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Abstract

During the long-term operation of hydro-junction infrastructure, water flow erosion causes concrete surfaces to crack, resulting in 
seepage, spalling, and rebar exposure. To ensure infrastructure safety, detecting such damage is critical. We propose a highly 
accurate damage detection method using a deep convolutional neural network with transfer learning. First, we collected 
images from hydro-junction infrastructure using a high-definition camera. Second, we preprocessed the images using an image 
expansion method. Finally, we modified the structure of Inception-v3 and trained the network using transfer learning to detect 
damage. The experiments show that the accuracy of the proposed damage detection method is 96.8%, considerably higher than 
the accuracy of a support vector machine. The results demonstrate that our damage detection method achieves better damage 
detection performance.

Keywords: hydro-junction infrastructure, damage detection, deep convolutional neural network, transfer learning, structural health 

monitoring, concrete surface defect
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1. Introduction

The safety and stability of hydro-junction infrastructure is 

important to industry and civilian security: infrastructure with 

serious problems can cause significant economic losses. Therefore, 

damage detection is critical. In recent years, researchers have 

focused on detecting cracks in roads, bridges, pipelines and 

traffic tunnels, and some traditional machine learning methods 

such as edge detection and a random forest model have been 

developed for crack detection (Nishikawa et al., 2012; Ng, 2014; 

Shi et al., 2016; Gui et al., 2017). A multiple feature classifier 

and a machine learning classifier were proposed for crack 

recognition in bridges (Prasanna et al., 2016). A machine 

learning approach is particularly suitable for classifying cracks 

and noncrack noise patterns that are difficult to distinguish using 

existing image processing algorithms (Kim et al., 2018). However, 

manually extracting the feature required by these methods is 

tedious. With the development of the convolutional neural 

network (CNN) for object classification, some researchers have 

applied various CNN models to identify cracks (Cha et al., 

2017). A fully automated tunnel assessment approach was 

proposed using a deep convolutional neural network (DCNN) 

and multi-layer perceptron (Makantasis et al., 2015). A fully 

convolutional network model was proposed to recognize tunnel 

lining defects (Xue and Li, 2018). A unified crack and sealed 

crack detection approach was proposed that can detect and 

separate both cracks and sealed cracks under the same 

framework using transfer learning (Zhang et al., 2018). A Faster 
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Region-based CNN structural visual inspection method was 

proposed to detect multiple damage types (Cha et al., 2018). A 

deep convolutional neural network was trained on the ‘big data’ 

ImageNet database, which contains millions of images, and the 

resulting trained model was transferred to automatically detect 

cracks in hot-mix asphalt and Portland cement concrete-surfaced 

pavement images, which also include a variety of non-crack 

anomalies and defects (Gopalakrishnan et al., 2017). The best 

prediction accuracy was 92.08%, achieved by using the 

metaheuristic optimized edge detection algorithm and convolutional 

neural network for asphalt pavement crack detection (Nhat-Duc 

et al., 2018).The active learning approach achieved a detection 

accuracy of 87.5% in civil infrastructure defect classification 

(Feng et al., 2017). An autoencoder framework was also proposed 

for structural damage identification (Pathirage et al., 2018). The 

methods mentioned above have improved the recognition accuracy

of concrete damage by adopting convolutional neural networks, 

but the detection accuracy can still be further improved. A faster 

region-based concrete spalling damage detection method was 

proposed with an inexpensive depth sensor to quantify multiple 

instances of spalling (Beckman et al., 2019). Unmanned aerial 

vehicle (UAV) technology has been used to collect images for 

detect detection (Phung et al., 2017; Li et al., 2017; Wang and 

Zhang, 2017). A crack identification strategy was proposed that 

combines hybrid image processing with UAV technology (Kim 

et al., 2017). A crack detection method was proposed using a 

deep convolutional neural network by processing the video data 

collected from an autonomous UAV (Kang and Cha, 2018). 

There are also some new ideas for the non-destructive testing of 

composites using a solitary wave (Singhal et al., 2017). A 

nondestructive evaluation (NDE) method was proposed to detect 

concrete surfaces using highly non-linear solitary waves (Nasrollahi 

et al., 2017).

In this paper, we apply transfer learning and the Inception-v3 

deep learning model to the damage detection task for hydro-

junction infrastructure. To achieve multiple types of damage 

detection of hydro-junction infrastructure, we slightly altered the 

fully connected output layer of the network. Entire networks need to 

be retained to detect the damage. The advantage of deep 

convolutional neural networks is that they can automatically extract 

rich defect image features. When only a dataset with a small number 

of samples is available, transfer learning offers huge advantages in 

terms of time-consuming and accuracy. In our method, we first 

collect an image dataset of hydro-junction infrastructure; then, we 

perform image preprocessing. Next, we modify the Inception-v3 

network model structure and input our collected images into the 

modified network to adjust its parameters using transfer learning. 

Our major contributions in this paper are the following:

1. We apply deep learning to classify multiple types of struc-

tural damage of hydro-junction infrastructure such as hydro-

power stations.

2. We combine the Inception v3 network with transfer learning 

to train the structural damage classifier, supporting an effi-

cient fewer-sample detection strategy.

2. Methods 

2.1 Data Collection and Preprocessing

With the explosive development of convolution neural network, 

some datasets are indispensable, such as ImageNet, COCO and 

PASCAL VOC. However, no dataset exists that contains high-

quality images of hydro-junction infrastructure. Therefore, we 

used a UAV equipped with an HD camera, a real-time kinematic 

(RTK) global positioning system. The HD camera is used to 

capture the image. RTK is differential GPS-DGPS, which is 

different from traditional GPS and is used to provide stable GPS 

information for a UAV. As shown in Fig. 1, the UAV collects 

data along a fixed route and maintains a distance of ten meters 

from the hydropower station. Finally, we collected high-resolution 

images at a hydropower station in Sichuan Province, China. 

Fig. 1 shows the hydropower station.

After the dataset collection was complete, we obtained a total 

of 435 available images with a resolution of 7,952 × 5,304. To 

augment these images, we split each raw image into patches. 

Where patch consisted of 300 × 300 pixels. Finally, we obtained 

18,605 300 × 300 patches. Assigning a data label is extremely 

important for network training. To accomplish this task, we 

invited experienced experts to label the data. The patches were 

labelled as one of five types: intact, crack, seepage, rebar 

exposure and spalling. Furthermore, each label type was been 

divided into three subsets at proportions of 8:1:1 and used for 

training, validation, and testing, respectively. Table 1 lists the 

distribution of the training, validation and testing datasets. The 

size of each image is 300 × 300. Fig. 2 shows the image 

Fig. 1. A Hydropower Station

Table 1. Preparation of the Dataset

Five label types
Three Subdatasets

Training Validation Test

Crack 2,957 389 396

Intact 2,948 407 350

Spalling 2,990 365 361

Seepage 2,966 389 380

Rebar exposed 3,012 353 342
− 4494 − KSCE Journal of Civil Engineering
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preprocessing flow and examples of the five label types.

2.2 Convolutional Neural Network 

In the 2012 ILSVRC competition, a deep convolutional neural 

network (DCNN) was applied to the image classification task for 

the first time. It improved the recognition rate by 10%, greatly 

surpassing the second place model and demonstrating a 

comprehensive advantage. A DCNN includes a feature extractor 

that functions automatically during the training process rather 

than requiring manually designed features. The DCNN feature 

extractor is composed of special types of neural networks whose 

weights are determined during the training phase (Krizhevsky et 

al., 2012).

2.2.1 Convolution Layer

Convolution is an effective feature extraction method. Usually, 

a square convolutional kernel with weights is used to traverse 

each pixel of the input image. Each input pixel and the corresponding 

area of the convolution kernel are multiplied by the corresponding

weights of the convolution kernel. The result of this product is 

summed again, adding the bias of the convolution kernel. 

Finally, this process results in a pixel in the output image.

(1)

Where xi represents the input of each channel, wij represents 

the weight of each convolutional kernel, bi represents the bias of 

the convolutional kernel, and yi represents the final output. 

Figure 3 shows a simple example of a convolution operation that 

adopts a non-zero padding mode. The size of the input array is 5 × 5 

× 1. The convolutional kernel size is 3 × 3 × 1, the bias is equal to 

one, the stride is equal to one, and the size of the output array is 3 × 3 

× 1. Eq. (2) shows the calculation of the output size:

(2)

Where the inputlength represents the size of the input image, 

kernellength represents the size of the convolutional kernel, 

stridelength indicates the stride of the convolution kernel, valid

denotes non-zero padding and the same denotes zero padding. 

2.2.2 Activation Layer

In general, a nonlinear activation function appears after the 

convolutional layer. The most common and effective activation 

function is the rectified linear unit (ReLU) function (Nair and 

Hinton, 2010). Intuitively, the gradients of the ReLU function are 

always zeros and ones. This approach not only solves the 

disappearing gradient problem that can occur during training but 
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Fig. 2. Data Expansion and Making Data Labels (intact represents nondestructive type)

Fig. 3. The Convolutional Operator
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also executes much faster and achieves better accuracy than does 

a model using a sigmoidal function. Fig. 4 shows an example of 

the ReLU function.

2.2.3 Pooling Layer

Pooling is a downsampling operation that takes a specific 

value as the output value from s pooling kernel region. There are 

two main types of pooling operations. The max pooling operator 

selects the maximum value from an image array’s subarrays, 

whereas the average pooling operator selects the mean value. 

The advantage of the pooling layer is that it can reduce the 

amount of calculation and it characterizes translation invariance. 

Fig. 5 shows a detailed description of the pooling operator. 

2.2.4 Softmax Layer

To obtain the recognition result, a softmax layer is necessary to 

predict the classes of input the images. The output of a softmax 

layer represents the probability of object recognition. Eq. (3) 

represents the common softmax function, which normalizes the 

result to between 0 and 1. 

(3)

Where x represents the input data, n is the number of categories, m

is the number of train examples, w represents a weight parameter, 

and ,  are the input of the softmax layer.

2.3 Deep Convolutional Neural Network with Transfer 

Learning 

2.3.1 The Structure of Inception-v3 Network

In the 2014 ILSVRC competition, Google presented a network 

in the image classification competition called GoogLeNet that 

achieved a recognition level equivalent to that of human beings 

on the ImageNet dataset. GoogLeNet innovatively included 

some inception modules in the network design. Inception-v3 is 

an improved version of GoogLeNet; its detailed structure is 

shown in Table 2. The Inception-v3 differs from networks such 

as LeNet (Lecun et al., 1998) and VGG (Simonyan and 

Zisserman, 2014) by including a key component called an 

inception module. This module uses multiple sizes of receptive 

kernels. The output size of the convolution operation is held 

consistent by using zero padding. The final feature maps are 

obtained though filter concatenation. The inception operation 
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Fig. 4. The RELU Activation Function 

Fig. 5. The Pooling Operator

Table 2. Detailed Specification of Inception-v3 Network

Type Kernel size/stride Input size

Convolution 3 × 3/2 299 × 299 × 3

Convolution 3 × 3/1 149 × 149 × 32

Convolution 3 × 3/1 147 × 147 × 32

Pooling 3 × 3/2 147 × 147 × 64

Convolution 3 × 3/1 73 × 73 × 64

Convolution 3 × 3/2 71 × 71 × 80

Convolution 3 × 3/1 35 × 35 × 192

Inception module Three modules 35 × 35 × 288

Inception module Five modules 17 × 17 × 768

Inception module Two modules 8 × 8 × 1,280

Pooling 8×8 8 × 8 × 2,048

Linear Logits 1 × 1 × 2,048

Softmax Output 1 × 1 × 1,000
− 4496 − KSCE Journal of Civil Engineering
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helps in extracting richer features from the input image. Fig. 6 shows 

the structure of an inception module (Szegedy et al., 2015).

2.3.2 Transfer Learning 

Transfer learning adapts a model trained on one classification 

scenario to a new classification scenario through simple structural 

Fig. 7. The Principle of Transfer Learning

Fig. 8. The Architecture of Proposed Damage Detection Method

Fig. 6. Sample of the Inception Module

Fig. 9. Flowchart of Damage Detection for the Proposed Damage Detection Method
Vol. 23, No. 10 / October 2019 − 4497 −
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adjustments (Gopalakrishnan et al., 2017). All the layers before 

the final full connection are called the bottleneck layer. The 

bottom layer has the advantage of performing fast feature 

extraction for other datasets (Donahue et al., 2013). As we know, 

the Inception-v3 network has reached 96.5% accuracy on 

ImageNet dataset, which includes 1.2 million annotation images. 

Consequently, we can assume that the network has powerful 

feature extraction capability for any image. However, to achieve 

specific object recognition tasks, we want to retain the bottleneck 

layer of the pre-trained Inception-v3 model and modify the 

network structure of the fully connected layer. The advantage of 

transfer learning is that it can improve the detection accuracy 

even when the available training dataset is small. Fig. 7 depicts 

the principle of transfer learning.

2.3.3 Modified Inception-v3 Network with Transfer Learning

To improve the accuracy of damage detection, we slightly 

altered the structure of Inception-v3 by modifying the number of 

fully connected neurons in the final layer to five—because we 

have five label types. Fig. 8 shows the architectural modifications 

made to Inception-v3.

A detailed flow diagram of the damage detection method is 

shown in the Fig. 9, including data expansion, assigning data 

labels, dataset generation, feature extraction and damage detection.

3. Experiments and Results

3.1 Software Environment of Experiment Setup

The experiment was performed on a computer with an Inter 

core i7-8750H, 16GB of random memory and an NVIDIA GTX 

1060 GPU with 6GB of memory. We used the Tensorflow deep 

learning framework to train the network parameters of the proposed 

damage detection method. The GPU-accelerated software 

environment is as follows: CUDA-9.0, CUDNN-7.5, Tensorflow-

1.9 and Python-2.7.5 from the Anacoda-2 distribution to create an 

independent Python environment.

3.2 Damage Detection 

Before conducting network parameter training, to improve the 

training speed and avoid repeated feature extraction, we extracted

feature maps of each image and saved them. In this way, we need 

only train the parameters of the fully connected layer. During 

training, we set the number of training epochs to 1,000, the 

learning rate to 0.001 and the size of batch to 100. Because the 

data distribution proportion was 8:1:1, we used 14873 image for 

training and 1903 image for validation. After the training, we 

used the retaining 1829 image patches to test the accuracy of the 

proposed damage detection method. The best test accuracy 

achieved was 96.8%. A loss function represents the difference 

between a predicted value and the correct value. When training 

the of network parameters, the loss function is continuously 

minimized by repeatedly updating all the parameters in the neural 

network. Finally, we obtained a highly accurate network model 

to perform damage detection. 

Cross entropy represents the distance between two probability 

distributions. The greater the cross entropy and the greater the 

distance between two probability distributions is, the more 

different the two probability distributions are. Conversely, the 

smaller the cross entropy and the closer the distance between two 

probability distributions is, the more similar the two probability 

distributions are. Fig. 11 shows that the cross entropy changes 

significantly and has a decreasing trend, showing that our 

network gradually converges and tends to be stable. Fig. 10

shows that the increasing trend of detection accuracy is extremely 

fast before the first 100 epochs; therefore, the network is highly 

efficient.

After completing network training, we saved the network 

parameters by a freezing the final model. Then, we use the final 

model to process the test dataset. Fig. 12 shows the results of 

some test images. We choose the maximum probability value as 

the final detection result in the detection result of each image. As 

we can see, except for crack_0001, which is misidentified as 

seepage, all others are correctly detected. This error occurred 

because the features of crack_0001 are similar to those of 

seepage. In addition, the network’s predictions for crack_0005, 

Fig. 10. Accuracy of Training and Validation Dataset for Each Epoch

Fig. 11. Cross Entropy Loss of Training Dataset for Each Epoch
− 4498 − KSCE Journal of Civil Engineering
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intact_0002, spalling_0003 and seepage_0005 have low confidence,

although the detection result of these images are correct because 

the features of these images are not obvious.

3.3 Comparative Study

Common machine learning classifiers, such as support vector 

machines, requires manual image feature selection. To demonstrate 

the performance of our deep convolutional neural network with 

transfer learning. We compared the result of a support vector 

machine (SVM) model with that of our method, as shown in 

Tables 3 and 4. To perform this comparison, we used a convenient 

machine learning library, SVMUTIL. SVMUTIL includes the 

SVM feature extraction algorithm for image classification.

Accuracy is a common index of detection accuracy. To 

understand the details of the detection results, we can use a 

confusion matrix to intuitively express the number of correct and 

incorrect results of damage detection. As shown in Tables 3 and 

4, the first line label represents the prediction type, and the first 

column represents the ground truth.

Table 3 shows the confusion matrix for the proposed damage 

detection method, and Table 4 shows the confusion matrix for 

Fig. 12. Sample of Damage Detection for Five Label Type: (a) Crack, 

(b) Intact, (c) Spalling, (d) Seepage, (e) Rebar Exposure

Fig. 12. (continued)

Table 3. Confusion Matrix of the Proposed Damage Detection 

Method

Truth label

Prediction label

Crack Intact Spalling Seepage
Rebar 

exposure

Crack 395 0 1 0 0

Intact 0 342 0 8 0

Spalling 1 1 346 8 5

Seepage 0 1 7 372 0

Rebar exposure 0 1 26 0 315

Table 4. Confusion Matrix of SVM

Truth label

Prediction label

Crack Intact Spalling Seepage
Rebar 

exposure

Crack 376 11 0 6 3

Intact 0 307 28 4 11

Spalling 17 14 209 67 35

Seepage 13 117 89 126 35

Rebar exposure 75 58 56 69 103
Vol. 23, No. 10 / October 2019 − 4499 −
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the SVM method. We can clearly determine the number of 

misclassifications and the prediction accuracy for each damage 

type. Although, the SVM method achieves high detection 

accuracy for the cracks and intact classes, its accuracy on the 

spalling and seepage classes is very low. Its overall average 

accuracy is 61.2%.

There are several indicators for measure the quality of a 

damage detection method. The sensitivity metric is also called 

recall and its calculation formula is shown in Eq. (4). TP

indicates that the ground truth label is positive and that the 

prediction result was also positive, FN represents outcomes in 

which the ground truth label is positive but the prediction result 

is negative. Second, the positive prediction value is called 

precision which represents the positive accuracy of the predicted 

results. TN represents a ground-truth label that is negative and 

whose predicted label is also negative. FP represents a ground-

truth label that is negative but whose predicted result is positive. 

Eq. (5) shows the calculation of precision. Finally, for a real 

actual detection task, both precision and recall should be 

comprehensively considered; thus the F1 value is a necessary 

factor. Eq. (6) shows the F1 calculation.

(4)

(5)

(6)

4. Discussion of Results

From the results of these experiments, we can see that the 

proposed damage detection method achieves high performance. 

As shown in Table 3, there are only 59 images misclassified by 

the proposed damage detection method, which translates to an 

accuracy is 96.8%. As shown in Tables 5 and 6, we compared 

our damage detection method with an SVM model on multiple 

parameter indicators. The TPR values of the cracks and intact 

classes are high when using the SVM method, but its results on 

the remaining three types are poor. In terms of recall, precision

and F1 for each defect types, our damage detection method is 

higher than SVM. The SVM cannot effectively extract image 

features, while a deep convolution neural network can extract 

high dimensional feature information from an image through a 

large number of convolution kernel parameters. Table 7 shows 

the average accuracy of the proposed damage detection method 

and the SVM method on our test dataset. For each damage type 

the corresponding model accuracy is listed, indicating the 

proportion of correct predictions to the total number of each 

damage type. The average accuracy on all damage types is taken 

as the average damage detection accuracy. We can see that the 

proposed damage detection method is much more accurate than 

SVM. Concrete damage image from hydropower stations have high 

noise, similar backgrounds, complex textures, and inconspicuous 

features. Thus it is necessary to apply a network that can extract 

high-dimensional texture features well. The Inception-v3 uses 

multi-scale convolution kernel in its convolutional layers and 

then stacks the multiple convolution results. This approach 

increases the width of the network and makes it more suitable for 

multi-scale targets. Because the distribution and shapes of concrete 

damage are not fixed, Inception v3 can efficiently extracts damage 

features such as crack and spalling. Every inception module has 

a batch normalization that can accelerate convergence. 

In our research, we do not pay attention to the location of 

detected damage within input image. The recognition and 

classification of multiple types of damage is our main attentive 

focus. On the basis of the situation analysis for practical engineering 

applications, the actual position of detected damage in the 

hydropower station is necessary for later damage repair. Our 

each raw image contains information about the global position 

system (GPS), such as latitude, longitude and altitude. In the test 

phase of the network, we only need to obtain the type of input 

image and use the GPS information of the input image to locate 

the detected damage in the hydropower station. The Faster R-

CNN method was used to detect damage (Cha et al., 2017). They 

have focused on the locating accuracy of detected damage within 

input image and the real-time simultaneous detection of multiple 

types of damages. However, the focus of our detection work is 

on the multiple types of damage recognition and classification. 

The GPS information of input image is applied to the positioning 

of detected damage in the hydropower infrastructure, which is 

different from the work of the paper mentioned above and our 
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Table 5. Recall, Precision and F1 of the Proposed Damage Detec-

tion Method

Label type
Detection indicator

Recall Precision F1

Crack 0.997 0.997 0.997

Intact 0.977 0.991 0.983

Spalling 0.958 0.910 0.933

Seepage 0.978 0.958 0.967

Rebar_exposure 0.921 0.984 0.951

Table 6. Recall, Precision and F1 of the SVM Method

Label type
Detection indicator

Recall Precision F1

Crack 0.949 0.781 0.856

Intact 0.877 0.605 0.716

Spalling 0.578 0.547 0.562

Seepage 0.331 0.463 0.386

Rebar_exposure 0.301 0.550 0.389

Table 7. Comparison of Average Accuracy

Method Average accuracy

Proposed method 96.8%

SVM 61.2%
− 4500 − KSCE Journal of Civil Engineering
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work. 

When we collect images, the weather and lighting will affect 

the quality of the image, which results in the features of images 

that are not obvious, and the detection accuracy will be reduced. 

Some ideas may improve the accuracy for these images. First, 

we increase the number of these images by rotating, mirroring, 

and flipping so that these images can be trained more times. 

Second, changing these images of brightness and contrast by 

traditional image processing technology to enhance texture 

features. In future work, we will improve the network of structures 

to enhance the feature extraction capabilities of the network. 

Convolutional neural networks can use the GPU for accelerated 

training and processing. Therefore, the proposed damage 

detection method is time-saving. However, there is currently no 

unified image dataset for hydro-junction infrastructure so it is 

difficult to make a comprehensive comparison. 

5. Conclusions

In this paper, we proposed a damage detection method using a 

deep convolution neural network with transfer learning for 

hydro-junction infrastructure. Our dataset has five label types: 

crack, seepage, spalling, intact and rebar exposure. We use the 

Inception-v3 network as the basic network, and the Inception-v3 

network helps to extract richer feature of the image. Our dataset 

is relatively small. At the same time, transfer learning is 

especially suitable for small datasets. Therefore, we adopted an 

Inception-v3 and applied transfer learning to detect damage to 

hydro-junction infrastructure. Our model achieves a higher detection

accuracy than does an SVM model; its final test accuracy was 

96.8% on our test dataset.
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