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Abstract

Rapid progress in the field of sensor technology leads to acquisition of massive amounts of measured data from structures being
monitored. The data, however, contains inevitable measurement errors which often cause quantitative damage assessment to be ill-
conditioned. The Bayesian learning method is well known to provide effective ways to alleviate the ill-conditioning through the prior
term for regularization and to provide meaningful probabilistic results for reliable decision-making at the same time. In this study, the
Bayesian learning method, based on the Bayesian regression approach using the automatic relevance determination prior, is
presented to achieve more effective regularization as well as probabilistic prediction and it is expanded to provide vector outputs for
monitoring of a Phase I IASC-ASCE simulated benchmark problem. The proposed method successfully estimates damage locations
as well as its severities and give considerable promise for structural damage assessment.

Keywords: Bayesian learning method, vector outputs, automatic relevance determination prior, damage assessment, Phase I IASC-

ASCE benchmark problem

··································································································································································································································  

1. Introduction

Recent advancements in sensor technology such as development

of new sensor units, wireless sensors, sensor networks, and so

on, enable collection of huge amounts of raw data from

structures under monitoring. The collected data contain valuable

information on structural damage. Structural Health Monitoring

(SHM) similar to human health monitoring intends to perform

damage assessment, e.g., identify, locate and estimate damage,

within the monitored structures by using the measured data or

damage-sensitive features extracted from the measurements (Oh

and Sohn, 2009; Oh et al., 2009). 

Sophisticated deterministic data processing methods developed in

the field of machine learning, for example, Neural Networks,

Support Vector Machine (SVM), and so on, have been applied to

SHM. Recently-developed SVM, in particular, is widely known

as a powerful algorithm for data classification and/or regression

by solving a convex optimization problem to successfully

produce a global minimum rather than local ones, as well as

alleviating over-fitting through model complexity control (Burges,

1998; Vapnik, 1998; Schölkopf and Smola, 2002). Deterministic

methods such as SVM, however, can not effectively deal with

inherent uncertainties caused by inevitable measurement errors

in the data. 

Probabilistic learning methods, however, can provide appropriate

probabilistic predictions and efficiently handle all of the involved

uncertainties that may make inverse problems ill-conditioned.

These advantages motivated application of the Bayesian

learning method, especially with the incorporation of an

Automatic Relevance Determination (ARD) prior, to SHM.

The adopted Bayesian method with the ARD prior and the

same kernel basis functions as SVM is called the Relevance

Vector Machine in the machine learning field and it is able to

overcome disadvantages of SVM, for example, (1) incapability to

deal with uncertainties, (2) waste of data to decide a parameter

to define the objective functions, (3) extensive memory

requirements in large-scale tasks and so on (Tipping, 2000 and

2001; Tipping and Faul, 2003).

In this study, the Bayesian learning method based on a

regression approach with the ARD prior is investigated for

the purpose of SHM. The original Bayesian learning method

with the ARD prior is able to provide only a scalar output

(Tipping, 2001; Oh et al., 2008), but the method adopted in

this study is expanded to produce vector outputs such as

multivariate damage locations and severities (Thayananthan,

2005; Oh, 2008).

This paper is organized as follows. In Section 2, the mathematical

formulation for the proposed method is presented. Monitoring

results of the benchmark structure are provided in Section 3 and

conclusions are given in Section 4.
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2. A Bayesian Learning Method with the ARD
prior for Vector Outputs

The procedure to apply the proposed Bayesian method to

SHM is to (1) extract damage-sensitive features from measured

signals, (2) train the algorithm using the prepared training

dataset, and (3) predict structural damage from newly-obtained

data which were not utilized in the training phase. In this section,

the training and predicting procedure of the proposed Bayesian

method to produce vector outputs is presented. 

2.1 Training Phase

Training data consist of input vectors  along with their

corresponding output vectors . Input vectors are damage-

sensitive features extracted and pre-processed from measured

signals and output vectors represent locations and/or severities of

damage. The training dataset  is

employed to learn a regression function  to relate input

and output vectors during the training or learning phase. The

regression function chosen in this study is formulated using the

Gaussian kernel centered at , i.e., ,

which is also frequently selected for SVM: 

(1)

where w is called a width of the Gaussian kernel, 

,  for

, and . 

An uncertain prediction error  where diag

( ) to account for the fact that no model gives perfect

predictions is included in a probability model (Beck, 2010):

(2)

Then, Bayes' Theorem is used to estimate the most probable

value of parameter  given the data:

(3)

where  and  called

hyperparameters controls the distribution of the prior for .

The likelihood for independent predictions of the data 

becomes a product of Gaussians:

(4)

where  and .

The prior distribution over  controlled by hyperparameter  is:

(5)

where matrix . The resulting posterior PDF

using Bayes’ Theorem in Eq. (3) is:

(6)

where  and  are the most

probable values a posteriori of  and its covariance matrix,

respectively.

The most probable values of hyperparameters  and variances

 are estimated using Bayesian model class selection based on

the evidence and training dataset DN. The selected most probable

model class maximizes the log evidence  for a uniform

prior PDF (Beck and Yuen, 2004; Tipping and Faul, 2003):

(7)

where  is the evidence excluding terms related with

, , , ,

 and 

. 

Therefore, maximization of the log evidence  can be

achieved by iterative maximization of  with respect to αi

and  (Tipping, 2001). In practice, most of the αis become

infinite, which makes the corresponding  zero and so prunes

the associated kernel terms from Eq. (1) (Tipping, 2001;

Thayananthan, 2005).

2.2 Prediction Phase

Prediction of output vector  for a new input vector  is

given by the Theorem of Total Probability from the robust

posterior probability based on the most probable model class

determined in the training phase: 

(8)

where , , ,

 and .

3. IASC-ASCE Structural Health Monitoring
Benchmarks for Damage Assessment

3.1 IASC-ASCE Benchmark Structure and Identification of

Modal Parameters

The primary purpose of the IASC-ASCE benchmarks is to

offer a common platform for numerous researchers to apply

various SHM methods to an identical structure and to compare

their performance. The benchmarks comprise two phases, e.g.,

Phase I and Phase II, each with simulated and experimental

benchmarks. In this study, Phase I simulated data generated from

an existing 4-story, 2-bay × 2-bay, steel braced frame as shown in
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Fig. 1(a) are employed for prediction of structural damage

(Johnson et al., 2000; Johnson et al., 2004). 

Prediction datasets are pre-processed from the acceleration

time histories simulated in the strong (X) and weak (Y)

directions and measured at the locations marked with red dots in

Fig. 1(b). Two kinds of Finite Element (FE) models of 12 and

120 degrees of freedom (DOF) are employed to generate the

time histories for pre-defined damage cases and damage patterns

listed in Table 1 (Johnson et al., 2004). Mode shapes with

associated frequencies are extracted by using MODE-ID, i.e.,

modal identification program (Beck, 1996) and prepared for

prediction.

Training datasets, however, are generated from simpler models

than the benchmarks for all damage cases, for example, lumped-

mass shear building models with reduced DOFs such as 4-DOF

and 12-DOF for damage cases 1-3 and 4-5, respectively, in order

to reflect modeling errors. The proposed Bayesian regression

approach is tested on the simpler damage cases 1-3 first and then

extended to more realistic damage cases 4-5.

3.2 Damage Cases 1-3

3.2.1 Training Phase

Training datasets for damage cases 1-3 are simulated from a

simplified (compared with the benchmark) 4-story 4-DOF lumped

mass shear building model. Note that data for prediction are

generated from 12-DOF and 120-DOF FE models for damage

cases 1, 3 and 2, respectively. A lumped mass matrix with entities

of  kg is utilized (Yuen et al.,

2004) and damage is imposed as a reduction of inter-story stiffness

scaled by parameter θi of undamaged stiffness  MN/m:

where  is the possibly damaged  story stiffness.

Changes of the 1st and 2nd mode shape vectors and corresponding

modal frequencies are selected for the input vector , because modal

parameter changes are known to be more insensitive to modeling

error than the parameter values (Lam et al., 2006; Oh, 2008) :

 with the component

of  at roof = 1 (9)

where  and  are changes of the jth mode shape and modal

{ }1809,2652,2652,3242diag=M

ki

u
68.1=

u

ii

pd

i kk θ=

pd

ik
th
i

x

xi φ
1

Δ   f1Δ   φ
2

Δ   f2Δ[ ]
i

=

j
φ

φ
j

Δ Δfj

Fig. 1. (a) Steel Frame Scaled Model Structure used for Benchmark, (b) Its Diagram

Table 1. Damage Cases and Patterns for Prediction using the

Benchmark Model

Description
Case

1 2 3 4 5

12 DOF Model
120 DOF Model

O
O

O O
O

Symmetric Mass
Asymmetric Mass

O O O
O O

Ambient Excitation
Shaker on Roof

O O
O O O

Damage Patterns: Remove Followings
1) All Braces in the 1st Story
2) All Braces in the 1st & 3rd Stories
3) One Brace in the 1st Story
4) One Brace in the 1st & 3rd Stories
5) 4) & Loosen. Floor Beam at the 1st Level
6) 2/3 Stiffness in One Brace at the 1st Story

O
O

O
O

O
O

O
O
O
O

O
O
O
O
O
O
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frequency between undamaged and possibly damaged structures,

respectively. 

Along with the input vector , output vector  represents 9

different levels of stiffness losses, i.e., 0%, 10%, 20%, …, 80%

losses, to the undamaged inter-story stiffness for each story. For

example,  means 20% and 40% stiffness

losses in the 1st and 3rd stories, respectively. 

Training dataset DN comprising 47 feature vectors is generated

via simple eigen-analysis of the mass and stiffness matrices

based on the restriction that simultaneous damage is assumed to

occur at two different locations at most.

3.2.2 Prediction Phase

Input vectors for prediction, i.e.,  of the same form as Eq.

(9), are simulated from damaged structures with 71% stiffness

reduction at the 1st and 1st,3rd stories for damage patterns 1 and 2,

respectively, as shown in Table 2. Note that prediction is carried

out with respect to  whose damage severities are different

from those of the training data. Time histories with the addition

of 10% noise to signal are generated from the benchmark

structure with a damping coefficient of 0.01 and a time step of

0.004 sec. Stationary response for 20 sec after the initial 10 sec

transient response was employed to extract modal parameters

using MODE-ID (Beck, 1996). As listed in Table 2, prediction

results  in terms of presence, location and severity of damage

agree with target values, i.e., 71% stiffness losses at the 1st and

1st, 3rd stories, with considerable accuracy. 

3.3 Damage Cases 4 and 5

For damage cases 4-5, the number of possible damage scenarios

to take into consideration increases enormously, since damage

can be imposed within faces of the structure rather than just in

stories as damage cases 1-3. For example, if 4 separate damage

levels of 20%, 40%, 60%, and 80% are imposed simultaneously

at 4 different locations among the entire 16 possible positions,

then the total number of possible damage scenarios becomes

 resulting in , where C

represents combinatorial factor. 

To overcome those aforementioned computational difficulties,

a two-step approach is carried out (Yuen and Lam, 2006). In the

first step, only damage locations are identified, and then the

severities of damage are estimated in the next step. In this study,

a threshold value of damage index to decide the presence of

damage is set to be 0.6, which is ad-hoc to a certain extent.

However, the estimated damage severities in the second step

could rectify false results in the previous step, if any.

3.3.1 Training Phase

Training data of damage cases 4 and 5 are simulated from a 3-

dimensional, 12-DOF, lumped mass shear building model to locate

damage in the faces of the building. Note that as for damage cases 1-

3, a simplified analytical model is utilized to consider modeling

errors. Damage is imposed using stiffness loss parameters  for the

 story ( ) and face j ( ) (see Fig. 2):

(10)

where  are stiffness of the undamaged shear building model,

e.g.,  and . 

The local stiffness matrices can be computed and transformed

with respect to geometric center (Yuen et al., 2004) and

assembled to generate mode shape vectors and corresponding

frequencies at locations marked with red dots in 

faces in Fig. 2. Extracted modal parameters are pre-processed to

construct input vectors, e.g., a damage signature defined as

 for the first step and damage-sensitive

feature vectors in Eq. (9) for the second step. Training output

vectors for the first and second steps are damage index  to

locate damage, whose components have values of either 0 or 1 for

undamaged or damaged states, respectively, and damage severities

expressed as stiffness reduction factor  in Eq. (10).

To construct the damage signatures for the purpose of damage

identification (Step 1), only a single damage level, i.e., 50%

stiffness reduction, is imposed on the stiffness in the strong and

weak directions. Note that the stiffness of both elements facing

each other, e.g., elements in +Y and –Y faces, are reduced

together when the damage is assigned. To estimate damage

severity (Step 2), two levels of damage, i.e., 30% and 70% of

stiffness losses, are imposed on the structural elements identified
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Table 2. Stiffness Loss Predictions for Damage Cases 1-3

Damage
Case

Damage
Pattern

Story

1 2 3 4

Target 1, 2, 3
1
2

0.71

0.71

0.00
0.00

0.00
0.71

0.00
0.00

Prediction

1
1
2

0.74

0.71

0.00
0.00

0.03
0.69

0.04
0.05

2
1
2

0.75

0.72

0.00
0.02

0.01
0.76

0.00
0.01

3
1
2

0.73

0.74

0.04
0.03

0.03
0.71

0.05
0.03

Fig. 2. Floor Plan for Benchmark Structure
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in the first step in order to generate the training dataset. 

3.3.2 Prediction Phase – Step 1: Identification of Damage

Locations

Full models of the benchmarks with 12 and 120 DOF for

damage cases 4 and 5, respectively, are used to generate

acceleration time histories for prediction. The added noise level,

damping coefficient, and time step size are identical with those

used for damage cases 1-3, that is 10%, 0.01, and 0.004 sec,

respectively. MODE-ID (Beck, 1996) is utilized to extract modal

parameters as before. 

Step 1 prediction results listed in Table 3 demonstrate that all

of the actually damaged elements can be successfully identified

by the proposed method. Some of the damage indices that are

larger than the previously set threshold of 0.6, even though no

damage is imposed, are corrected for in the next step. Note that

 and  only in the first step

(damage assigned in each face is estimated in the second step as

shown in Table 4). Underlined and bold values in Table 3 stand

for suspected damage locations based on the predicted damage

index values.  

3.3.3 Prediction Phase – Step 2: Assessment of Damage

Severities

After identifying the potential damage locations, another Bayesian

learning algorithm is trained to predict damage severities at

suspected damage locations. As before, input vectors in Eq. (9)

are pre-processed from acceleration time histories of the

benchmarks with the assigned levels of damage given by the

target values in Table 4. 

Prediction results listed in Table 4 demonstrate that the false

identification of damage in the previous step is corrected in the

present step and the severities of damaged elements in each face

of the 1st and 3rd stories are estimated with a high degree of

accuracy as well. The predicted maximum damage severity of

the 2nd and 4th stories (not listed in Table 4) is 0.09 (Oh, 2008),
yiyiyi −+

==
,,,

θθθ
xixixi −+

==
,,,

θθθ

Table 3. Damage Indices to Identify Damage Locations for Damage Cases 4-5

Damage
Case

Damage
Pattern

Story 1 Story 2 Story 3 Story 4

θi,y θi,x θi,y θi,x θi,y θi,x θi,y θi,x

Target
-

Damage
Cases
4 & 5

1
2
3
4
5
6

1.00

1.00

0.00
0.00
0.00
0.00

1.00

1.00

1.00

1.00

1.00

1.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
1.00

0.00
1.00

1.00

0.00

0.00
1.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

Prediction
-

Damage 
Case 4

1
2
3
4

1.48

1.16

-1.94
0.06

2.05

1.53

0.95

1.24

0.19
-0.12
0.42
0.57

0.49
0.43
0.37
0.95

0.23
0.76

1.93

1.23

0.44
0.85

0.39
0.59

0.20
0.29
2.59

0.35

0.34
0.32
0.07
0.28

Prediction
-

Damage 
Case 5

1
2
3
4
5
6

1.82

0.97

3.60

-0.22
-0.23
5.10

2.26

1.42

0.90

1.27

1.30

0.79

0.19
0.42
-1.29
0.19
0.21
3.09

0.43
0.33
0.43
0.56
0.56
-0.19

0.11
0.79

1.06

1.63

1.63

1.38

0.44
0.90

0.48
0.57
0.56
0.71

-0.02
0.07
-2.59
0.08
0.08
-7.01

0.32
0.26
2.62
0.35
0.36
-0.85

Table 4. Stiffness Reduction Factors to Estimate Damage Severities for Damage Cases 4-5

Damage
Case

Damage
Pattern

Story 1 Story 3

θi, −y θi, +x θi, +y θi, −x θi, −y θi, +x θi, +y θi, −x

Target
-

Damage
Cases
4 & 5

1
2
3
4
5
6

0.45

0.45

0.00
0.00
0.00
0.00

0.71

0.71

0.36

0.36

0.36

0.23

0.45

0.45

0.00
0.00
0.00
0.00

0.71

0.71

0.00
0.00
0.00
0.00

0.00
0.45

0.00
0.23

0.23

0.00

0.00
0.71

0.00
0.00
0.00
0.00

0.00
0.45

0.00
0.00
0.00
0.00

0.00
0.71

0.00
0.00
0.00
0.00

Prediction
-

Damage 
Case 4

1
2
3
4

0.43

0.42

0.00
0.00

0.70

0.69

0.37

0.30

0.44

0.43

0.00
0.00

0.72

0.71

0.00
0.02

0.00
0.46

0.03
0.18

0.00
0.72

0.00
0.00

0.00
0.42

0.02
0.03

0.00
0.69

0.00
0.00

Prediction
-

Damage 
Case 5

1
2
3
4
5
6

0.44

0.43

0.03
0.00
0.00
0.00

0.71

0.71

0.41

0.36

0.37

0.21

0.43

0.42

0.02
0.00
0.00
0.01

0.73

0.70

0.07
0.00
0.00
0.03

0.00
0.46

0.00
0.22

0.22

0.04

0.00
0.70

0.00
0.00
0.00
0.00

0.00
0.43

0.02
0.02
0.07
0.02

0.00
0.73

0.00
0.00
0.00
0.00

*Maximum value of the estimated stiffness reduction factor for story 2 and 4 (not listed in Table 4) is 0.09. Note that
target value for the corresponding location is 0.00.
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which could be reasonably judged to be undamaged. Note that

the effect of loosening the floor beam at the 1st level in damage

pattern 4 and 5 of damage case 5 is negligible, as addressed by

Yuen et al. (2004).

Based on the results so far achieved, it can be concluded that

the proposed two step Bayesian learning method is a promising

tool for SHM to successfully locate damage as well as to

estimate its severities. 

4. Conclusions

In this paper, a Bayesian learning method with the ARD prior

and kernel basis functions is introduced and expanded to provide

vector outputs in order to investigate its potential capability for

damage assessment in structural health monitoring. The proposed

Bayesian method can (1) explicitly handle all of the involved

uncertainties from measurement errors, (2) provide meaningful

probabilistic decision-making based on the associated confidence

level, (3) control the trade-off between the data fit and model

complexity in an automatic manner, and (4) prune irrelevant

kernels enabling rapid prediction when new data are obtained.

The proposed method is applied to the Phase I IASC-ASCE

benchmark problem to investigate its feasibility for damage

assessment. The procedure for SHM can be summarized as (1)

training data are simulated from simplified structures that can

reflect modeling errors, e.g., lumped mass models with reduced

DOF, and pre-processed to construct feature vectors as in Eq. (9)

or damage signatures, (2) the proposed algorithm is trained using

the prepared training data, (3) data for prediction are obtained

from the monitored structure, and (4) damage locations and its

severities are estimated using the prediction data.

Based on the prediction results obtained in this study and listed

in Table 2 ~ Table 4, the proposed Bayesian learning method

with vector outputs demonstrates its ability to accurately identify,

locate, and estimate damage for the benchmark problems and it

can also be a promising and powerful real time tool for structural

health monitoring using huge amounts of collected data with

intrinsic errors.
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