrosion time is 144 h, the corrosion product enters the crack 

and starts to fill the corrosion expansion crack. The fatigue stress 

level promotes the corrosion of the reinforcement to a certain 

extent. Under the same corrosion time, with increasing stress 

level, the corrosion of the reinforcement becomes more serious. 

The specimen at the stress level of 0.5 enters the third stage of 

reinforcement corrosion the earliest.

It can be seen from Fig. 9 hat the number and width of corrosion 

expansion cracks increase with increasing corrosion time, and 

not only do cracks appear on the side of the cover but obvious 

corrosion expansion cracks also occur on the side far away from 

the cover. These cracks are different from the corrosion expansion

cracks caused by static loading (the damage caused by static 

loading is mainly concentrated on the side of the cover) (Zheng, 

2016). The cracks in the concrete specimens have experienced 

an intermittent process of opening and shrinking under the action 

of fatigue loading, on the side far away from the cover of the 

reinforcement bars, the negative pressure was generated in the 

pore, which was connected with capillary. Under the action of 

capillarity, chloride ions accumulate in the pores on the upper 

side of the reinforcement. At the initial stage, the chloride ion 

concentration on the upper side of reinforcement is higher than 

that the other side, and the upper side of reinforcement is 

corroded first (Hanzic and Ilic, 2003; Ustabas, 2012) When the 

upper pore of reinforcement is gradually filled by corrosion 

products, the capillary effect is gradually weakened, but the 

permeability is gradually obvious. The chloride ions on the side 

of the concrete cover of reinforcement gradually increased, 

therefore, the reinforcement near the cover also began to rust.

Compared with the effect of chloride-static loading coupling, 

the time taken for corrosion products to enter the third stage is 

obviously shorter under fatigue loading. Therefore, compared 

with static loading, fatigue loading is more likely to cause the 

corrosion of the reinforcement, and this corrosion of the 

reinforcement is obviously more serious than that under static 

loading.The stress level of fatigue loading must be strictly 

controlled in practical engineering.

4.2 Line Scanning Energy Spectrum Analysis of the 
Reinforcement/Concrete Interfacial Corrosion Layer

The corrosion layer is a mixture of rust and cement hydration 

products. Therefore, the corrosion layer contains elements of rust 

and cement hydration products. Through the Fe, Ca and O 

elemental analyses of the corrosion layer, the position of the 

corrosion layer and the corrosion conditions of the reinforcement 

were obtained. The specimen was tested by scanning electron 

microscopy, and the corroded parts of the reinforcement were 

analysed by line scanning energy spectrum analysis (EDS), as 

shown in Fig. 10.

According to the mesostructural analysis of the corrosion 

layer of the reinforcement, the transition layer between the 

corroded reinforcement and concrete is filled with corrosion 

products. Due to the expansion of the corrosion products, the 

interface between the reinforcement and concrete is relatively 

loose, and the chemical composition changes (Shah et al., 2014). 

EDS was used to conduct elemental analysis of the interface area 

between the corroded reinforcement and concrete. The distribution 

order of the EDS measurement points is as follows:reinforcement 

matrix, reinforcement/concrete interfacial transition layer and 

concrete matrix at the outer edge of the corrosion layer. The 

relative contents of each element in the micro areas along the 

scan line were measured, and the Fe, Ca and O contents were 

measured to determine whether the reinforcement was corroded 

and the thickness of the corrosion layer.

As seen from Figs. 10(a) − 10(d), when the specimens are 

corroded for 36 h and 72 h at the stress level of 0.3, there is no 

overlap between Fe and Ca, indicating that no corrosion products 

are found. When the specimen is corroded for 144 h (Figs. 10(e)

− 10(f)), Fe, Ca and O overlap in certain areas, which indicates 

that the reinforcement is corroded but has not penetrated the 

concrete matrix, and the elemental contents are low due to the 

cracks between the reinforcement and the concrete. When the 

corrosion time is 216 h (Figs. 10(g) − 10(h)), the reinforcement is 

corroded, and the corrosion products mainly appear on the 

reinforcement, indicating that corrosion occurs first on the 

surface of the reinforcement.

At a stress level of 0.4, when the specimen is corroded for 36 h 

(Figs. 10(i) − 10(j)), no corrosion products are found in the 

reinforcement.When the reinforcement is corroded for 72 h 

(Figs. 10(k) − 10(l)), the contents of Fe, Ca and O are analysed, 

and it is found that the surface of the reinforcement is corroded. 

This result occurs because the corrosion products first appear on 
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Fig. 10. EDS Analysis of the Corrosion Products: (a) 36h-SEM, (b) 36h-EDS, (c) 72h-SEM, (d) 72h-EDS, (e) 144h-SEM, (f) 144h-EDS, (g) 216h-SEM, 
(h) 216h-E
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Fig. 10. (continued): (i) 36h-SEM, (j) 36h-EDS, (k) 72h-SEM, (l) 72h-EDS, (m) 144h-SEM, (n) 144h-EDS, (o) 216h-SEM, (p) 216h-EDS
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the surface of the reinforcement at the beginning of the corrosion,

and the corrosion products have not penetrated into the concrete 

matrix. When the reinforcement is corroded for 144 h (Figs. 10(m)

− 10(n)), the thickness of the corrosion products gradually 

increases, and an obvious corrosion layer appears, indicating that 

the corrosion product on the surface of the reinforcement gradually

penetrates the concrete matrix. When the reinforcement is 

corroded for 216 h (Figs. 10(o) − 10(p)), EDS detection is carried 

out on the corrosion expansion crack, and it is found that the 

crack contains corrosion products, indicating that the corrosion 

products begin to fill the crack, and the corrosion of the 

reinforcement enters the third stage.

EDS analysis also verifies that the fatigue stress level promotes

the corrosion of the reinforcement to a certain extent. Under the 

same corrosion time, the corrosion of the reinforcement increases 

with an increase in the stress level.

4.3 XRD Analysis of the Corrosion Products
The corrosion products on the surface of the corroded reinforcement 

were analysed. The reinforcement bars connected with the blue 

wire were removed from the specimen, and the corrosion 

products on the surface of the reinforcement were scraped with a 

blade. The corrosion products with a corrosion time of 216 h at 

each stress level (0.3, 0.4, and 0.5) and no loading (0) were 

selected for X-ray diffraction analysis. The test results are shown 

in Fig. 11. The types of corrosion products have been obtained by 

XRD of Fig. 11 and Table 2. The corrosion products of natural

corrosion was consistent with artificial corrosion (Vera et al., 

2009; Gan et al., 2011; Du et al., 2020).

The corrosion products of the reinforcement are mainly 

Fe3O4, SiO2, FeOOH, Fe2O3, and FeO, among which Fe3O4 has 

the highest diffraction intensity and content compared with the 

other concentrated corrosion products, and the peak value of 

Fe3O4 is obviously increasing. At a stress level of 0.5, the peak 

diffraction intensity of each corrosion product in the specimen is 

more obvious than those at the stress levels of 0.3 and 0.4, 

indicating that at a corrosion time of 216 h, the greater the stress 

level is, the more serious the reinforcement corrosion. The 

proportions of components in the corrosion products at the 

corrosion time of 216 h at each stress level were measured, as 

shown in Table 2.

Based on Fig. 11 and Table 2, at a corrosion time of 216 h, the 

corrosion products of the reinforcement at various stress levels 

Fig. 11. X-Ray Diffraction Pattern of the Corrosion Products: (a) 0-216h, (b) 0.3-216h, (c) 0.4-216h, (d) 0.5-216h

Table 2. Proportion of the Corrosion Product Content

Name 0.3-216h 0.4-216h 0.5-216h Noloading

Fe3O4 53.71% 71.69% 53.53% 59.01%

FeOOH 31.37% 1.80% 26.52% 27.12%

Fe2O3 12.59% 24.33% 11.74% 12.54%

FeO 2.33% 2.18% 8.21% 1.43%
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and no loading are consistent with each other, but the material 

composition ratios are not the same. In accelerated corrosion 

tests of reinforced concrete, chloride ions enter the concrete 

interior through the pores in the concrete and reach the surface of 

the reinforcement. The chloride ions depolarise the reinforcement,

producing Fe2+ on the surface. Fe2+ forms FeCl2 with Cl
− on the 

surface of the reinforcement, and FeCl2 is a soluble substance. 

FeCl2, as an intermediate, is transported along the surface of the 

reinforcement at the reinforcement/concrete interface, and thus, 

the chloride content does not decrease in solution. When FeCl2
encounters OH−, Fe(OH)2 immediately precipitates and forms 

Fe(OH)3 under oxygen-enriched conditions, and Fe(OH)3 is 

dehydrated to form loose and porous Fe2O3, among which 

FeOOH is formed when the dehydration is not complete. Under 

anoxic conditions, incompletely oxidised Fe(OH)2 forms Fe3O4. 

Therefore, the phase content of reinforcement corrosion products 

mainly depends on the oxygen content. The proportion of Fe3O4

is the highest in the corrosion products at various stress levels, 

the proportions of Fe2O3 and FeOOH are in the middle, and the 

proportion of FeO is the lowest, indicating that the corrosion 

products of the reinforcement mainly occur in a hypoxic 

environment. As seen from Figs. 11(c) − 11(d), with increasing 

stress level and corrosion time, the content of Fe2O3 increases 

significantly, which also indicates that cracking increases the 

oxygen supply of the corrosion environment and accelerates the 

process of corrosion, and this is consistent with the actual 

conditions.

5. Structural Model of the Corrosion Cracking of 
Concrete under Chloride-Fatigue Loading 
Coupling

For the corrosion cracking process of concrete covers caused by 

reinforcement corrosion, the most widely accepted theory at 

present is the “three-stage theory” of reinforcement corrosion 

cracking (Liu and Weyers, 1998; Pantazopoulou and Papoulia, 

2001; Wang and Liu, 2004; Wong et al., 2010): ① the reinforcement           

begins to corrode, and the resulting corrosion products fill the 

pores of the reinforcement/concrete interface, as shown in Fig. 

12(b); ② when the corrosion products fill the original cracks and         

pores, corrosion products continue to form with a certain 

expansion force, causing cracks in the reinforcement/concrete 

interface, as shown in Fig. 11(c); and ③ cracks appear in the           

cover, the cracks develop, and corrosion products fill the cracks, as          

shown in Fig. 12(d).

Previously, scholars believed that the three stages of the corrosion 

cracking process occur in sequence, but this paper found that the 

first stage and the second stage occurred simultaneously. In the 

process of filling the interface gap with corrosion products after 

the corrosion of the reinforcement, cracks have been produced; 

when the corrosion on the reinforcement surface reaches a 

certain amount, it gradually penetrates into the concrete matrix, 

while corrosion on the side of the reinforcement matrix continues to 

occur. When the corrosion products fill the pores, corrosion 

expansion cracks will be generated.

Due to fatigue loading on the specimen, the capillary action 

caused by the periodic opening and contraction of pores adsorbs 

chloride ions to the side away from the cover so that the side 

away from the cover begins to corrode, as shown in Fig. 12(a). 

With the increase in the corrosion time, the corrosion products 

gradually increase, and the corrosion of the reinforcement gradually 

intensifies. The corrosion on the side of the reinforcement away 

from the cover deepens, and the corrosion products gradually 

spread to the interior of the reinforcement. However, after 

spreading to a certain extent, the corrosion products began to 

penetrate into the concrete matrix, and at the same time, the 

corrosion products began to form on the side of the cover of the 

reinforcement, as shown in Fig. 13(b). Under the action of 

fatigue loading, the corrosion products of the reinforcement 

gradually changed from fluffy and porous to dense and multilayer

and began to produce a certain corrosion expansion force. 

Moreover, under the fatigue loading, the capillary action caused 

by the periodic opening and contraction of the pores results in 

corrosion expansion cracks, which is different from that under 

the static loading (the corrosion expansion cracks under static 

loading are concentrated on the side of the cover of the 

reinforcement, and the cracks of corrosion expansion under fatigue 

loading are separated by 120°), as shown in Fig. 13(c). As the 

corrosion of reinforcement is gradually intensified, the corrosion 

products fill into the corrosion expansion crack, and the corrosion 

range of the reinforcement on the side away from the cover 

gradually covers half of the circumference of the reinforcement, 

as shown in Fig. 13(d).

Fig. 12. Three-Stage Reinforcement Corrosion Structural Model: (a) Initial,  
(b) Reinforcement Begins to Corrode, (c) Corrosion Expansion 
of Reinforcement/Concrete Interface, (d) Cracks Appear in the 
Cover
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6. Conclusions

1. Through the analysis of the quality loss of the reinforcement, 

the corrosion of steel bars at different corrosion times at 

different stress levels is analysed. Under the same stress, the 

corrosion of the reinforcement increases with increasing 

corrosion time. For the same corrosion time, the corrosion of 

the reinforcement increases with an increase in the stress 

level. 

2. Through the analysis of the spatial distribution of the 

Reinforcement/concrete interfacial corrosion layer, The corrosion 

of the reinforcement occurs mainly on the side far from the 

concrete cover because concrete is a porous material. Due to 

fatigue loading on the specimen, the capillary action caused 

by the periodic opening and contraction of the pores causes 

chloride ions to be adsorbed on the side far from the cover, 

resulting in more serious corrosion of the reinforcement on 

the side far from the cover than on the side of the cover.

3. The corrosion cracking process of reinforced concrete under 

chloride-fatigue loading coupling is divided into the following 

four stages: stage 1, the surface of the reinforcement begins to 

corrode, mainly on the side far from the cover; stage 2, the 

corrosion products on the surface of the reinforcement gradually 

spread to the interior of the reinforcement, corrosion occurs 

on the side of the cover of the reinforcement, and corrosion 

products gradually penetrate into the concrete; stage 3, the 

corrosion products that infiltrate into the concrete have a 

certain corrosion expansion force, creating expansion cracks 

in the concrete; and stage 4, the generated corrosion products 

gradually fill the corrosion expansion cracks.
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