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1. Introduction

Compared with intact rock masses, the seepage characteristics of 

fractured rock masses are determined mainly by structural 

surfaces (Ma et al., 2015; Yin et al., 2021), and show complex 

flow characteristics such as strong medium inhomogeneity (Zou et 

al., 2018; Shao et al., 2020; Zhang et al., 2020). Under stress, 

dilatancy leads to an increase in fracture openings (Esaki et al., 

1999; Li et al., 2008; Javadi et al., 2014), while normal stress will 

lead to a decrease in fracture openings (Durham and Bonner, 

1994; Zhang and Nemcik, 2013; Son, 2020); therefore, it is very 

important to carry out research on the seepage characteristics of 

fractures (fracture networks) under stress (Zhao et al., 2011; 

Huenges et al., 2013; Yin et al., 2017). At the beginning of the 

20th century, Terzaghi clearly put forward the principle of effective 

stress to establish a one-dimensional consolidation model of 

homogeneous saturated soil, which is the basic theory and primal 

model of coupled seepage and stress in soil media (Terzaghi, 

1943). In the middle of the 20th century, Biot applied Terzaghi's 

theory to the analysis of a three-dimensional consolidation model of 

saturated soils, and gave some classic formulas, which laid the 

foundation for theoretical research on groundwater fluid-solid 

coupling (Biot, 1941). Therefore, based on Biot theory, the change 

in hydraulic conductivity caused by deformation has received more 

attention (Pham et al., 2016), and it has been coupled to a fully 

poroelastic model to evaluate seepage characteristics (Mahyari and 

Selvadurai, 1998; Selvadurai, 2004; Selvadurai and Shirazi, 2010; 

Zhu and Wei, 2011; Guo et al., 2012; Zhu et al., 2014).

For fractured rock masses, early researchers focused on studying

the influence of normal stress on the hydraulic and mechanical 

coupling characteristics of fractured rock masses. There are three 

methods: 1) We directly establish the empirical fitting relationship 

between permeability and stress based on the results of seepage 

tests (Gale, 1982). Although these research results can characterize 

the basic hydraulic and mechanical coupling characteristics of 

fractured rock masses, they are all purely empirical formulas 
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based on test data fitting, and cannot explain some special hydraulic 

characteristics of fractures, such as the fracture permeability not 

being zero under high pressure. 2) The coupling relationship 

between permeability and stress is explained by using experimental 

or numerical simulation methods through the establishment of a 

conceptual model. Tsang and Witherspoon proposed a bulge-

cave combination model (Tsang and Witherspoon, 1981), in 

which the cave and bulge in the fracture face control the deformation 

and seepage characteristics of the fracture respectively, which 

can represent the feature of low permeability of the feature under 

the action of high stress. Therefore, this method can explain the 

shortcomings of the first method. However, due to its large 

theoretical assumptions, the method does not match the actual 

features, which also makes the hydraulic and mechanical coupling

model that is obtained biased. 3) According to the deformation 

and seepage laws of the fracture surface, the theoretical model of 

permeability and stress is established indirectly, and the single 

fracture hydraulic and mechanical coupling model is established 

through experiments and theoretical derivation (Yeo, 2001; 

Souley et al., 2015), which has become the single fracture hydraulic 

and mechanical coupling research hotspot. Early research scholars 

believed that the fracture permeability is completely determined 

by the square of the fracture hydraulic opening (Zimmerman and 

Bodvarsson, 1996; Zhang and Nemcik, 2013), which makes a 

minor change in the crack hydraulic opening cause a significant 

change in the permeability. Generally, the surface of natural 

cracks has rough characteristics, and the existence of rough 

characteristics makes the seepage law of fractures inconsistent 

with the cubic law (Lemarchand et al., 2010; Ju et al., 2013; 

Develi and Babadagli, 2015; Pyrak-Nolte and Nolte, 2016), 

and the roughness characteristics will change under the action of 

external stress. Therefore, it is particularly important to analyze the 

effects of stress and geometric characteristics on fracture 

permeability (Javadi et al., 2014; Chen et al., 2015; Zou et al., 

2015; Liu et al., 2016; Ma et al., 2021). Wang proposed and 

analyzed a new model of seepage mechanism characteristics 

coupled with confining pressure to investigate the effect of 

confining pressure on the seepage mechanism characteristics 

(Wang et al., 2021b) and carried out experiments on shale samples 

containing three types of fractures: a single short fracture, a 

single long fracture, and symmetrical short fractures using a 

confining pressure pump to determine the seepage characteristics 

(Wang et al., 2021a). The above material shows that the third 

method has a sound theoretical basis and considers a number of 

factors affecting the mechanical properties of the fracture, which 

makes it more applicable than the first and second methods. In 

summary, the effects of stress and crack roughness are the two key 

factors that must be considered in the current study of fracture 

hydraulic and mechanical coupling (Ni et al., 2014).

In the past two decades, due to engineering needs and the 

development of computers, experiments and numerical models 

have been used to study the hydraulic conductivity of fractures 

under shear stress and complex stress (Nguyen and Selvadurai, 

1998; Olsson and Barton, 2001; He and Zhuang, 2019; Lei et al., 

2021). Compared with the research progress on the hydraulic 

and mechanical coupling characteristics of the normal stress of a 

single fracture, the shear and seepage coupling characteristics of 

a single fracture have been less studied, mainly because it is 

difficult to guarantee the sealing of the permeating fluid during 

the shear test (Jiang et al., 2004; Auradou et al., 2005; Koyama et 

al., 2012). At present, some scholars characterize the influence of 

the fracture dilatancy effect on the seepage characteristics by 

measuring the normal displacement of the fracture surface during 

the shear process (Rong et al., 2016; Vogler et al., 2016; Gui et 

al., 2017). The evolution of the geometric characteristics of the 

fracture is the mechanism by which the roughness affects the 

shear and seepage coupling characteristics, and it is also the focus of 

the current research. Similar studies can also be found in other 

literature (Koyama et al., 2004; Xiong et al., 2011). In terms of 

simulation, Xie used the COMSOL multiphysics simulation 

program to solve the Navier-Stokes formula to calculate and analyze 

the seepage features of a single crack during shear displacements, 

and obtained the equivalent hydraulic gap width, mechanical gap 

width, and the law of the change in volume velocity with shear 

displacement. At the same time, the distribution characteristics of 

fluid volume velocity in fractures under different shear directions 

and different shear displacements are analyzed (Xie et al., 2015). 

Min established a theoretical model of fracture network rock masses 

that considers the nonlinear normal deformation and dilatancy 

effects of cracks through the Universal Distinct Element Code 

(UDEC) and carried out a series of numerical simulation studies on 

the permeability characteristics under different stress states 

and discussed the influence of fracture normal closure on the 

equivalent permeability coefficient (Min et al., 2004).

From the above overall analysis, the current research on hydraulic 

and mechanical coupling characteristics of fractures has the 

following shortcomings: 1) Due to the dynamic characteristics of 

the shear process, it is difficult to establish a theoretical model, so 

the hydraulic and mechanical coupling model under the joint 

action of normal stress and shear stress is seldom studied. 2) 

Although these experiments and model analyses provide basic 

knowledge about the change in seepage characteristics of a 

single rough fracture under stress, the actual engineering rock 

mass is composed of multiple fractures, and limited experimental 

conditions cannot fully analyze this problem. In the numerical 

simulation, even though some models consider the impact of the 

discrete fracture network on the fluid flow characteristics, these 

models have not considered the impact of the number of fracture 

intersection points on the seepage characteristics for specific 

analysis. Based on the Patton model and Plesha theoretical model, 

the Plesha model including hydraulic behavior was extended. By 

assuming that the change in the fracture width is connected to the 

plastic work of the shear stress of the fracture surface, the 

relationship between the permeability and mechanical width of the 

fracture is deduced, and then the model of the influence of rough 

single fracture on fracture permeability under compressive and shear 

stresses is obtained (Nguyen and Selvadurai, 1998). This paper 

applies this model to the numerical simulation of the rough 
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fracture network model with different numbers of intersections 

to analyze the seepage characteristics in the rough fractured rock 

mass. This paper presents a hydraulic and mechanical coupling 

model of a fractured rock mass that comprehensively considers 

the normal stress, shear stress, seepage pressure and roughness 

characteristics. A numerical calculation method is used to calculate 

and analyze the hydraulic and mechanical seepage characteristics 

of fractured rock masses under normal and shear stresses. In this 

study, through the calculation of fracture network models with 

different numbers of intersection points, the focus is on the 

comparison of the impact of normal stress and shear stress acting 

on the rock mass on the fracture permeability, and the influence 

of the number of fracture intersection points on the average 

fracture width, average water pressure, average seepage velocity 

and seepage channel.

2. Governing Equations for Mechanical and 
Hydraulic Coupling Behavior in a Fracture

Constitutive laws for fractured rock masses should be able to 

reproduce the basic mechanical properties of real fractures, such 

as dilation under shear stress. Among these properties, Nguyen 

and Selvadurai promoted the model of Plesha (Bandis et al., 

1981) to contain hydraulic characteristics (Nguyen and Selvadurai,

1998). The fracture can experience dilation during shear stress, 

which leads to an initial increase in permeability. In the development 

of a coupled mechanical and hydraulic behavior model we use 

the constitutive governing equation.

2.1 Elastoplastic Modeling of the Mechanical Behavior
Bandis et al. (1981) experimentally observed that upeak, the shear 

displacement corresponding to the peak value of shear stress τpeak
is applied with equal normal stress and can be considered 

independent of the normal stress. Assuming linear elastic behavior 

of the fracture up to the peak shear stress, we can obtain, the 

elastic shear stiffness ks as follows:

, (1)

where τpeak is the peak shear stress, upeak is the peak shear 

displacement, σ is the normal stress, JRC is the roughness 

coefficient of the structural surface, JCS is the uniaxial compressive 

strength of rock, L is the size length, and φ is the friction angle. The 

coefficients JRC (dimensionless) and JCS (MPa) and the friction 

angle φ can easily be estimated from two tests (Jaeger, 1971; Barton 

and Choubey, 1977): the tilt test and the Schmidt hammer test.

The parameters JRC and JCS are both scale-dependent. Bandis et 

al. proposed empirical relationships as follows (Bandis et al., 1981):

(2)

where JRC0 and JCS0 are laboratory-scale values, for joints with 

normal size L0 = 100 mm and JRC and JCS are values for larger 

samples of size L.

The remaining parameter required for the model established 

by Plesha is the normal stiffness kn. This parameter can be 

obtained by compression tests on fractured rock samples. The 

most comprehensive experimental investigations on the normal 

closure behavior of joints under applied normal stresses are due 

to Bandis et al., Bandis et al. proposed the hyperbolic relationship as 

follows (Bandis et al., 1981):

, (3)

where kni is the normal stiffness when the normal stress is zero, v

is the normal deformation of the fracture, and vm is the maximum 

closure of the fracture.

The normal stiffness is then

. (4)

The parameters kni and vm that enter Eq. (4) are best obtained 

by compression tests on fractured rock samples.

2.2 Hydraulic Behavior
The parallel plate model is usually used to calculate the fracture 

permeability k as follows (Kling et al., 2017; Medici et al., 2019):

, (5)

where eh is the hydraulic aperture of the fracture.

Because naturally formed fractures are different from the 

ideal parallel plate models, the value of the fracture hydraulic 

aperture is not the same as its mechanical aperture. Witherspoon 

et al. established a linear relationship between the hydraulic 

aperture and the mechanical aperture (Witherspoon et al., 1979):

, (6)

where eh0 is the initial hydraulic aperture, Δem is the change in 

mechanical aperture because of the combined effects of normal 

and shear stresses as discussed in the above section, and f is a 

proportionality factor. Benjelloun experimentally verified the 

validity of Eq. (6), given that f changes between 0.5 and 1. This 

variable comes from the roughness of the fracture surfaces. A 

factor f = 1 applies to the limiting ideal case of parallel smooth 

plates; this situation prevails only when the joint is relatively open, 

with apertures of on order of mm. In the majority of situations, f < 1. 

The geometry of the flow path has an important influence on f. In 

rectilinear laminar flow, f is generally close to 0.8 and in radial flow, 

f is close to 0.5 (Nguyen and Selvadurai, 1998).

To simulate the effect of gouge production on the joint 

permeability, we assume that this effect is connected with the 

total plastic work because of shear stress. Adopting the form of 

the relation proposed by Plesha (Bandis et al., 1981), we assume 

that the factor f in Eq. (7) has a connection with the plastic work 

( )( )
( ) ( )

10

0.33

tan /

/ 500 / /

peak

s

peak

JRCLog JCS
k

u L JRC L

τ σ σ φ+
= =

0

0

0.02

0

0

0.02

0

0

JRC

JRC

L
JRC JRC

L

L
JCS JCS

L

−

−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

,

,

1 /
ni

m

v
k

v v
σ =

−

2

1
n ni

m ni

d
k k

dv v k

σ σ

σ

−

⎛ ⎞
= = −⎜ ⎟

+⎝ ⎠

2
/12

h
k e=

0h h m
e e f e= + Δ



KSCE Journal of Civil Engineering 653
produced by the shear forces according to the equation as follows:

, (7)

where cf is a gouge production factor. It is very likely that the 

plus parameters f0 and cf introduced in this section can have 

empirical connections with JRC, JCS and σ. A detailed experimental

program will be needed to arrive at specific correlations. Plesha 

(Bandis et al., 1981) assumes that the plastic work is produced by 

the shear stress:

, (8)

where  is the relative fracture shear displacement.

3. Simulation of Coupled Mechanical and 
Hydraulic Behavior of Rough Fracture Network

Although large-scale indoor model tests can better simulate and 

discuss the permeability characteristics under stress, it is relatively

difficult to carry out large-scale experimental research due to the 

complex test operations and heavy workload. Compared with 

physical model tests, numerical simulation has been widely used 

in the research and discussion of related problems in the field of 

underground engineering seepage due to its convenient calculation, 

high repeatability, and low cost.

In this paper, to study the influence of normal stress, shear 

stress and the different number of fractured intersection points on 

the permeability characteristics, the analysis is divided into 

different working conditions, as shown in Table 1. The research 
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Fig. 1. Flowchart of Seepage of Fractured Rock Mass Analysis

Table 1. Different Control Variables

The number of fracture

intersection points N

Normal stress σ

(kPa)

Shear stress τ

(kPa)

Model 1: N = 0 2.5 – 10 0.2 – 0.8

Model 2: N = 1 2.5 – 10 0.2 – 0.8

Model 3: N = 3 2.5 – 10 0.2 – 0.8

Model 4: N = 5 2.5 – 10 0.2 – 0.8
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process of this paper is shown in Fig. 1.

The basic assumptions adopted in this paper when establishing

the model are as follows:

1. The rock matrix is a homogeneous and isotropic linear 

elastic medium;

2. No fracture propagation occurs in the fracture matrix 

during the infiltration process;

3. Ignore the compressibility of fluid and the thermal effect of 

fluid flowing in fractures;

4. The density and dynamic viscosity coefficient of the fluid 

remain unchanged.

Figure 2(a) shows the hydraulic and mechanical coupling 

model of fracture intersection point N = 1 under normal stress 

and shear stress. In this model, the size of the model is 1 m × 1 m,

and the boundary conditions and initial conditions of the model 

are as follows: the left, right and lower boundaries of the model 

are all displacement constraints, the normal stress is applied 

vertically to the upper boundary of the model, and the shear stress is 

applied horizontally to the upper boundary of the model. The fluid 

with a pressure of is injected vertically from the upper boundary of 

the model, and the water pressure P1 at the lower boundary is P2. 

The finite element mesh was generated using COMSOL 

Multiphysics software. A free triangular grid is used in the 

modeling process. The predefined element size is set as an adaptive 

mesh feature, and grid refinement near the fractures ensures the 

accuracy of the simulation. The resulting grid has 3519 elements, 

and 3,270 degrees of freedom and is shown in Fig. 2(b).

Table 2 lists the parameters of the hydraulic and mechanical 

coupling model of the fractured rock mass used in this study

(Nguyen and Selvadurai, 1998).

Figure 3 demonstrates the variation in fracture permeability 

Fig. 2. Hydraulic and Mechanical Coupling Model of Fracture Intersection Point N = 1 under Normal and Shear Stress: (a) The Two-Dimensional 

Model, (b) The Finite Element Mesh

Table 2. Model Calculation Physical Parameters

Parameter Value Units 

ρ 3,070 kg/m3

μ 0.25 1

kni 2E9 Pa/m 

E 2.2 GPa

c 0.01 Pa · s

ϕ 37 rad

P1 5 kPa

P2 0 kPa

JRC 9 1

JCS 28 MPa

eh0 0.03 m

k0 7.5E-5 m2

Fig. 3. Permeability Changes under Normal Stress and Shear Stress
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with normal stress and shear stress loading. When the shear stress 

is 0.2 kPa, the difference in permeability reduction is 1E-7 m2 as the 

normal stress increases. When the shear stress is 0.8 kPa, the 

difference in permeability reduction is 8E-8 m2 as the normal 

stress increases. The normal stress clearly has a certain influence 

on the permeability of the fracture, and when the shear stress is 

constant, the permeability of the fracture decreases with increasing 

normal stress. At the same time, when the normal stress is low, 

the permeability changes greatly as the normal stress increases, 

and the permeability is sensitive to changes in the normal stress; 

when the normal stress reaches 6 kPa, the change in the 

permeability shows a decreasing trend, and the permeability is 

less sensitive to changes in the normal stress due to the decrease 

in fracture aperture caused by the increase in normal stress. 

However, comparing the effects of changes in normal and shear 

stresses acting on rock blocks on permeability, shear stress has a 

greater impact on permeability, so shear stress cannot be ignored 

when analyzing the permeability of fractured rock masses.

Figure 4 demonstrates the variation in fracture permeability 

with shear stress under different normal stresses. When the 

normal stress is 5 kPa, the difference in permeability is 1.8E-9 m2

as the shear stress increases. When the normal stress is 10 kPa, 

the permeability difference is 3.6E-9 m2 as the shear stress 

increases. It shows that when the normal stress is constant, the shear 

stress has a greater impact on the permeability of the fracture. 

The permeability increases with increasing shear stress, and 

when the normal stress is low, the permeability-shear stress 

curve has a better linear relationship. At the same time, the larger 

the normal stress, the steeper the slope of the kf − τ curve. When 

the normal stress is different, the shear stress has a different 

effect on the permeability, and the influence of shear stress on 

permeability increases with increasing normal stress.

To study the seepage characteristics of the fracture network 

under stress, this paper also calculates and analyzes the model of 

the different numbers of fracture intersection points N. The size 

of the calculation model is 1 m × 1 m. The calculation model 

with different numbers of fracture intersection points N is shown 

in Fig. 5. In the calculation process, the model parameters, 

boundary conditions and initial conditions are the same as the 

fracture intersection N = 1 model mentioned above.

In states of σ = 5 kPa and τ = 0.4 kPa, the distribution 

characteristics of the average fracture width, average water pressure, 

average seepage velocity and seepage channels in the calculation 

model of the fractured rock mass with different numbers of 

fracture intersection points are shown in Figs. 6, 7 and 8.

Figure 6 shows that the fractures are all in a compressed state, 

and the fracture width is smaller than the initial fracture width 

(0.03 m). Since the fractures in the model with N = 3 and N = 5 

fracture intersection points are bilaterally symmetrical, the 

distribution characteristics of the average fracture width are 

basically bilaterally symmetrical. When the number of fracture 

intersection points is different, the average fracture widths are all 

the largest on the lower side (0.02999 m), that is, the lower side 

of the changed fracture width is the smallest (1E-5 m), and the 

variation amplitude is the smallest. On the whole, the number of 

fracture intersections has little effect on the average crack width. 

When the number of fracture intersection points is 0, the maximum 

and minimum difference between the average fracture width is 

6E-5 m. When the number of crack intersection points is 5, the 

maximum and minimum difference between the average fracture 

widths is 3E-5 m, which shows that the greater the number of 

fracture intersection points is, the smaller the influence on the 

average fracture width.

Figure 7 shows that the average water pressure of fractures in 

the model with the number of fracture intersection points N = 3 

and N = 5 basically presenting a bilateral symmetrical structure 

Fig. 4. kf − τ Curve under Different Normal Stresses

Fig. 5. Calculation Model and Meshing of Different Fracture Intersection 

Points: (a) N = 0, (b) N = 1, (c) N = 3, (d) N = 5
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Fig. 6. Distribution Characteristics of the Average Fracture Width(m) of Models with Different Numbers of Fracture Intersection Points: (a) N = 0, 

(b) N = 1, (c) N = 3, (d) N = 5

Fig. 7. Distribution Characteristics of Average Water Pressure (kPa) in Fractures of Models with Different Numbers of Fracture Intersection Points: 

(a) N = 0, (b) N = 1, (c) N = 3, (d) N = 5
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distribution. On the whole, due to the upper and lower sides of 

the model acting on the water pressures of P1 and P2, the water 

pressure in the fracture network in the steady state shows a 

gradual decreasing trend from top to bottom. When the number 

of fracture intersection points is 0, 1, 3, and 5, the average water 

pressure in the fracture under the steady state of the models is 

1.34 kPa, 0.83 kPa, 0.65 kPa, and 0.35 kPa, respectively. The 

greater the number of fracture intersection points is, the smaller 

the water pressure of fractures near the bottom of the model. Due 

to the difference in the number of fracture intersection points, the 

water pressure of fractures changes significantly, but the 

characteristics of the water pressure change with the number of 

intersections not showing obvious rules.

Since the connected rough fracture network in the fractured 

rock mass is the channel for fluid migration, the distribution 

characteristics of the seepage channel and the average velocity in 

the model with different numbers of intersection points of the 

fracture network are obviously different, as shown in Fig. 8. 

When the number of fracture intersection points is 0, there is 

only one seepage channel (shown by the red arrow) connecting 

the upper and lower boundaries in the model. At this time, the 

fracture has roughly the same fluid velocity (0.091 m/s). When 

the number of fracture intersection points is 1, 3 and 5, there are 

multiple complex seepage channels in the fracture network, and 

the seepage velocity in the fracture network is not the same in the 

steady state. When the number of fracture intersection points is 3 

and 5, the average flow velocity in the fracture seepage channel 

in the steady state basically remains symmetric because this type 

of fracture network is symmetrical, which is similar to the 

distribution characteristics of the fracture width in Fig. 6.

Figure 8 also shows that the overall average flow velocities on 

the lower side of the model under different numbers of fracture 

network intersection points are 0.091 m/s (N = 0), 0.088 m/s (N = 

1), 0.061 m/s (N = 3), and 0.048 m/s (N = 5). With the increase in 

the number of fracture intersection points, the seepage channels 

in the fracture network gradually become denser and more 

complex, and the average flow velocity at the outlet of the model 

gradually decreases because each branch of the intersecting 

fracture is composed of a single facture. When the inlet and 

outlet pressures of the fracture water flow are the same, the flow 

at the end of the fracture is redistributed at the intersection to 

form different boundary angles, and the water flow is affected by 

different degrees of resistance, which leads to energy loss, 

thereby reducing the flow velocity. From the intersection along 

the direction of each fracture, the generation of vortices gradually

decreases the flow rate of the water flow. Compared with N = 0, 

when N = 5, the average flow velocity at the lower water outlet 

of the model is reduced by approximately 1.896 times. When the 

number of intersection points increases from N = 0 to N = 1, 

since the bottom of the model has the same number of fractured 

water outlets, the reduction of the average flow velocity at the 

model outlet is relatively small.

4. Conclusions

This paper mainly uses numerical calculation methods to calculate 

and analyze the seepage characteristics of rock masses with 

different fracture network intersection points under normal stress 

and shear stress. The focus is on the comparison of the impact of 

normal stress and shear stress acting on the rock mass on the 

fracture permeability and the influence of the number of fracture 

intersection points on the average fracture width, average water 

pressure, average seepage velocity and seepage channel. Specifically,

the findings offer four important conclusions.

1. This paper comprehensively considers factors such as 

normal stress, shear stress, seepage pressure and roughness 

characteristics, and extends the calculation model of a 

single fracture to the hydraulic and mechanical coupling 

model with the different number of fracture intersection 

points under normal stress and shear stress, which solves 

the problem that it is difficult to control the shear stress and 

the number of fractures in the experiment to analyze the 

seepage characteristics of the fractured rock mass. This 

paper shows that shear stress has a great influence on 

fracture permeability when comparing the influence of the 

changes of normal stress and shear stress on permeability.

2. When the normal stress is constant, the shear stress has a 

significant effect on the permeability of the fracture, and 

the permeability of the fracture increases with increasing 

shear stress. When the normal stress changes, the influence 

of the shear stress on the permeability increases due to the 

increase in the normal stress. When the normal stress is 

Fig. 8. Distribution Characteristics of the Average Seepage Velocity 

(m/s) and the Seepage Channel in Fractures of Models with 

Different Numbers of Fracture Intersection Points: (a) N = 0, 

(b) N = 1, (c) N = 3, (d) N = 5
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low, the relationship between fracture permeability and 

shear stress can be described by a linear relationship.

3. The number of fracture intersection points has an effect on 

the average fracture width and average water pressure of 

the fracture. When the number of fracture intersection points is 

different, the average fracture width on the lower side is the 

largest (0.02999 m), and the fracture water pressure shows 

a gradual decreasing trend from the upper to the lower side 

of the models. With the increase in the number of fracture 

intersection points, the influence on the average fracture 

width is smaller, and the influence on the fracture water 

pressure is larger. In general, the number of fracture intersection 

points has little influence on the average fracture width and 

average water pressure. 

4. Since the connected fracture network in the fractured rock 

mass is the channel for fluid migration, with the increase in 

the number of fracture intersection points, the model has 

only one seepage channel connecting the upper and lower 

boundaries and increases to multiple complicated seepage 

channels. The water flow is affected by different degrees of 

resistance, leading to energy loss, thus reducing the flow 

velocity. Moreover, the seepage velocity in the fracture 

network under the stable state is also different. Compared 

with N = 0, when N = 5, the average flow velocity at the 

lower water outlet of the model is reduced by approximately 

1.896 times. In general, the number of intersection points 

of the fracture network has a greater impact on the flow 

velocity.
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