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1. Introduction

Due to the demolition of the old building, a great of construction 

wastes are produced in worldwide. Therefore, construction waste 

recycling is very important to the sustainable development of 

environmental protection. Recycled aggregate concrete made 

from crushed brick or concrete has great application potential. 

Recycled brick aggregate concrete (RBAC) is made of recycled 

brick aggregate (RBA), cement, sand and water. Recycled concrete 

aggregate concrete (RCAC) is made of recycled concrete 

aggregate (RCA), cement, sand and water. Recycled aggregate 

concrete (RAC) includes RBAC and RCAC.

Different from natural aggregate (NA), RBA and RCA have 

lower apparent density, higher crushing index and water absorption

(Debieb and Kenai, 2008; Younis and Pilakoutas, 2013; Tanja et 

al., 2017), which negatively influence the strength and durability 

of RAC. The mechanical properties of RAC have been studied 

extensively (Dhar et al., 2018; Dimitriou et al., 2018; Kurda et 

al., 2018). In addition, the frequent occurrence of extreme 

weather, rainstorm, flood and other natural disasters make urban 

or village buildings often in short-term water environment, and 

there are also dams, piers, swimming pools, reservoirs, basements 

and other underwater structures in long-term water environment. 

In water environment, water will infiltrate into the concrete 

through its pores. Previous studies have shown that the compressive 

strength of wet concrete reduced by about 20% (Wang et al., 

2017) and the tensile strength of wet concrete reduced by about 

36% (Selyutina and Petrov, 2018) comparison with air dry 
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concrete. Therefore, the mechanical properties of water saturated 

RAC will influence its further application.

Water saturation and loading rate are important factors, which 

influence the strength, Poisson’s ratio, failure mode and elastic 

modulus of concrete with static and dynamic loading in many 

studies. It has been found that the strength of water saturated 

concrete gradually decreased with the increase of water saturation 

(Xu et al., 2011; Wang et al., 2017). Singh and Xuan et al. (Singh 

et al., 2008; Xuan et al., 2009) also pointed that water saturation 

greatly impacted the mechanical properties of concrete. Zhang et al. 

(2020) indicated that in water saturation state the compressive 

strength of concrete decreased about 23% and the elastic 

modulus of concrete increased about 20% compared with air dry 

state under different concrete strength grades condition. Furthermore, 

Wang et al. (2017) studied the elastic modulus and strength of fly 

ash concrete with different water saturation. They found elastic 

modulus increased gradually with increasing of water saturation, 

while the compressive strength decreased gradually with increasing 

of water saturation. In addition, Wang et al. (2009) indicated that 

under static loading condition the tensile and compressive strength 

of wet concrete were lower than those of air dry concrete, while 

under dynamic loading condition the tensile and compressive 

strength of wet concrete were higher than those of air dry 

concrete. In addition, Wu et al. (2012) found that under the 

condition of low loading rare the flexural strength of wet 

concrete decreased, but the elastic modulus of wet concrete 

increased; under the condition of high loading rate Poisson’s 

ratio of wet concrete was almost stable, but flexural strength and 

elastic modulus of wet concrete reduced. Other studies have 

shown that elastic modulus, strength and impact toughness of 

water saturated concrete were significantly affected by loading 

rate. Ranjith et al. (2008) presented the compressive strength 

decreased with loading rate under the condition of different 

water saturation of concrete. Similar studies can be found with 

the literature of Zhou et al. (2011). What is more, Rossi et al. 

(1992) observed that the compressive and tensile strength were 

influenced by higher loading rate under the higher water saturation 

condition. In another study by Fu et al. (2021) found that the 

compressive strength and elastic modulus of coral aggregate 

concrete were improved by the pore water pressure with dynamic 

loading rate. Nevertheless, Ren et al. (2015) found that the 

strength and impact toughness of water saturated concrete increased 

with the increase of loading rate, while the elastic modulus of 

water saturated had no significant change. 

Under the condition of confining pressure, the compressive 

strength of water saturated and dry concrete increased greatly 

(Chen et al., 2010). But the water saturated concrete was more 

sensitive to loading speed than dry concrete (Wang et al., 2016b). 

Under real water pressure, the compressive strength of dry 

concrete was lower than its uniaxial compressive strength, while 

the compressive strength of water saturated concrete was more 

closer to its uniaxial compressive strength (Wang et al., 2016a). 

It is widely known that the calculation of concrete compressive 

strength is the first step of concrete mix proportion design. As a 

result, some researchers began to focus on the calculation of 

concrete compressive strength. Younis and Pilakoutas (2013) 

developed a multivariable model to predict the compressive 

strength of RAC, in which the density and water absorption of 

recycled aggregate (RA) were considered. Janani and Santhi (2018) 

evaluated a multiple linear regression model to predict the 

strength of concrete by using SPSS (Statistical Package for 

Social Sciences) software. In the study by Zhang et al. (2018), 

water/cement ratio and sand rate were used as the independent 

parameters for compressive strength model of RAC. Furthermore, 

Chen et al. (2019) presented a model for calculating the 

compressive strength of RAC, in which the replacement rate of 

RBA and curing ages of concrete specimen were considered, 

respectively. 

Bolomey Formula is often used to calculate the compressive 

strength of conventional concrete. The modified parameter A 

and B values in Bolomey Formula of RAC was discussed by 

Zhang et al. (2007). Koper et al. (2016) modified Bolomey 

Formula considering water demand of RA. What is more, Ashish 

and Verma (2019) proposed impact factor by modifying Bolomey

Formula to develop a more accurate model of pozzolanic 

concrete. According to Kargari et al. (2018), they proposed a 

calculation model of compressive and flexural strength of 

concrete by modifing Bolomey Formula, in which sand/cement 

ratio and cement strength grade were considered. In another 

study by Rajamane and Ambily (2012), they developed a 

relationship among water/cement ratio, compressive strength 

and the volume fraction of lightweight aggregate based on the

Bolomey Formula.

In previous studies, the factors of water saturation, loading 

speed and confining pressure that affected the mechanical 

properties of concrete were considered, while the factors of 

water/cement ratio, water absorption and coarse aggregate types 

were not considered. Although some calculation models for 

compressive strength of RAC were proposed, the formula for 

calculating the compressive strength of water saturated RAC is 

still in the blank. The calculation of concrete compressive strength is 

the first step of concrete mix proportion design. Therefore, in this 

paper the water content and effective water absorption of NA, 

RBA and RCA, as well as the water content and effective water 

absorption of concrete specimen were tested; secondly, the 

effects of water saturation, water/cement ratio and aggregate 

types on the compressive strength of water saturated concrete 

were studied; finally, the calculation model for compressive strength 

of water saturated concrete was proposed. The results of this 

study have great significance for the mix proportion design of 

RAC. 

2. Test Details

2.1 Materials
The Portland cement was 32.5R grade. Fine aggregate was river 

sand with water content of 0.1%, apparent density of 2,640 kg/m3 

and fineness modulus of 2.76. The physical properties of NA, 
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RCA and RBA are shown in Table 1. The apparent density of 

coarse aggregate was tested by the standard of ASTM C136 (2014);          

the bulk density of coarse aggregate was tested by the standard of 

ASTM C29/C29M (2007); the crushing value of coarse aggregate        

was tested by the standard of BS 812-110:1990 (1990). The particle 

size distribution of RA produced by crusher does not comply to 

ASTM C330/C330M (2017), so the particle size distribution needs 

to be adjusted by sieves. The adjusted grading curve of RA is shown 

in Fig. 1.

2.2 Test of Water Content and Effective Water 
Absorption of Coarse Aggregate

The relationship between water absorption and water content of 

coarse aggregate is shown in Fig. 2. Water content of coarse 

aggregate is determined from oven dry state to air dry state, 

effective water absorption of coarse aggregate is determined 

from air dry state to saturated-surface dry (SSD) state, and water 

absorption of coarse aggregate is determined from oven dry state 

to SSD state. In the design of mix proportion, the coarse aggregate

was used with SSD state, so the water content and effective water 

absorption of NA, RCA and RBA were tested, respectively, and 

water content plus effective water absorption equals water 

absorption. The water content and effective water content of 

coarse aggregate were determined by Test Method ASTM C127 

(2015). 

2.3 Mix Proportion Design
The effects of water/cement ratio and coarse aggregate types on 

the mechanical properties of concrete in air dry and SSD state 

were considered in mix proportion. The water/cement ratio is 

0.41, 0.46, 0.52 and 0.63, respectively. The coarse aggregate 

types include RBA, RCA and NA. The mix proportion was 

designed according to ACI 211.1 (1991) and ACI 211.2 (1998) 

as shown in Table 2, in which RBA and RCA were pre-wetted to 

SSD state before mixing (Salgues et al., 2017).

2.4 Test of Water Content, Effective Water Absorption 

and Compressive Strength of Concrete Specimen
Concrete specimen is a cube with side length of 150 mm. 

According to Table 2, with each mix proportion 15 concrete 

specimens were made to test the compressive strength with water 

saturation of 0%, 25%, 50%, 75% and 100%, respectively. The 

concrete specimens were lifted out of the curing room and dried at 

28 ± 2oC and 5% relative humidity in the natural environment after 

28 days of standard curing. The weight of concrete specimens 

were measured every 30 minutes, it was found the water content of 

concrete specimens was stable at about 48 hours. Then, one part of 

the concrete specimens were tested for compressive strength in air 

dry state, and the other parts were put into the water tank to ensure 

that the concrete specimens were completely submerged in water 

for effective water absorption test.

The water content of concrete specimen was tested by oven 

Table 1. Physical Properties of Coarse Aggregate

Coarse  

aggregate types

Apparent  

density/kg/m3

Bulk density/

kg/m3

Crushing  

value/%

RBA 2,100 1,012 22

RCA 2,622 1,336 12

NA 2,713 1,401 10

Fig. 1. RA Gradation Curve: (a) RCA Gradation Curve, (b) RBA Gradation Curve

Fig. 2. Relationship between Water Content and Water Absorption of 
Coarse Aggregate
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method. Firstly, the concrete specimens cured for 28 days were 

moved to the natural environment for drying. When the water 

content of the concrete specimen was stable, the concrete specimens 

were moved to the oven for drying, until the mass of concrete 

specimen was stable, which was regarded as completely dry.

The test steps of effective water absorption of concrete specimen

are as follows: 1) the concrete specimens are put into the water 

tank to ensure that the concrete specimens are completely 

immersed in water. The mass of concrete specimen is recorded 

every 30 minutes, and then the recording time is increased 

gradually. 2) Before measuring the weigh of concrete specimens, 

the concrete specimens are taken out from the water tank and dried 

for 3 minutes. Then, wiping the water off the surface of the 

concrete specimens with a rag. 3) When measuring the weigh of 

concrete specimens, the concrete specimens should be taken out 

and put in gently to prevent the concrete specimens from bump. 4) 

Considering the discreteness of the test data, three concrete 

specimens are tested for each mix proportion, and the average 

value of the three test values is adopted. If the maximum error is 

more than 15%, the maximum and minimum values are discarded 

and the intermediate value is adopted.

The compressive strength test was determined by Test Method

ASTM C39/C39M (2018), and the loading equipment was TYA-

2000 electro-hydraulic pressure testing machine.

3. Results and Analysis

3.1 Results and Analysis of Water Content and Effective 

Water Absorption of Coarse Aggregate
The results show that the water content of NA, RCA and RBA is 

0.94%, 1.32% and 2.46%, respectively. The water content of 

RCA and RBA is approximately 1.4 times and 2.6 times of NA. 

The attached cement mortar on the RCA surface and the inherent 

high porosity of RBA are considered responsible for their high 

water content. The similar conclusion was found in the literature 

(Chen et al., 2019).

The effective water absorption of coarse aggregate is calculated 

by Eq. (1):

, (1)

where Paggregate is the effective water absorption of coarse 

aggregate; mdry is the mass of air dry coarse aggregate; mw-s is the 

mass of water saturated coarse aggregate.

The relationship between effective water absorption of coarse 

aggregate and water-immersion time is shown in Fig. 3. It can be 

seen that the effective water absorption of three kinds of coarse 

aggregates is stable at about 24 hours. The final effective water 

absorption of RBA, RCA and NA is 8.18%, 0.61% and 0.32%, 

respectively. The effective water absorption of RBA is 13 and 25 

times higher than that of RCA and NA, respectively. The reason 

is that the porosity of RBA are larger than that of NA and RCA. The 

effective water absorption of RCA is about 2 times than that of NA. 
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Table 2. Test Mix Proportion

Specimen 

number

Water/

cement ratio

Dosage of constituent materials in 1m3 concrete/kg(m3) Sand 

ratioWater/kg Cement/kg RBA/kg RBA/m3 RCA/kg RCA/m3 NA/kg NA/m3 Sand/kg Sand/m3

H1 0.63 205 325 0 0 0 0 1,309 0.4825 561 0.2125 30%

H2 0.52 205 394 0 0 0 0 1,243 0.4582 558 0.2114 31%

H3 0.46 205 446 0 0 0 0 1,172 0.4320 577 0.2186 33%

H4 0.41 205 500 0 0 0 0 1,085 0.3999 610 0.2311 36%

H5 0.63 205 325 1,013 0.4825 0 0 0 0 561 0.2125 30%

H6 0.52 205 394 962 0.4582 0 0 0 0 558 0.2114 31%

H7 0.46 205 446 907 0.4320 0 0 0 0 577 0.2186 33%

H8 0.41 205 500 840 0.3999 0 0 0 0 610 0.2311 36%

H9 0.63 205 325 0 0 1,265 0.4825 0 0 561 0.2125 30%

H10 0.52 205 394 0 0 1,201 0.4582 0 0 558 0.2114 31%

H11 0.46 205 446 0 0 1,133 0.4320 0 0 577 0.2186 33%

H12 0.41 205 500 0 0 1,049 0.3999 0 0 610 0.2311 36%

Fig. 3. Relationship between Effective Water Absorption of Coarse 
Aggregate and Water-Immersion Time
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The reason is that the surface of RCA is attached with cement 

mortar, which leads to large porosity and strong hygroscopicity.

It also can be seen from Fig. 3 that the effective water 

absorption of the three coarse aggregates rises rapidly within 

almost 5 minutes of water-immersion, and then gradually slows 

down. The effective water absorption of RBA rises with water-

immersion time and is stable around 24 hours. The effective 

water absorption of RCA also gradually rises with the increase 

of water-immersion time, but the rising range is lower than that 

of RBA. This is because the cement mortar on the surface of 

RCA falls off after long time water-immersion, which leads to 

the decline of effective water absorption. The effective water 

absorption of NA rises first, then declines, and finally tends to 

be stable. The reason is that the porosity of NA is lower than 

that of RCA and RBA, and the apparent density of NA is 

higher than that of RCA and RBA. With the increase of water-

immersion time, the dust and dirt on the surface of NA fall off 

due to the water-immersion, which leads to the negative value 

of effective water absorption calculated by Eq. (1).

3.2 Results and Analysis of Water Content and Effective 

Water Absorption of Concrete Specimen
The water content and effective water absorption of concrete 

specimen are calculated by Eqs. (2) and (3), respectively:

, (2)

, (3)

where wconcrete is the water content of concrete specimen; weffective 

is the effective water absorption of concrete specimen; mc-dry is 

the mass of air dry concrete specimen; mc-c-dry is the mass of 

oven dry concrete specimen; mc-w-s is the mass of water 

saturated concrete specimen.

The test results of water content, effective water absorption and 

water absorption of three kinds of concrete specimens are shown in 

Fig. 4. It can be found that the water content and effective water 

absorption of the three kinds of concrete specimens rise with the 

increase of water/cement ratio. The descending order of both water 

content and effective water absorption of three kinds of concrete 

specimens is: RBAC > RCAC > NAC. It is also found that the 

maximum effective water absorption of RBAC, RCAC and NAC 

specimen are 1.89%, 0.81% and 0.73%, respectively, within 240 

hours of water-immersion. The effective water absorption of RBAC 

specimen is about 2.3 times and 2.6 times than that of RCAC and 

NAC specimen, while the effective water absorption of RCAC 

specimen is close to that of NAC specimen. The reason is that 

the effective water absorption of RBA is much higher than that 

of RCA and NA, while the effective water absorption of RCA is 

close to that of NA.

The effective water absorption of three kinds of concrete 

specimens shows similar trends, which increases rapidly within 3 

hours, slows down gradually after 3 hours, and is stable at about 

60 hours. Zhang et al. (2020) pointed that the water absorption of 

NAC specimen rose rapidly in the first 3 hours, and slowly rose 

after 72 hours. In addition, Wu et al. (2012) also pointed that the 

water absorption of NAC specimen was stable in 100 hours. The 

test results in this study are slightly different with results reported 

by Zhang and Wu et al. (Wu et al., 2012; Zhang et al., 2020), the 

main reason is that the effective water absorption of concrete 

specimen was tested in this study, while the water absorption of 

concrete specimen was tested in the study of Zhang and Wu et al. 

(Wu et al., 2012; Zhang et al., 2020).

wconcrete

mc dry– mc c– dry––

mc dry–

-------------------------------------=

weffective

mc w– s– mc dry–

–

mc dry–

----------------------------------=

Fig. 4. Relationship between Effective Water Absorption and Water-Immersion Time: (a) Water Absorption, Water Content and Effective Water 
Absorption, (b) Effective Water Absorption
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3.3 Results and Analysis of Compressive Strength of 
Concrete

3.3.1 Damage Phenomena
In air dry state, the damage phenomena of NAC and RCAC is 

similar, as shown in Fig. 5. At the beginning of loading, vertical 

microcracks firstly appear on the surface of concrete specimen; 

vertical microcracks gradually extend and form inclined cracks 

with the increase of loading; Inclined cracks extend to the entire 

concrete specimen when approaching the ultimate loading. It is 

Fig. 5. The Damage Diagram of Concrete in Air Dry State: (a) NAC, (b) RCAC, (c) RBAC

Fig. 6. The Influence of Water Saturation on Compressive Strength of Three Kinds of Concrete: (a) RBAC, (b) RCAC, (c) NAC
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found that for NAC and RCAC the inclined cracks mainly 

appear at the interface transition zone between the coarse 

aggregate and the cement mortar and the interior of the cement 

mortar, which indicates that the strength of NAC and RCAC is 

mainly determined by the bond strength of the interface 

between the coarse aggregate and the cement mortar and the 

strength of the cement mortar (Dimitriou et al., 2018; Kurda et 

al., 2018). The damage phenomena of RBAC is similar to that 

of RCAC and NAC. The difference is that there are many 

crushed recycle brick aggregates in the damaged RBAC 

specimen, which can be found in Fig. 5. This indicates that the 

strength of RBAC is not only related to the interface between 

RBA and cement mortar, but also related to the strength of 

RBA (Chen et al., 2019).

The damage phenomena of three kinds of water saturated 

concrete is similar with air dry concrete. The difference is that 

the water saturated concrete is shown the state of powder after 

damage, and the fragments of water saturated concrete can be 

crushed by hand, especially water saturated RBAC. Similar 

phenomenon was also found by Zhang and Wang et al. (Zhang et 

al., 2018; Wang et al., 2009).

3.3.2 Influence of Water Saturation on Compressive 

Strength of Concrete
It can be found from Fig. 6 that the compressive strength of 

RBAC, RCAC and NAC decreases with the increase of water 

saturation. Moreover, the compressive strength of RBAC, RCAC 

and NAC decreases almost linearly with the water saturation 

with different water/cement ratios. The average linear correlation 

coefficient of RBAC, RCAC and NAC is 0.9258, 0.8863 and 

0.9444, respectively.

At present, there are two main explanations for the strength 

reduction of water saturated concrete: the first explanation is the 

theory of pore water pressure, it has been proved that pore water 

pressure was a major cause for the strength reduction of water 

saturated concrete (Shakiba et al., 2017). Konovalenko et al. 

Fig. 7. Compressive Strength of Concrete in Water Saturated and Air Dry State: (a) NAC, (b) RCAC, (c) RBAC
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(2020) also reported that with pore water pressure the compressive 

strength of water saturated concrete reduced. Under loading the 

pore water was easy to reach the crack tip in concrete. At the 

same time, pore water accelerated the microcracks extending in 

concrete and reduced the strength of concrete (Oshita and Tanabe, 

2000). The second explanation is the surface energy theory. 

Under the influence of liquid surface tension, Van der waals' 

force and surface energy of micro particles in concrete were 

decreased, which decreased the strength of concrete (Matsushita 

and Onoue, 2006; Wang et al., 2009). 

3.3.3 Compressive Strength of Concrete in Water 
Saturated and Air Dry State

Figure 7 shows the compressive strength of the three kinds of 

concrete in water saturate and air dry state. In air dry state, it can 

be seen that with the four water/cement ratios the compressive

strength of concrete is in a descending order as follows: NAC > 

RCAC > RBAC. When water/cement ratio of RCAC is 0.41, 

0.46, 0.52 and 0.63, respectively, the percentage of RCAC 

strength reduction is 2.7%, 1.2%, 6.8% and 15.8% compared 

with NAC; when the water/cement ratio of RBAC is 0.41, 0.46, 

0.52 and 0.63, respectively, the percentage of RBAC strength 

reduction is 15.4%, 18.9%, 25.4% and 38.3% compared with 

NAC. It also can be seen that the compressive strength of RCAC 

is very close to that of NAC, while the compressive strength of 

RBAC is much lower than that of NAC. The principal reason is 

the cement mortar attached the surface of RCA, which weakens the 

strength of interfacial transition zone between RCA and cement 

mortar. While the strength of RBA is much lower than that of NA 

and RCA, which reduces the compressive strength of RBAC.

In water saturated state, when the water/cement ratio of NAC 

is 0.41, 0.46, 0.52 and 0.63, respectively, the percentage of water 

saturated NAC strength reduction is 14.6%, 19.8%, 16.4% and 

12.3% compared with air dry NAC; when the water/cement ratio 

of RCAC is 0.41, 0.46, 0.52 and 0.63, respectively, the percentage 

of water saturated RCAC strength reduction is 28.4%, 26.7%, 

12.6% and 3.8% compared with air dry RCAC; when the water/

cement ratio of RBAC is 0.41, 0.46, 0.52 and 0.63, respectively, 

the percentage of water saturated RBAC strength reduction is 

24.2%, 19.6%, 12% and 12.2% compared with air dry RBAC. 

Wang et al. (2017) pointed out that the percentage of water 

saturated NAC strength reduction is 22.5% compared with air 

dry NAC. Zhang et al. (2020) also pointed out that the percentage of 

water saturated concrete strength reduction is 23.1% compared 

with air dry concrete. The results in this study are in accordance 

with Wang and Zhang’s results (Wang et al., 2017; Zhang et al., 

2020), but the compressive strength of RBAC decreases more 

significantly in water saturated state. The main reason for this is 

that the physical properties of RBA are inferior to those of NA 

and RCA.

3.3.4 Influence of Water/cement Ratio and Coarse 

Aggregate Types on Compressive Strength of 
Water Saturated Concrete

It can be found from Fig. 8 that the compressive strength of three 

kinds of concrete decreases with the increase of water/cement 

ratio in air dry state. The compressive strength of NAC is the 

highest, followed by RCAC, and RBAC is the lowest. The 

results show that the compressive strength of water saturated 

concrete is similar to that of air dry concrete. Water saturated 

NAC has the highest compressive strength, water saturated 

RCAC takes the second place, and water saturated RBAC has 

the lowest compressive strength. It can also be found from Fig. 9

that the compressive strength of three kinds of concrete exists a 

linear relationship with water/cement ratio, whether it is in air 

dry state or water saturated state.

4. Calculation Model for Compressive Strength of 
Water Saturated RAC

4.1 Modification of Bolomey Formula
A linear relationship is described by Bolomey Formula between 

Fig. 8. Compressive Strength of Concrete with Different Water/Cement Ratios: (a) Air Dry State, (b) Water Saturated State



KSCE Journal of Civil Engineering 281
compressive strength of concrete and cement/water ratio as 

shown in Eq. (4):

, (4)

where mc is the mass of cement; mw is the mass of water; A = αafce, 

B = αaαbfce; fce is the 28-day compressive strength of cement 

mortar; αa and αb are the regression coefficients.

Equation (4) is used to calculate the compressive strength of 

concrete in air dry state, while the compressive strength of RAC 

is lower than that of NAC, so Eq. (4) can not be used for RAC 

directly. Although some researchers (Zhang et al., 2007; Koper 

et al., 2016) have revised the Bolomey Formula for calculating 

the compressive strength of RAC, the study on the formula for 

calculating the compressive strength of water saturated RAC is 

still in the blank.

It can be found from Fig. 9 that the compressive strength of 

air dry and water saturated concrete is a highly linear relationship 

with the water/cement ratio. The essential reason for concrete 

strength reduction is that the surface energy of micro particles in 

concrete is reduced after water immersion into concrete. Therefore,

the influence of surface energy on the concrete strength can be 

reflected by introducing parameter η. And parameter α is used to 

reflect water saturation. Then the calculation model for compressive

strength of water saturated concrete can be formulated to Eq. (5) 

as follows:

, (5)

where fcu,wet is the compressive strength of water saturated concrete;

fcu is the compressive strength of air dry concrete; α is the 

influence factor of water saturation, α = 1 at 100% water saturation;

η is the influence factor of surface energy; mc,wet is the mass of 

water saturated concrete specimen; mc,dry is the mass of air dry 

concrete specimen.

The equivalent transformation of Eq. (5) can be obtained Eq. 

(6) as follows:

. (6)

Table 3 shows the value of η calculated by Eq. (6) with 

different water/cement ratios and coarse aggregate types:

4.2 Calculation Model for Compressive Strength of 
Water Saturated Concrete

The influence factor η of concrete surface energy is determined 

by water/cement ratio, coarse aggregate types and liquid surface 

energy, and is closely related to water absorption of coarse 

aggregate and water absorption of concrete specimen. Under 

different cement/water ratios, five models were developed, as 

shown in Table 4. Eq. (7) is expressed one-dimensional linear 

relationship between η and mw/mc; Eq. (8) is expressed one-

dimensional nonlinear relationship between η and mw/mc; Eq. (9) 

is expressed one-dimensional linear relationship between η and 

Pc; Eq. (10) is expressed two-dimensional relationship among η,

mw/mc and Pg; Eq. (11) is expressed two-dimensional relationship 

among η, mw/mc and Pc. The meanings of the symbols in Table 4

are as follows: mw/mc is water/cement ratio; Pc is effective water 

absorption of concrete specimen; Pg is effective water absorption 

of coarse aggregate. 

The calculation models for compressive strength of water 
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Fig. 9. The Relationship between Compressive Strength of Concrete and Water/Cement Ratio: (a) Air Dry State, (b) Water Saturated State

Table 3. Calculated Value of η

Coarse aggregate  

types

Water/cement ratio

0.41 0.46 0.52 0.63

NA 0.1474 0.1996 0.1655 0.1234

RCA 0.2865 0.2697 0.1284 0.0379

RBA 0.2467 0.2000 0.1219 0.1241
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saturated concrete are derived as shown Table 5 by substituting 

Eqs. (7) − (11) in Table 4 into Eq. (5):

The compressive strength of water saturated concrete is 

calculated by Eqs. (12) − (16). The relative errors distribution 

between the calculated values and the true values are shown in 

Fig. 10. It can be found that the average relative error in ascending

order is: 0.89% (16) < 1.23% (14) < 2.02% (15) < 2.73% (12) < 

2.76% (13). The absolute value of relative error is mainly within 

4%, which indicates that the prediction accuracy calculated by 

Eqs. (12) − (16) is very precise. Especially the prediction results 

of Eq. (16), the absolute value of relative error calculated by Eq. 

(16) is mostly within 2%, and the relative error distribution is 

very concentrated. However, the absolute value of the maximum 

relative error calculated by Eqs. (12) and (13) is more than 5%. 

The main reason is that although the correlation coefficient 

calculated by Eqs. (12), (13) and (14) is very high, the influence 

of water/cement ratio is not considered, while in Eqs. (16) and 

(15) the influence of water/cement ratio is considered by using 

two-dimensional fitting. Fig. 11 is the thermal diagram of 

correlation among η, mw/mc and Pg in Eq. (10). It can be found 

that for NAC the linear correlation coefficient of between η and 

mw/mc is -0.3412, and that of between η and Pg is 0.9640; for 

RCAC, the linear correlation coefficient of between η and mw/mc

is -0.9497, and that of between η and Pg is 0.9692; for RBAC, 

the linear correlation coefficient of between η and mw/mc is 

-0.9528, and that of between η and Pg is 0.9691. Fig. 12 is the 

thermal diagram of correlation among η, mw/mc and Pc in Eq. 

(11). It can be found that for NAC the linear correlation 

coefficient of between η and mw/mc is -0.9961, and that of 

between η and Pc is 0.4997; for RCAC, the linear correlation 

coefficient of between η and mw/mc is -0.9990, and that of 

between η and Pc is 0.9708; for RBAC, the linear correlation 

Table 4. The Relationship among η, mw/mc, Pg and Pc

Index
Linear or nonlinear regression  

equation

Average correlation 

coefficient

(7) 0.6698

(8) 0.9979

(9) 0.9572

(10) -

(11) -

Note: ai, bi and ci are undetermined coefficients, respectively, i = 1 − 5.
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coefficient of between η and mw/mc is -0.9389, and that of 

between η and Pc is 0.6700. Neglecting the influence of mw/mc in 

Eqs. (12) and (13) is the main reason for large relative error. It is 

also found in Fig. 10 that the calculation accuracy of Eqs. (14) 

and (16) is higher than that of Eq. (15), the main reason is that Pc

is more accurate than Pg in reflecting the reduction mechanism of 

compressive strength of water saturated concrete. The reduction 

of compressive strength of water saturated concrete is not only 

associated with the reduction of surface energy of coarse aggregate

after water absorption, but also associated with the reduction of 

surface energy of cement mortar after water absorption.

4.3 Verification of Calculation Model for Compressive 

Strength of Water Saturated Concrete
Through the above comparison, it can be seen that the calculation 

accuracy of Eq. (16) is the highest. So the Eq. (16) is determined 

as calculation model for compressive strength of water saturated 

concrete. In order to verify whether the calculation model has a 

wider scope of application, 68 experimental datasets obtained 

from the literatures (Zhang, 2014; Ma and Ruan, 2017; Wang et 

al., 2017;  Zhang et al., 2020; Sun et al., 2020; Fu et al., 2021) are 

predicted by the calculation model, and the prediction results are 

shown in Fig. 13. 

It can be found from Fig. 13 that there is a good linear relationship 

between the predicted values calculated by Eq. (16) and the true 

values, and their correlation coefficient reaches 0.9719. The 

average error predicted by Eq. (16) is 7.1% for data from the 

literatures (Zhang, 2014; Ma and Ruan, 2017; Wang et al., 2017; 

Zhang et al., 2020; Sun et al., 2020; Fu et al., 2021). Therefore, 

the Eq. (16) in the prediction of the test data of other literatures 

Fig. 11. The Thermal Diagram of Correlation among η, Pg and mw/mc: (a) NAC, (b) RCAC, (c) RBAC

Fig. 12. The Thermal Diagram of Correlation among η, Pc and mw/mc: (a) NAC, (b) RCAC, (c) RBAC

Fig. 13. Correlation between Predicted Values and True Values
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will show some discreteness. This is because the Eq. (16) is fitted 

on the basis of the test data in this paper, and the factors such as 

mix proportion, test conditions and test environment cause the 

discreteness of the test data. But on the whole, the predicted 

values of the calculation model have a high correlation with the 

true values. Significantly, the factors of water/cement ratio, 

effective water absorption, water saturation and aggregate types 

are considered in the calculation model. At the same time, the 

process of establishing calculation model provides a new idea for 

concrete strength prediction.

5. Conclusions

1. The water content of NA, RCA and RBA is 0.94%, 1.32% 

and 2.46% in air dry state, respectively. The effective water 

absorption of the three aggregates increases rapidly within 3 

minutes, then gradually slows down, and is stable at about 

24 hours. Within 120 hours, the maximum effective water 

absorption of NA, RCA and RBA is 0.32%, 0.61% and 

8.18%, respectively.

2. The water content and effective water absorption of NAC, 

RCAC and RBAC specimen increase with the increase of 

water/cement ratio. The effective water absorption of three 

kinds of concrete increases rapidly within 3 hours, then 

gradually slows down, and is stable at about 60 hours. Within 

240 hour, the maximum effective water absorption of NAC, 

RCAC and RBAC is 0.73%, 0.81% and 1.89%, respectively.

3. In air dry and water saturated state, the descending order of 

compressive strength of three kinds of concrete is: NAC > 

RCAC > RBAC. In air dry state, the compressive strength of 

RCAC is reduced by 1.2% − 15.8% compared with NAC; the 

compressive strength of RBAC is reduced by 15.4% − 38.3% 

compared with NAC. In water saturated state, the compressive

strength of water saturated NAC is reduced by 12.3% −

19.8% compared with air dry NAC; the compressive strength 

of water saturated RCAC is reduced by 3.8% − 28.4% compared 

with air dry RCAC; the compressive strength of water 

saturated RBAC is reduced by 12% − 24.2% compared with 

air dry RBAC.

4. The calculation model for compressive strength of water 

saturated concrete was proposed. The average calculation 

error of the calculation model is 7.1%. Significantly, water/

cement ratio, effective water absorption, water saturation and 

coarse aggregate types are considered in the calculation 

model.
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